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An Approach to Cold-start Link Prediction:
Establishing Connections between

Non-topological and Topological Information
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Abstract—Cold-start link prediction is a term for information starved link prediction where little or no topological information is present
to guide the determination of whether links to a node will form. Due to the lack of topological information, traditional topology-based link
prediction methods cannot be applied to solve the cold-start link prediction problem. Therefore, an effective approach is presented thro-
ugh establishing connections between non-topological and topological information. In the approach, topological information is first extr-
acted by a latent-feature representation model, then a logistic model is proposed to establish the connections between topological and
non-topological information, and finally the linking possibility between cold-start users and existing users is calculated. Experiments wi-
th three types of real-world social networks Weibo, Facebook and Twitter show that the proposed approach is more effective in solving
the cold-start link prediction problem and establishing connections between topological and non-topological information.

Index Terms—social network, link prediction, predictive model, latent feature
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1 INTRODUCTION

L INK prediction is a fundamental problem in network
researches, and its solution is of great significance to

network completion [1], [2], [3] and network evolution [4],
[5]. The purpose of link prediction is to predict the missing
links in current networks [6], [7] and new links that will
appear in future networks [8]. Most relevant studies have
not taken link prediction for isolated nodes in social network
into consideration. Some studies explored the topological
information of social networks [6], and some other studies
combined topological information with some auxiliary in-
formation [9], [10], [11].

Different from general link prediction tasks, this paper
focuses on an information-starved link prediction and at-
tempts to predict the possible links between cold-start users
(the isolated nodes in a social network) and existing users
(the other nodes). Formally, G(V1, E, V2, A) is regarded as
the social network, where V1 is a set of n1 = |V1| existing
users with network structure, E ⊆ V1 × V1 is a set of
edges, V2 is a set of n2 = |V2| cold-start users who are
isolated nodes in the network, and we use n = |n1| + |n2|
to denote the total number of social network users. A (see
Fig.1) is an n × m user-attribute matrix extracted from
users’ auxiliary information; its rows represent users and
its columns represent attributes respectively; m denotes the
size of attribute dimension. Besides, n×n matrix (see Fig.2)
denotes the linked data, and the nodes from u1 to un1 in this
matrix are known as existing users in social network. In the
adjacency matrix, the value in the corresponding position
of the matrix will be 1 if there is a link between existing
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Fig. 2: Linked data

users, and the value will be 0 if there is not a link. The users
from un1+1 to un1+n2

are what we call cold-start users in
this network, and the linking information of these users is
unobserved or missing. Discovering the unobserved links
between existing users V1 and cold-start users V2 is the
main purpose of cold-start link prediction. Most studies on
link prediction are based on two backgrounds [12]: ”non-
temporal” link prediction [1], [3], [6], [13], [14], [15], which
predicts the unobserved status of links for pairs of nodes,
and ”temporal” link prediction [8], [16], which predicts
new links in the future. Both of them are very important
in various fields such as network completion and network
evolution. This paper focuses on the ”non-temporal” cold-
start link prediction problem, and we use the term ”cold-
start link prediction” to refer to a ”non-temporal” version of
the problem.

It is known that real social networks usually have rich
structure characters such as homophily, heterophily and
core-periphery. Additionally, various auxiliary information
such as users’ profiles, tags, publications, etc. are also an
important part of the networks. Naturally, we would think
about how the network structure interacts with the auxil-
iary information. If we can find the connections between
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network structure and auxiliary information, the link infor-
mation of the cold-start nodes could be recovered to some
extent. To be specific, this paper addresses the following two
problems:

i. How to extract and represent the topological informa-
tion of a network.

ii. How to establish the connection between the topolog-
ical information and non-topological information to solve
the cold-start link prediction problem.

The above problems are the main motivations of this
study. In this paper, we propose a representation of latent
features in a unified space for cold-start users and exist-
ing users. First, we extract the latent features for existing
users based on a latent-feature representation model; then a
logistic model is proposed to establish the connections be-
tween topological and non-topological information. Based
on the connections, the existing users and cold-start users
are simultaneously represented in a unified latent-feature
space, and the linking possibility between cold-start users
and existing users could be calculated through their latent-
feature representations.

The rest of the paper is organized as follows. The related
work is introduced in Section 2; in Section 3, we present the
cold-start link prediction method; we evaluate the proposed
method with different social network datasets in Section 4;
finally we make a conclusion in Section 5.

2 RELATED WORKS
In this section, we will review the related works from
the perspective of link prediction. Since there are great
similarities between cold-start link prediction and cold-start
recommendation, relevant literatures on cold-start recom-
mendation will be covered in this section.

2.1 Metric-based link prediction
Metric-based methods, which address the problem by cal-
culating the similarity between nodes, are very common
because people usually create new relationship with people
who have certain similarity with themselves in topological
or non-topological features.

2.1.1 Topology-based metrics
Many existing topology-based metrics are defined by using
various topological information of network. The metric-
s like Common Neighbors [17], Jaccard Coefficient [18],
Sϕrensen Index, Salton Cosine Similarity, Hub Promot-
ed [19], Hub Depressed [2], Leicht-Holme-Nerman [20],
Parameter-Dependent [21], Adamic-Adar Coefficient [22],
Preferential Attachment [23], and Resource Allocation [22]
etc. are defined by neighbors because neighbors can in-
directly reflect users’ social behavior and directly affect
users’ social choice [7]. There are also many other different
metrics such as Katz [24], Local Path [25], Relation Strength
Similarity [26], FriendLink [27], Hitting Time [28], Commute
Time, SimRank [29], Rooted PageRank [30] and PropFlow
[31] etc. Katz [24] counts all paths between two nodes; Local
Path [25] makes use of information of local paths with length
2 and length 3; Relation Strength Similarity [26] is a vertex

similarity that could capture potential relationships of real
world network structure; FriendLink [27], a new node simi-
larity measure takes into account all ℓ-length paths between
nodes; Hitting Time [28] is an asymmetric metric which
is the expected number of steps required for a random
walk between nodes, and Commute Time is a symmetric
version of Hitting Time; SimRank [29] is defined through the
assumption that two nodes are similar if they are connected
to similar nodes; Rooted PageRank [30] is a modification of
PageRank; PropFlow [31] is similar to Rooted PageRank, but
it is more localized. For all of the topology-based metrics,
the key is the topological information between nodes in a
network. Due to the loss of topological information of cold-
start users, the existing topology-based metrics cannot be
used to deal with the cold-start link prediction.

