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Guide to Match: Multi-Layer Feature Matching
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Abstract—As a fundamental yet challenging task in computer
vision, finding correspondences between two sets of feature
points has received extensive attention. Among all the proposed
methods, the Gaussian Mixture Model (GMM) based algorithms
show their great power in formulating such problems. However,
they are vulnerable to large portion of outliers in the extracted
feature points. In this paper, a new Hybrid Gaussian Mixture
Model (HGMM) combined with a multi-layer matching frame-
work is proposed. Different from existing GMM based methods,
HGMM uses a set of seed correspondences to guide the match-
ing procedure. To automatically find seed correspondences, the
feature points are divided into multiple layers according to their
matching potential. With the help of Locality Sensitive Hashing,
this can be done economically and efficiently. Correspondences
found in lower layers which contain few outliers will be used as
hard constraint when matching features in higher layers where
a large portion of outliers exist. Extensive experiments show that
the proposed method is efficient and more robust to outliers when
images have large viewpoint difference or small scene overlap.

Index Terms—Feature matching, Multi-layer, Hybrid Gaussian
Mixture Model.

I. INTRODUCTION

F INDING feature point correspondences between two im-
ages is a fundamental task in vision-based tasks [1]–

[15]. The typical pipeline includes three main steps: detecting
salient keypoints, computing feature descriptors and finding
matching relationships between them [16]–[20]. A subsequent
mismatch removal method [21]–[26] could be optionally ap-
plied to refine the matching result. The Scale Invariant Feature
Transform(SIFT) detector and descriptor [27] are widely used
for their outstanding performance [28]. The number of correct
matches and precision are two most concerned issues and
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Fig. 1. A toy example showing the challenges for GMM based methods.
The reference points are represented by small circles. The target points and
outliers are represented by small crosses and triangles. Blue and red arrows on
the left indicate correct and false correspondences. The interpolated motion
field is visualized on the right. The first two rows are correspondences found
by CPD [30] and NGMM [31], respectively. The last row is the result by
fixing the four correct matches in the second row as prior when performing
NGMM.

have attracted great attention from researchers in this field.
However, this is a non-trivial task because situations such
as viewpoint differences, wide baseline, local ambiguity and
occluding still pose great challenges for many real applications
[29].

This paper focuses on the third step of the matching
procedure, i.e. how to find good correspondences between two
sets of extracted feature points. Traditional methods do this in
an individual manner, which processes the feature points one
by one by searching its nearest neighbor in the feature space.
It is fast but sensitive to local feature ambiguity. Another way
to find correspondences is global optimization. The Gaussian
Mixture Model (GMM) shows its great power in formulating
such problems. It is originally used in aligning two point sets
[30], [32]. One point set is treated as the centers of GMM
and the other point set is treated as the data. A coherent
spatial transformation is then computed to update the position
of the GMM until it is best fitted to the data. Despite great
success in aligning two point sets, these methods could not
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be directly used to match feature points between two images
since they only take spatial information into consideration.
To tackle this problem, Tao and Sun proposed a method
called Non-uniform Gaussian Mixture Model (NGMM) [31]. It
fuses feature information by assigning different weights to the
GMM components according to feature similarity. The feature
similarity provides guidance for the spatial transformation and
the spatial coherency resists local feature ambiguity. However,
it’s still challenging for NGMM when a large portion of
outliers exist in the extracted feature points. Here, a feature
point is denoted as an outlier if it is not repeatedly detected on
the other image or it is not in the overlapping region between
two views. When large inter-view geometric or photometric
changing exist, the ratio of outliers will further increase (as
large as 90% in some cases). Such a high portion of outliers
ruins the inherent structure of correct matches, which trapped
the optimization into a wrong solution.

A toy example is shown in Fig. 1 to illustrate the challenges.
We first synthesizes 8 reference points on a 2D plane (repre-
sented by small circles). The colors of these points can be
used as feature information. By applying rotation and scaling
we get another set of target points (represented by small
crosses). We also simulate outliers and feature ambiguity by
adding five random points (represented by small triangles) to
the target point set. The first row is the correspondences for
the reference points found by CPD [30]. Without using the
color information, it thought scaling as the most economic
way to align two point sets. The correspondences are all
wrong. The second row is the result found by NGMM [31].
With the guidance of colors, it recovered both scaling and
rotation between two point sets. However, due to outliers
and local ambiguity, some false correspondences are included.
In real image feature matching applications, more outliers
exist in both two point sets and the results become more
vulnerable. Despite the false matches in the second row of Fig.
1, the correct matches found by NGMM could offer useful
constraints for the other points. If we fix the four correct
correspondences as prior knowledge and then recompute the
correspondence between the remaining points, all of them
could be correctly matched, which is shown in the last row
of Fig. 1. This inspired us to find correspondences in a
progressive way. That is, we can initialize some correct seed
matches from a cleaner subset and let them guide us to find
new correspondences in a gradually increasing search space.