2.1.2 Non-topology metrics
Non-topology metrics [32], [33], [34] focus on the informa-
tion outside the network structure. For instance, in an online
social network, each user has his/her profile which covers
the description of age, interests and geographic location.
In addition, large amount of shared content is important
external information, and it is beneficial for social network
data mining [35], [36], [37]. Non-topology link prediction
methods are commonly dependent on similarity (two n-
odes are considered similar if they have many common
attributes). Thus, the crux of the matter lies in extracting
users’ attributes and designing their attribute similarity. Zhi-
bo Wang et al. [38] proposed a lifestyle-based friend recom-
mendation method, and in this method his/her lifestyles are
first extracted based on Latent Dirichlet Allocation model
[39], and then a similarity metric is designed based on the
lifestyle of users. Aiello et al. [40] found that users’ label
could reflect their interest, so they proposed label-similarity-
based method to predict links in Flickr, Last.fm, and aNobill.
Different from a general metric-based method, the two-
phase bootstrap probabilistic method proposed by Vincent
Leroy et al. [41] utilized users’ group features to measure the
similarity between nodes in the first phase, and employed
graph-based measure to produce the final prediction in
the second phase. Besides, there are also many other non-
topology metrics which utilize users’ interests [42] or key-
words [43] to measure the similarity between a pair of users.
To sum up, non-topology methods have mainly used the
users’ attributes extracted from non-topological information
such as profile, label and content because the information
can reflect their personal interests and social behaviors.
These methods of attribute extraction and similarity can be
directly used for the cold-start link prediction. However, the
effectiveness of non-topology metrics depend on the domain
and the specific network and information available.

2.2 Learning-based link prediction
Here we deal with the learning-based link prediction meth-
ods according to the following three subdivisions.

2.2.1 Classification-based methods
In classification-based methods, link prediction is treated
as a binary classification problem in which each pair of
nodes is an instance, and being positive or being negative
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is a class label which indicates whether the pair of nodes
are connected or not. Many classification models are used
in link prediction problems, such as support vector ma-
chines, logistic regression, K-Nearest Neighbors, and Naive
Bayes. Like many classification problems, feature selection
for classification-based link prediction is the most critical
part. These features include topological and non-topological
ones. Many link prediction classification models are based
on topological features. Lichtenwalter et al. [44] introduced
the vertex collocation profile (VCP), one kind of local topo-
logical features. Sá et al. [45] used many proximity metrics
such as Common Neighbors [17], Jaccard Coefficient [18],
Adamic-Adar Coefficient [22], Preferential Attachment [23]
and Local Path [25] and deployed them as predictor features
in the supervised link prediction model. Leskovec et al. [46]
made effort to predict positive and negative links based
on the topological features, including degrees of the nodes
and triad. Chiang et al. [47] extended Leskovec et al.’s
work [46], and made use of features derived from longer
cycles in the network. Lichtenwalter et al. [31] presented
a high-performance frame work for link prediction, which
made great improvement over existing unsupervised meth-
ods. These methods are the typically learning-based link
prediction on various topological features. To sum up, the
learning-based methods construct features by computing
the topological similarity based on the neighbors or path-
s between two users; extensive experiments validate that
these topological features are very important and effective
in link prediction. However, the topological features are
not applicable to a classification model because the loss of
topological structure information of cold-start users.

Apart from topological features used in classification
model for link prediction, the addition of non-topological
features (such as users’ location, interests, education) can
improve link prediction. Scellato et al. [9] took location fea-
tures, social features, and global features into consideration
on a supervised learning framework. Wohlfarth et al. [11]
proposed a semantic and event-based approach to improve
the accuracy of the link predictor. These studies indicate
that if non-topological features are added to a classification
model, the predicting results could be improved. Due to the
loss of the topological features in cold-start users, only non-
topological features could be used in classification models
to solve the cold-start link prediction problem. However, its
effectiveness still depends on the domain and the specific
network and non-topological features available, etc.

2.2.2 Matrix factorization-based methods
Matrix factorization is a type of technique to get low rank
approximation and global information of the adjacency ma-
trices of networks. As is known, many matrix factorization
methods (such as singular value decomposition (SVD) [48],
non-negative matrix factorization (NMF) [49] and proba-
bilistic matrix factorization (PMF) [50]) have been used in
the field of collaborative filtering. Some other matrix factor-
ization methods have been proposed to solve the problem
of link prediction. Enming Dong et al. [51] proposed the
method of predicting the missing links by using convex
nonnegative matrix factorization, and his method was more
effective because he combined the concepts of block struc-
ture with low rank approximations for matrices. Aditya

Krishna Menon et al. [12] proposed a model which was
trained with a ranking loss to address the class imbalance
problem that is common in network datasets. However, like
topology-based metrics mentioned in 2.1, due to the loss of
topological structure information of cold-start users, these
matrix factorization-based methods are not applicable to
cold-start link prediction, either.

2.2.3 PGM-based methods
Probabilistic Graph Model (PGM) is an important and ef-
fective way to model networks. PGM-based methods can
capture many complex network structure properties and
provide social network analysis with deep insights. Clauset
et al. [1] proposed a hierarchical network model, in which
a network could be modelled by a hierarchical random
graph where leaves correspond to the nodes of network
and internal nodes correspond to the linking probability
between leaf nodes. By computing the expectation probabil-
ity in this hierarchical random graph, the linking possibility
between network nodes could be gained. A typical PGM-
based network model is a stochastic block model [52], [53],
which assumes that each node belongs to a group, and the
linking probability between two nodes depends on to which
groups they belong. Another typical PGM-based network
model is a latent-feature network model [14], [15], [54], [55].
It is a probabilistic generative model, in which nodes’ latent
features are, at first, generated based on some distributions;
the edges between nodes are then generated based on the
nodes’ latent attributes. The latent-feature network model
can provide network nodes with a vectorial representation
of latent attributes, so it could also be applicable to so-
cial network data mining. However, like many methods
mentioned before, due to the loss of topological structure
information of cold-start users, these PGM-based methods
are not applicable to the cold-start link prediction task,
either.

2.3 Cold-start recommendation

Link prediction is closely related to the problem of col-
laborative filtering. From the perspective of graph mining,
link prediction is to mine the interactions between nodes in
unipartite networks, and collaborative filtering is to mine
the interactions between two types of nodes (user, item)
in bipartite networks. In the field of recommendation, the
current studies on cold-start problem mainly focus on incor-
porating additional attributes or contents from the profiles
of entities. Seung et al. [56] proposed a pairwise prefer-
ence regression model to tackle cold-start recommendation,
where the model made use of all available information of
users and items. Zeno et al. [57] described a method that
mapped entity attributes to the latent features of a matrix
factorization model. With such mappings, the factors of a
matrix factorization model trained by standard techniques
could be applied to the new-user and the new-item problem.
Wing Ki et al. [58] proposed a novel hybrid recommendation
approach which made use of cross-level association rules
to integrate content information. Weng et al. [59] combined
the implicit relations between users item preferences and
the additional taxonomic preferences so as to alleviate the
cold-start problem. Martinez et al. [60] presented a hybrid
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Fig. 3: Cold-start Link Prediction: Establishing Connections between Non-topological and Topological Information.

recommendation system which combined a collaborative fil-
tering algorithm with a knowledge-based method. Sedhain
et al. [61] proposed a social collaborative filtering method
for cold-start recommendations, where the method directly
utilized user’s social network content in a novel extension
of item-based collaborative filtering. Besides, many other
studies [62], [63], [64] used social network to alleviate cold-
start problem. Therefore, how to make use of the auxiliary
information is the key to deal with the problems under the
cold-start scenarios.

3 METHOD

The aim of the paper is to establish a connection between
non-topological and topological information in social net-
works, and to utilize this connection to predict links for
cold-start users. To establish this connection, topological
information (existing users’ latent-feature representation
and linking measure) are at first extracted by a latent-
feature representation (LFR) model, then connections be-
tween topological and non-topological information are es-
tablished through logistic model, finally cold-start user-
s’ latent-feature representation is obtained by the logistic
model. In this way, the existing users and cold-start users
are simultaneously represented in a unified latent-feature
space, and the linking possibility between cold-start users
and existing users can be calculated in this latent-feature
space. Fig.3 shows the overview of cold-start link predic-
tion method by a latent-feature representation for cold-start
users and existing users in a unified space. We summarize
our approach in the following three steps:

(1) Topological information extraction. In this part, a
latent-feature representation (LFR) model is designed to
learn a vectorized latent-feature representation for the exist-
ing users. The LFR model is a probability generative model,
in which the latent features of users in a network are first
generated through specific distributions. Each edge in the
network between users is then generated through a linking
possibility which is defined in the latent-feature space.
According to model’s generative process, we can finally
obtain the existing users’ latent-feature representation and
some parameters of linking possibility by using a maximum
likelihood estimation method. Details of this latent-feature
network generative model and latent-feature representation
for existing users will be elaborated in Section 3.1.

(2) Establishing connections between topological and non-
topological information. The second part aims to obtain
the latent-feature representation of cold-start users who lack
topological information. A logistic model is proposed to
establish the connections between users’ topological and
non-topological information. In this way, latent-feature rep-
resentation of cold-start users is learned. Details of this
learning model will be provided in Section 3.2.

(3) Cold-start Link prediction in the latent-feature s-
pace. Based on the latent-feature representation of all the
existing users and cold-start users in the unified latent
space, we measure their linking probability according to
linking measure of the latent space. Thus, the cold-start link
prediction could be achieved through this linking possibility
in the latent-feature space. Details of the final cold-start link
prediction algorithm will be elaborated in Section 3.3.

For convenience, we list out the mainly used notations
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in this document (see Table 1).

TABLE 1: Notations

Symbol Explanation

n1 ∈ R Number of existing users
n2 ∈ R Number of cold-start users
N1 ∈ Rn1×n1 Adjacency matrix of existing users
A1 ∈ Rn1×m Real attribute matrix of existing users
A2 ∈ Rn2×m Real attribute matrix of cold-start users
Z1 ∈ Rn1×L Latent feature matrix of existing users
Z2 ∈ Rn2×L Latent feature matrix of cold-start users

3.1 Topological Information extraction

Many topological characteristics, such as homophily, heavy-
tailed degree distributions and small diameter, exist in social
network. In this section, we aim to extract the topological
information of networks by using one kind of machine
learning method, i.e. latent-feature representation (LFR).

In LFR, each node of network is modelled as a latent-
feature vector and the linking possibility between each
pair of nodes is based on one kind of link-affinity ma-
trix which derives from the Multiplicative Attribute Graph
model [65]. Intuitively, MAG model is designed to cap-
ture many connectively properties in networks such as
homophily and heterophily, where homophily means that
nodes with a certain feature are more likely to create links
among themselves; heterophily means that nodes without a
certain feature are more likely to links among themselves.
Precisely, in a simplest case, suppose a pair of nodes i
and j with the corresponding binary latent-feature vectors
z⃗i = <z1,1, . . . , zi,ℓ, . . . , zi,L> (zi,ℓ ∈ {0, 1}) and z⃗j =
<z1,1, . . . , zj,ℓ, . . . , zj,L> (zj,ℓ ∈ {0, 1}), the probability of
an edge pij (see Equation (1)) is the product over the entries
of attribute link-affinity matrices Θℓ in Θ (see Equations (2)
and (3)). Θℓ[zi,ℓ, zj,ℓ] indicates the affinity with which a pair
of nodes i and j form a link, given that each ℓth attribute
of nodes i and j takes value zi,ℓ and value zj,ℓ respectively.
Intuitively, the higher the value Θℓ[zi,ℓ, zj,ℓ] is, the stronger
the effect of the particular attribute combination [zi,ℓ, zj,ℓ] is
on forming a link.

pij =
L∏

ℓ=1

Θℓ[zi,ℓ, zj,ℓ] (1)

Θℓ =

[
aℓ bℓ
cℓ dℓ

]
. (2)

Θ = {Θ1, ...,Θℓ, ...,ΘL}. (3)

As is shown in Fig.4, nodes i and j possess 3-dimension
binary attribute vectors [0, 0, 1] and [1, 0, 1] respective-
ly. We then select the corresponding matrixes’ elements
Θ1[0, 1] = b1, Θ2[0, 0] = a2, and Θ3[1, 1] = d3 as the multi-
plication factors of the linking probability pij . The definition
of nodes’ latent-feature vector allows rich flexibility in mod-
eling the network and the link-affinity matrix can uncover
meaningful network topological properties, which will be
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further explained after introducing the model’s generative
process.