In this paper, a new Hybrid Gaussian Mixture Model
(HGMM) is proposed to solve the above problem. Different
from existing GMM based methods such as CPD and NGMM
which try to match all the points at a time, our method
performs in a progressive manner. At the very beginning,
feature points are divided into different layers. A few seed
correspondences are automatically initialized from the first
layer and then guide us to find new correspondences in the
next layer. This is repeated until the last layer. Each step
is a guided matching problem, which can be modeled by a
hybrid of binary and continuous weights in the GMM. For
feature points belonging to the seed matches, the correspond-
ing GMM weights take binary values from {0, 1} since they
have fixed relationship. For the remaining feature points, their

GMM weights are computed from pairwise feature similarities
and regularized to continuous interval [0, 1], as done by
NGMM. With the guidance of the seed correspondences, both
robustness and convergence speed are increased. To ensure
that reliable seed correspondences could be initialized from
the first layer without any prior and new matches could be
found in the following layers, a well designed layer division
method is required. Specifically, we first use the Locality
Sensitive Hashing (LSH) algorithm [33] to map all the feature
descriptors into binary codes and search for nearest neighbors
in the hamming space. This algorithm is chosen because it
can approximate feature similarities and matching potential
between feature points efficiently. Afterwards, these nearest
neighbors are sorted according to their hamming distance in
an ascending order and divided into several layers. As a result,
points in lower layers have small feature discrepancy, relatively
high matching potential and lower outlier ratio. So it’s easy
to initialize some reliable seed matches in the first layer.
Although in higher layers the matching potential decreases
and the ratio of outliers increases, the matching performance
can be protected by using seed correspondences found in
the previous layer as hard constraint. In this way, HGMM
encodes both intra-layer constraint and inter-layer constraint
in a unified framework. The intra-layer constraint requires
that correspondences should not only have similar feature
descriptors but also satisfy a global coherent spatial structure.
The inter-layer constraint uses correspondences found in a
previous layer as prior when finding new correspondences in
the next layer.

To summarize, the contribution of this paper lies in the
following aspects: (1) A multi-layer feature matching frame-
work is proposed to progressively find correspondences even
if the feature points contain a high ratio of outliers. Seed
correspondences are initialized in lower layers where the
feature points have large matching potential and inlier ratio.
They are used as hard constraint in higher layers in which
a high ratio of outliers exist. (2) A new Hybrid Gaussian
Mixture Model, called HGMM, is proposed. It uses a hybrid of
continuous and binary weights for the GMM, which encodes
both inter-layer guidance information and intra-layer feature-
spatial information. Experiments show that the robustness
and convergence speed are increased when compared with
traditional GMM based methods such as CPD and NGMM.

The remainder of this paper is organized as follows. A
brief review of related work is given in Section II. Section
III introduces the proposed multi-layer matching algorithm,
including the proposed HGMM and how to divide feature
points via hashing acceleration. At last, experiments evaluation
and conclusion are given in Section IV and Section V.

II. RELATED WORK

Finding matches between two images is to find correspon-
dences between two sets of keypoints. The most common
way is to compute a feature descriptor which encodes the
local image content around the keypoint and then search for
its nearest neighbor in the feature space [34]. The searching
strategy can be brute-force searching for small scale problem
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Fig. 2. An overall pipeline of the proposed method in this paper. After extracting SIFT features (yellow circles) from both images, they are mapped to binary
codes via locality sensitive hashing, which enables us to efficiently find nearest neighbors in the hamming space. The nearest neighbors are sorted in a distance
ascending order and divided into multiple layers. HGMM will initialize a few seed correspondences from the first layer and use them as hard constraint when
finding new matches in the next layer. This step repeats until all the layers have be processed. Green lines and circles denote successfully matched feature
points in that layer. Red circles indicate feature points that fail to find correspondences in that layer.