The model has a very simple generative process. As
is shown in Fig.5, first, each dimension’s latent feature of
node i in network N , zi,ℓ(zi,ℓ ∈ {0, 1}), is generated from
a Bernoulli distribution with parameter αℓ, and thus L
Bernoulli distributions are used to generate the z⃗i. Next,
each link in network N , li,j , is also generated with a linking
possibility pi,j . Finally, network N is generated by such
repetitive process.

Θ4 =

[
0.9 0.1
0.1 0.9

]
(4)

The meaning of the model construction is that, first of
all, modelling the nodes as z⃗i =<z1,1, . . . , zi,ℓ, . . . , zi,L>,
zi,ℓ ∈ {0, 1} enables nodes to belong to multiple groups at
the same time. Secondly, based on the value of ℓth latent
feature, nodes in a network can be divided into two groups:
the value of the nodes in group one is 1 because they possess
the ℓth latent feature, while the value of the nodes in group
two is 0 because they don’t have the latent feature. In this
case, the meaning of link-affinity matrix Θℓ is that it can
tell us the possibility of forming links between nodes with
or/and without the ℓth latent feature. Because the value
of each ℓth latent feature is 0 or 1, the link-affinity matrix
corresponding to each ℓth dimension is a 2 × 2 matrix.
The link-affinity matrix can uncover meaningful network
topological property. Take the value of link-affinity matric
Θ4 (see equation (4)) for example, Θ4[0, 0] = Θ4[1, 1] = 0.9
means that nodes sharing the value 0 or 1 are more likely to
link, while Θ4[0, 1] = Θ4[1, 0] = 0.1 means that the linking
possibility between nodes is low if they have different
values. This illustrates homophily in a social network.
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Θ5 =

[
0.1 0.9
0.9 0.1

]
(5)

Equation (5) is an example of heterophily. The value of
the link-affinity matrix Θ5 is just the opposite of equation
(4), which means nodes that nodes without the same value
of the attribute are more likely to link.

Θ6 =

[
0.9 0.5
0.5 0.1

]
(6)

Furthermore, the value link-affinity matrix Θ6 (see equa-
tion (6)) shows the core-periphery characteristic. Specifically,
the probability of linking between ”1 nodes” is the highest
(Θ6[0, 0] = 0.9); the probability of linking between ”0
nodes” is the lowest (Θ6[1, 1] = 0.1); the probability of
linking between ”1 nodes” and ”0 nodes” is in the middle.
This means that nodes of the core are the most connect-
ed and that the nodes of the periphery are more likely
to be connected to the core than among themselves [66].
Besides, many other connectivity patterns (such as heavy-
tailed degree distributions, small diameter and unique giant
connected component) can be captured, which has been
proved by M. Kim and J. Leskovec [65].

From the above mentioned latent-feature representation
model’s generative process, we know that each link is inde-
pendently generated in this model. Therefore, the likelihood
P (N/Θ, α⃗) of a given network N can be expressed as the
product of the linking probabilities over the edges and non-
edges of the network, as shown in Equation (7).

P (N/Θ, α⃗) =
∑
Z

P (N,Z/Θ, α⃗)

=
∑
Z

P (N/Θ, Z)P (Z/α⃗)

=
∏

Ni,j=1

pi,j
∏

Ni,j=0

(1− pi,j)∏
zi,ℓ=1

αℓ

∏
zi,ℓ=0

(1− αℓ)

(7)

In this section, our aim is to extract topological informa-
tion by learning nodes’ latent-feature representation Z and
the link-affinity matrix set Θ. Therefore, we need to estimate
these parameters by maximizing the network log-likelihood
ℓ(Z,Θ).

ℓ(Z,Θ) = logP (N/Θ, α⃗) = log
∑
Z

P (N,Z/Θ, α⃗) (8)

Variational expectation-maximization (EM) method,
which is the most commonly-used optimization method
is utilized to solve the network representation learning
problem. Because the log-likelihood ℓ(Z,Θ) is non-convex, a
variational distribution Q(Z) is introduced to approximate
the posterior distribution P (Z/N,Θ, α⃗).

Q(Z) =
∏
i,ℓ

Q(zi,ℓ) (9)

where Q(zi,ℓ) = ϕ
zi,ℓ
i,ℓ (1 − ϕi,ℓ)

zi,ℓ and ϕ = {ϕi,ℓ} are
variational parameters according to [55]. Then, we deduce

the lower bound ℓQ(Z,Θ) of ℓ(Z,Θ) (see equation (10)), and
maximize ℓ(Z,Θ) through maximizing ℓQ(Z,Θ).

ℓ(Z,Θ) = log
∑
Z

Q(Z)
P (N,Z/Θ, α⃗)

Q(Z)
≥

∑
Z

Q(Z)log
P (N,Z/Θ, α⃗)

Q(Z)
= ℓQ(Z,Θ)

(10)

In the E-step of the variational EM algorithm, we es-
timate the parameters ϕ by fixing parameters Z and Θ,
and we aim to estimate the parameters Z and Θ by fixing
parameters ϕ in the M-step. After the algorithm converges,
related parameters in this model are calculated. Finally, the
model’s solution can provide us with the existing users’
latent-feature representation Z1 and the link-affinity matrix
set Θ:

Z1 =


z1,1 . . . z1,L
z2,1 . . . z2,L
. . . . . . . . .
zn1,1 . . . zn1L

 (11)

Θ = {Θ1, . . . ,Θℓ, . . . ,ΘL} (12)

The final learned parameters (see in Equations (11) and
(12)) are the representation of topological information of the
network which is the basis of establishing the connections
between topological information and non-topology infor-
mation in the next section.

3.2 Establishing connections between topological and
non-topological information

Apart from topological information, a social network is of-
ten associated with rich auxiliary information, such as users’
profile and rich text information. The main focus of this
section is how to establish the relation between topological
information of network structure and non-topological infor-
mation, which is also the key to cold-start link prediction.

In Section 3.1, we extract the topological information of
the network structure, i.e. existing users’ latent-feature rep-
resentation Z and the link-affinity matrix set Θ, which is the
representation of the network structure in L dimension la-
tent space. To establish connections between the topological
and non-topological information, we need to map users into
this L dimension latent space by using their non-topological
information (the auxiliary information). Suppose that we
denote each user i’s vectorized non-topological information
as a⃗i =<ai,1, . . . , ai,m>, all the existing users’ real feature
matrix is denoted as A (see Equation (13)).

A =


a1,1 . . . a1,m
a2,1 . . . a2,m
. . . . . . . . .
an1,1 . . . an1,m

 (13)

where each line of A corresponds to the real features of
a user. Next, the problem in this section can be formally
denoted as follows (see Equation (14)):
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Fig. 6: Relationship between real and latent features in the
L logistic models


a1,1 . . . a1,m
a2,1 . . . a2,m
. . . . . . . . .
an1,1 . . . an1,m

⇒


z1,1 . . . z1,L
z2,1 . . . z2,L
. . . . . . . . .
zn1,1 . . . zn1,L

 (14)

If the users’ 0-1 latent-feature representation in each
dimension ℓ of Z could be seen as a binary partition in the
latent space, then all the representation of L latent dimen-
sions are L latent binary partitions. In order to establish this
connections between A and Z, a logistic model is proposed,
where users could be mapped into the L dimensions’ latent
partitions by using L logistic models. Each logistic model
is used to establish the relation between each ℓ dimension’s
partition and A.


a1,1 . . . a1,m
a2,1 . . . a2,m
. . . . . . . . .
an1,1 . . . an1,m

⇒


z1,ℓ
z2,ℓ
. . .
zn1,ℓ

 (15)

For each node i’s real feature a⃗i of A, we have:

yi,ℓ =
1

1 + exp(−w⃗T
ℓ a⃗i)

zi,ℓ ∼ Bernoulli(yi,ℓ)

(16)

where, w⃗T
ℓ is the logistic model parameter for the ℓth latent

dimension. Fig.6 shows the relationship between a user i’s
real features and his/her latent features in the L logistic
models.

To establish the relationship between real and latent fea-
tures for every user, we need to train the L logistic models
(parameter estimation for {w⃗T

ℓ }l=1,...,L), and predict the
latent-feature representation of a user’s real-attribute vector
input. Algorithm 1 gives the pseudo code of parameter
estimation and the latent-feature prediction for cold-start
users.

As shown in Algorithm 1, a stochastic gradient method
is used to update the logistic model’s parameters in the
training process, where ∇w⃗ℓ

ℓw is the stochastic gradient to
update each w⃗ℓ in a random dot a⃗i.

∇w⃗ℓ
ℓw = (zi,ℓ − yi,ℓ)a⃗i (17)

Algorithm 1 Cold-start users’ latent-feature learning based
on logistic model.

Input: Existing users’ real attributes a⃗1, . . . , a⃗n1 , latent-
feature representation z⃗1, . . . , z⃗n1 and cold-start users’
real attributes ⃗an1+1, . . . , a⃗n.

Output: cold-start users’ latent-feature representation
⃗zn1+1, . . . , z⃗n.

(Training process)

1: Initialize: w⃗1, . . . , w⃗L for the L logistic models.

2: repeat

3: for ℓ = 1 to L do

4: w⃗l
new := w⃗ℓ

old + λ∇w⃗ℓ
ℓw

5: end for

6: until Convergence

(Predicting process)

7: for n = n1 + 1 to n do

8: for ℓ = 1 to L do

9: zn,ℓ =
1

exp(−w⃗T
ℓ a⃗n)

10: end for

11: end for

12: Return: ⃗zn1+1, . . . , z⃗n

After the parameters w⃗1, . . . , w⃗L are learned, they, to-
gether with cold-start users’ real attributes ⃗an1+1, . . . , a⃗n,
could be seen as the input of the algorithm predicting
process. Finally, we obtain cold-start users’ latent-feature
representation ⃗zn1+1, . . . , z⃗n.

3.3 Cold-start link prediction in latent space

In Sections 3.1 and 3.2, we have described the extraction
of topological information and the establishment of connec-
tions between non-topological information and topological
information respectively, and in this section we will focus
on cold-start link prediction in the latent space.

Suppose we have vectorized users’ features a⃗1, . . . , a⃗n,
each cold-start user’s latent-feature representation (see Al-
gorithm 1) could be obtained by using the learned logistic
model mentioned in Section 3.2. Then the existing users
and cold-start users are represented in a unified latent
space. Thus, predictions could be made about whether
there will be links between cold-start users and the ex-
isting users by measuring the linking possibility. Assume
that one latent attribute vector of a cold-start user j is
z⃗j =<zj,1, . . . , zj,ℓ, . . . , zj,L>, and one latent-feature vector
of an existing user i is z⃗i =<zi,1, . . . , zi,ℓ, . . . , zi,L>, then
the linking possibility between cold-start user i and existing
user j could be defined by equation (18).

pi,j =
∑

zi,ℓ,zj,ℓ

∏
ℓ

Θℓ[zi,ℓ, zj,ℓ] (18)
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The pseudo code of the cold-start link prediction mech-
anism will be shown in Algorithm 2.

Algorithm 2 Cold-start link prediction.

Input: Existing users’ real attributes a⃗1, . . . , a⃗n1 , their
network N1, and cold-start user j’s real attributes a⃗nj .

Output: Link list Lj of cold-start user j.

1: Lj ← ∅

2: Extract the topological information (existing users’
latent representation Z and link affinity matrix set Θ)
using the LFR

3: Learn cold-start user j’s latent representation z⃗j =
<zj,1, . . . , zj,ℓ, . . . , zj,L> by using the logistic model

4: for each existing user i do

5: pj,i =
∑

zj,ℓ,zi,ℓ

∏
ℓ
Θℓ[zj,ℓ, zi,ℓ]

6: Put the link (j, i) in Lj

7: end for

8: Sort all links (j, i) in decreasing order according to pj,i

9: Put the top k links (j, i) in the sorted list to Lj

4 EXPERIMENTS

In this section, we conduct several experiments with the fol-
lowing purposes: (1) to find out the effective non-topological
features in our cold-start link prediction method, (2) to find
out whether our method is better in establishing connections
between topological and non-topological information, (3) to
find out whether our method is superior to other methods
in cold-start link prediction, (4) to find out the impact of
latent space dimension L on the performance of cold-start
link prediction.

4.1 Data sets

According to the experimental requirements of cold-start
link prediction, each social network data set should contain
a network structure and the auxiliary information of users.
Finally, we adopt three types of datasets to conduct our
experiments: Weibo, Facebook and Twitter.

TABLE 2: Statistics of two Weibo networks

Datasets Edges Nodes Density

Weibo1 6371 340 5.53%
Weibo2 3124 213 6.92%

Facebook1 2519 333 2.28%
Facebook2 3192 224 6.39%

Twitter1 2861 231 5.38%
Twitter2 1099 159 4.37%

Weibo1, which enables users to send and read mi-
croblogs, is a well-known online social network service in
China. In Weibo, the two-way relationship between user-
s form directed social networks, and its users have rich
auxiliary information. The Weibo datasets2 we will use in
our study is derived from [67], which is crawled from Sina
platform. Based on the original data, we extract two datasets
for our experiments by selecting the users who have more
than 50 followees and 300 microblogs. We use two types
of features for each Weibo user, i.e. profile and microblogs.
Among them, profile like gender and location is the basic
feature for the Weibo users. We divide them into numeri-
cal features and non-numerical features. For the numerical
features, such as age and the number of microblogs, we
normalize them into [0, 1]. For the non-numerical features,
such as location and verification status, we treat them as
0-1 category feature, that is to say, when a user has a
non-numerical feature in his/her profile, the value of the
feature is ’1’, and otherwise, it is ’0’. For the microblogs,
we extract users’ keywords and weights to vectorize users’
text features. Specifically, because each microblog is very
short, we treat all the microblogs that one user have posted
as one text document, then calculate TF-IDF value of each
keyword in users’ level, and extract keywords feature for
each user according to the TF-IDF value. After that, by
normalizing the TF-IDF value from 0 to 1, we obtain the
vectorized users’ keywords feature. Apart from the auxiliary
information, details of the two Weibo networks Weibo1 and
Weibo2 are shown in Table 2.

Apart from the Weibo datasets, we also use two types of
open datasets: Facebook3 and Twitter4, which are also well-
known online social network services for exchanging and
sharing information. Among them, Twitter is similar to Wei-
bo, which is also a user-user directed network, while Face-
book is different from them, which is a user-user undirected
network. Both datasets are derived from Stanford Network
Analysis Platform5. For each type of social network, we also
select two datasets to evaluate our experiments and these
datasets have been anonymized by replacing the internal
IDs for each user with a new value, and users’ attributes
have been 0-1 vectorized by a unified treatment. In addition
to these attributes, these networks Facebook1, Facebook2,
Twitter1 and Twitter2 are respectively shown in Table 2.

4.2 Experimental design and metrics

According to the general experimental protocol for link
prediction [2], [6], [9], [46], we first split the observed links
into training data and testing data. In carrying out the cold-
start link prediction experiments, we should note that the
testing links should be obtained from all links of the selected
users in a social network. Specifically, the testing data is
the links of cold-start users which refer to some randomly
selected nodes in each social network, and the training data
is the links of existing users which refer to the remaining
network (which is also called observed network in this

1. http://www.weibo.com
2. https://aminer.org/Influencelocality
3. http://www.facebook.com
4. http://www.twitter.com
5. http://snap.stanford.edu
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paper) nodes. In this data partition process, the remaining
network should be a connected graph. Thereupon, we use
different amounts of training data (90%, 92%, 94%, 96%,
98%) to test the algorithms. For example, training data 90%
means we randomly select 10% of the users from a social
network as cold-start users, and all the links of these cold-
start users as testing data, and the links of the remaining
90% existing users as the training data. We carry out the
random selection 5 times independently.

In the data partition process, we need to know the
following details: (1) For the topological information, when
we divide the original network links into training data and
testing data, it will make a difference between original net-
work and the remaining network in topological information.
We will analyze the correlation between this topological
differences and results of cold-start link prediction in Section
4.4.2. (2) For the non-topological information, the partition
of a network dataset do not change the non-topological
feature spaces of nodes because the dataset partition will
only remove the links of a part of nodes in a network, but
the profile of nodes do not change.

The link prediction problem is intrinsically a very diffi-
cult binary prediction problem because of the sparseness of
the social network. Given n nodes, we have a space of n2−n
possible links. Among them, only a very small fraction of
links actually exist. As illustrated in Table 2, the existing
links constitute a very small percentage of all possible links.
Similar to many existing link prediction studies [6], we use
the most frequently used metrics ”Area under the receiver
operating characteristic” (AUC) to measure the cold-start
link prediction. This metric is viewed as a robust measure
in the presence of imbalance [7]. Given the rank of all
unobserved links for cold-start users, the AUC value can
be interpreted as the probability of that a randomly chosen
unobserved link is given a higher score than a randomly
chosen nonexistent link [68].

4.3 Comparison methods
We will compare our method with three metric-based and
two learning-based methods in link prediction field, and
three typical cold-start recommendation methods.

Metric-based methods.

Suppose a cold-start user i and an existing user j, let
a⃗i =<ai,1, ai,2, . . . , ai,m> and a⃗j =<aj,1, aj,2 . . . , aj,m> be
the vectorized feature of user i and user j respectively.

(1) Vincent Leroy et al’s [41] two-phase bootstrap probabilis-
tic method can be directly adopted in the cold-start link pre-
diction. In our comparison experiments, we will test various
features in [41], and select the best one for comparison. The
specific feature used in the comparison method will be made
clear in the parts of experimental analysis (see Section 4.4.2
and Section 4.4.3). For convenience, this method is denoted
as Leroy.

(2) Pearson’s Correlation (PC)-based method. This PC in-
dex is a measure of the linear correlation between i and j.

PC =

∑m
k=1(ai,k − ai)(aj,k − aj)√∑m

k=1(ai,k − ai)2 ·
√∑m

k=1(aj,k − aj)2
(19)

In the PC-based link prediction method, the PC value is
positively correlated with linking possibility.

(3) Cosine Similarity (COS)-based method. It is a
commonly-used measure for measuring similarity between
users [42].

COS =

∑m
k=1 ai,kaj,k√∑m

k=1(ai,k)
2 ·

√∑m
k=1(aj,k)

2
(20)

For link prediction, the COS-based method indicates that
two users are more likely to have a link if they have a larger
COS value.

Learning-based methods.

(4) Logistic regression (LR)-based link prediction [16], [46],
[47], [69]. In our data sets, we use the common profile
between two users to define the features of each pair of
users, that is, if two users have a common profile such as
common school, common location, and common profession,
the feature value in this dimension is denoted by 1, other-
wise it is denoted by 0. In this way, each pair of users can be
vectorized, and used for the classification model.

(5) Support Vector Machines (SVM)-based link prediction
[16], [10], [11], [70], [71]. We use the same features as LR
model, and use linear and rbf kernel respectively.

For the LR and SVM models, we employ Scikit-learn
toolkit [72] to train and predict the formation of links.

Cold-start recommendation methods.

Cold-start recommendation methods are employed in rec-
ommendation field for making the cold-start link prediction.

(6) Social Collaborative Filtering (SCF). It is a social collab-
orative filtering method [61] that generalizes standard item-
based collaborative filtering in the cold-start recommenda-
tion setting.

(7) Map-knn. It is a learning attribute-to-feature mappings
method for cold-start recommendations [57].

(8) Pairwise Preference Regression (PPR). It is a regression
approach for cold-start recommendation [56].

It is very essential to note that for the sake of con-
venience, our cold-start link prediction method based on
latent-feature representation is denoted as CSLP-LFR.

4.4 Experimental results
All the experiments are conducted on an Intel i7-2006 2
Core 3.4GHz with 8 GB memory. In our CSLP-LFR method,
we select the latent dimension L = 7 for datasets Weibo1,
Facebook1, and Twitter1, and L = 6 for datasets Weibo2,
Facebook2, and Twitter2. The selection of L will be dis-
cussed in Section 4.4.4.

4.4.1 Find out the effective non-topological feature in our
method
Features are critical to machine learning techniques, and
they are also critical to our cold-start link prediction method.
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Therefore, we compare different features to find out the
effective non-topological features in our cold-start link pre-
diction method. The results of the cold-start link prediction
by using different types of non-topological features are
shown in Table 3 (This experiments use 90% training data
setting which has been introduced in Section 4.2).

TABLE 3: Effectiveness of different types of
non-topological information in CSLP-LFR.

Users’ feature Weibo1 Weibo2

Profile 0.640±0.042 0.653±0.022
Keywords 0.635±0.036 0.650±0.020
Profile+Keywords 0.659±0.044 0.672±0.027

Table 3 shows the results of two types of features and
their combined features in our cold-start link prediction
model with datasets Weibo1 and Weibo2. The results show
little difference by using each type feature alone. When
the two types of features are combined, we get the best
experimental results. Therefore, in the next experiments
with datasets from Weibo, we employ the combined features
in our method and other methods.

4.4.2 Correlation analysis
The purpose of CSLP-LFR is to solve problem by establish-
ing connections between non-topological and topological in-
formation in social networks. In this section, we will analyze
the correlation between results of cold-start link prediction
and differences of topology between existing network and
target network, and then verify whether our method is
better than the other methods in establishing connections
between topological and non-topological information.

To conveniently analyze the correlation, we will define a
kind of topological similarity between existing network and
target network based on LFR. As is introduced in Section
3, given a network N , we can extract the representation of
topological information ZN and ΘN based on LFR, and the
topological similarity measure could be defined as follows:

Definition 1. Let ZN1 and ΘN1 be the latent-feature rep-
resentation of network N1, and let ZN2 and ΘN2 be the
latent-feature representation of network N2. The topological
similarity between network N1 and N2 is defined as

S(N1, N2) =

1

L

L∑
ℓ=1

1

2
(

1

exp(|µ1,ℓ − µ2,ℓ|)
+

1

exp(|Θ1,ℓ −Θ2,ℓ|)
)

(21)

where µ1,ℓ = 1
n1

∑n1

i=1 zi,ℓ and µ2,ℓ = 1
n2

∑n2

j=1 zj,ℓ cor-
respond to 0-1 value distribution of ZN1 and ZN2 in ℓth
dimension respectively. The definition is easy to under-
stand, for it just combines two parts (the value of latent-
feature distribution 1

exp(|µ1,ℓ−µ2,ℓ|) and connectivity pattern
1

exp(|Θ1,ℓ−Θ2,ℓ|) in each ℓ dimension) of the similarities.
To quantitatively analyze the correlation between topo-

logical similarities and results of different cold-start link
prediction methods, we use Pearson Correlation Coefficient
to measure the correlation. Suppose that we have a series

of observed networks N1, N2, ..., ND , and a target network
N , the topological similarities between each existing net-
work and the target network are S(N,N1), S(N,N2), ...,
S(N,ND), and the results of one cold-start link prediction
method f for each observed network are AUC1, AUC2,
..., AUCD. The Pearson Correlation Coefficient between the
cold-start results and topological similarities is defined as

∑D
d=1(S(N,Nd)− S(N,Nd))(AUCd −AUCd)√∑D

d=1(S(N,Nd)− S(N,Nd))2 ·
√∑D

d=1(AUCd −AUCd)2

The results of the correlation among different cold-start
link prediction methods are shown in Table 4. CSLP-LFR
and PC show high positive correlation between results of the
cold-start link prediction and topological similarities, and
our method shows the highest positive correlation, which
reveals that our method performs better in establishing
connections between topological and non-topological infor-
mation in social network.

4.4.3 Comparisons with different methods in open datasets

For the open datasets, Facebook and Twitter, we use dif-
ferent amounts of training data (90%, 92%, 94%, 96%, 98%)
setting to compare different methods.

As shown in Fig.7 (a) and (b), our method almost con-
sistently outperforms other approaches in all the settings of
the two undirected Facebook datasets.

The metric-based methods COS and PC directly define
similarity and correlation between users by using users’
attributes, but their low performances indicate that they
are not highly effective for predicting links. For the Leroy
(ad ad s× logprod) method [41], we used the best perform-
ing results with the feature combination ad ad s× logprod.
However, Leroy (ad ad s× logprod) results is still not good
enough in Facebook1 (see Fig.7 (a)) or in Facebook2 (see
Fig.7 (b)). Instead of directly defining the linking measure by
using users’ real features like COS and PC, our method first
extracts the topological information (representation of users’
latent features and link affinity matrix) of the network,
and then establishes the connections between topological
information and non-topology information (users’ auxil-
iary information). Therefore, our method is superior to the
metric-based methods.

As far as the classification-based methods are concerned,
the performance of LR-based link prediction is superior to
SVM-based link prediction, and the LR model performs
better than all the other compared metric-based methods.
However, it is less effective than our method. Classification-
based link prediction methods can establish a connection be-
tween users’ auxiliary information and network structure by
training a model in our data sets, while topological features
of cold-start users in the classification model are absent.
Therefore, no topological features could be used to train a
classification model and the performances of classification-
based methods are seriously affected. As mentioned in the
related work in Section 2.2 ”Classification-based methods”,
many works have verified that the combination of non-
topological features and topological features in a classifica-
tion model can improve the performance of link prediction,
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TABLE 4: Correlation between topological similarities and results of different cold-start methods.

Datasets CSLP-LFR Leroy(prod) PC COS LR SVM(linear) SVM(rbf) SCF Map-knn PPR

Weibo1 0.995 0.369 0.937 0.660 0.961 0.013 0.013 0.506 0.420 -0.630

Weibo2 0.704 0.006 0.701 0.632 0.148 0.036 0.036 -0.508 0.263 0.007
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(b) Results on Facebook2

Fig. 7: Performance of cold-start link prediction on Facebook datasets.
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(b) Results on Twitter2

Fig. 8: Performance of cold-start link prediction on Twitter datasets.

while the non-topological features alone is not sufficient to
get good performance.

As for the three cold-start recommendation methods
SCF, Map-knn and PPR, SCF is the best among them. How-
ever, it is inferior to our method. The two other methods
Map-knn and PPR performed poorly in the compared meth-
ods. Therefore, it is not proper for us to directly adopt the
cold-start recommendation methods to deal with the cold-
start link prediction problem.

Another finding in Fig.7 (a) and (b) is that as the per-
centages of cold-start users increases, the performance of
our method decreases to some extent, but in most cases its
performance is better than that of other methods.

The different methods on two directed networks, Twit-
ter1 and Twitter2, are also compared, and the comparison of

their performances is shown in Fig.8 (a) and (b). Similarly,
our method outperforms other approaches. The difference is
that the results show fluctuation of the compared methods
in the two datasets.

4.4.4 Impact of latent feature dimension L
In our cold-start link prediction method, the model’s param-
eter L controls the dimensions of the latent-feature space of
network users. If L is small, the model will not be sufficient
to capture the structural property of this network, and
this is described as underfitting. By contrast, if L is large,
overfitting will occur in the learning process. In this case,
our model will produce lower results in the link prediction
phase. The value of L also affects the time in the learning
process. In this section, we will discuss how the model
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(a) 2% as cold-start users (b) 4% as cold-start users

(c) 6% as cold-start users (d) 8% as cold-start users

(e) 10% as cold-start users

Fig. 9: Performance of cold-start link prediction in
Facebook and Twitter along the dimensions L

parameter L affects the performance of the final cold-start
link prediction and the time of model learning.

Fig.9 (a), (b), (c), (d), and (e) show the performance of
cold-start link prediction in Facebook and Twitter along the
dimensions L. As L increases, the improvement of AUC
becomes increasingly marginal, and converge to a stable
accurate value.

Fig.10 (a) and (b) show that the time of model learning
in both directed and undirected networks is substantially
linear.

Hence, we should limit the value of L so that an ac-
ceptable compromise could be reached between the perfor-
mances of cold-start link prediction and time consumption.

5 CONCLUSIONS AND FUTURE WORK
How to accurately infer links for cold-start users in a net-
work by using non-topological information is a difficult
problem in link prediction. Many traditional link prediction
methods have been proposed and they have indeed con-
tributed a lot to the solution of link prediction problems.
Due to the fact that topological structure information of
cold-start users could not be found, most of the traditional
methods could not satisfactorily address the cold-start link
prediction problem.

(a) Results in Facebook (b) Results in Twitter

Fig. 10: Impact of dimension L on time of latent-feature
representation in Facebook and Twitter.

To solve this problem, we propose the latent-feature
representation in a unified latent-feature space for cold-start
link prediction, in which the connections between topolog-
ical and non-topological information are established, and
the latent features of existing users and cold-start users are
represented by a LFR model and a logistic mapping model
respectively. In the unified latent-feature space, the linking
possibility between cold-start users and existing users are
calculated. To assess the performance of the latent-feature
representation method for the cold-start link prediction, we
compare our approach with three metric-based methods
and two classification-based methods in link prediction
field, and three cold-start recommendation methods. Experi-
ments with three types of real-world social networks Weibo,
Facebook and Twitter show that the proposed approach is
very effective in cold-start link prediction.

This work has many potential directions in the future.
For example, we could study how to conduct incremental
learning on latent-feature representation model so that the
model could be adapted to a dynamic circumstance when
cold-start nodes consecutively join a network. Besides, it
also has many real applications based on the cold-start link
prediction model. For example, our method can contribute
to speed up the initial growth for a new online App based
on social networking services (SNS).
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