or kd-tree based searching for large scale problem. Since
SIFT [27] has been proposed about 20 years ago, a variety of
feature descriptors [35]–[37] are already off-the-shelf for real
application. Recently, the powerful deep neural networks are
used by researchers to develop better features [38]–[40]. For
better use of such rich features, Lin et al. used the homography
space as the domain to select a good descriptor locally instead
of using one global descriptor [41]. This technique is then
combined with a candidate enrichment framework that can find
more correspondences in their later work [42]. To increase the
speed of nearest neighbor searching, Cheng et al. adopted a
hashing accelerating method CasHash [33]. The original SIFT
features are mapped into the hamming space, in which a small
candidate neighborhood set can be efficiently determined by
performing bitwise operation. Much time can be saved since
the searching space is reduced. Later Bian et al. proposed
a real-time matching method GMS [43] which induces corre-
spondences from motion smoothness. For fast implementation,
motion statistics are computed with the help of shifting grid
cells. To match images with large scale difference, Zhou et
al. [44] divided the keypoints by multiple scale layers and
then used Bag of Feature (BoF) [45] to determine the scale
factor. Hartmann et al. [46] observed that when unmatchable
feature points are removed, the matching performance could
be improved. Hence they proposed a learning method to judge
whether a feature point is matchable or not, but it requires
labeled samples to train a complex classifier off-line.

Finding correspondences between point sets can also be
accomplished with the spatial information, such as Kernel
Correlation (KC) [47]. These methods usually find a spatial
transformation to align points. The Gaussian Mixture Model
(GMM) is widely used in this field. For example, the CPD
algorithm [30] treated one point set as GMM and used the
Motion Coherent Function to model the non-rigid transforma-
tion. By treating both point sets instead of one as GMMs,
the GMMReg method [48] tried to align them via minimizing
the L2 distance between two distributions. The L2E estimator
is proven robust to outliers and later used in [49]. Except for

registering two point sets, the correspondences between multi-
ple point sets can also be acquired by spatially aligning them
to a global GMM [50], [51]. Inspired by these works, new
registration methods based on manifold regularization [52],
context constraint [53], [54], or local connectivity constraint
[55] are proposed. The Student’s t-mixture model (TMM)
is used as an alternative of GMM since t-distributions are
naturally robust to outliers [56]. In this framework, Nguyen
et al. [57] pointed that kernel selection is crucial for the
registration task. Their method pruned ineffective kernels by
adjusting their weights and proved to get better results.

However, finding correspondences with either feature or
spatial information only could not receive satisfactory results.
On the one hand, local features usually have strong ambiguity,
which may result in wrong matches. On the other hand,
aligning two point sets may fall into a wrong optimal solution
when image content information is entirely abandoned. To
address these problems, recent methods take advantage of
both information in a unified framework. Torki et al. [58]
and Hamid et al. [59] adopted subspace learning method to
compute a new representation, which encodes both feature
similarity between two point sets and preserves spatial struc-
ture within each point set. Then matching task is transfered
from the original feature space into the new subspace. Inspired
by this work, Sun et al. proposed a matching method based
on subspace coherent constraint [60], [61]. After fusing feature
and spatial information into a new subspace, a coherent spatial
transformation is computed in this subspace to find correspon-
dences between two point sets. Consistent correspondences
can also be established via graph matching [62]–[65]. The
correspondences between two graphs should not only have
similar vertex features but also have consistent local edge
structures. Sun et al. [31], [66] proposed a non-uniform
Gaussian Mixture Model (NGMM) to find correspondences
between images. Instead of using uniform weight for each
GMM component, NGMM computes these weights according
to feature similarities. Such a biased weighting strategy will
use feature information to guide the spatial transformation.
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Based on GMM, Yang et al. proposed to preserve both global
and local structure in [67]–[70]. The core idea is to fuse
different kinds of global and local features. Based on the
feature descriptor information extracted from the images, a
dynamic Gaussian component density was designed to recover
inlier pairs [71]. Their transformation preserves both local
structure and image space curvature.

Despite a lot of methods mentioned above, most of them
rely on external constraint such as feature similarity and
structure consistency. However, the value of internal guidance
provided by the correspondences found earlier is somewhat
overlooked. This inspired us to design a progressive matching
algorithm in a multi-layer framework, which uses correspon-
dences found in a subset to guide itself to find new correspon-
dences in a larger set.

III. THE PROPOSED MULTI-LAYER FEATURE MATCHING
ALGORITHM

A. Overview

Fig. 2 is the overall pipeline of the propose method. Given
an image I1, a set of SIFT feature points P = {pi}Ni=1 =
{(xi, fi)|xi ∈ R2, fi ∈ R128}Ni=1 are extracted. Each pi ∈ P is
associated with a 2D spatial coordinate xi and a 128D feature
descriptor fi. Similarly, the set of SIFT feature points on I2 are
denoted as Q = {qj}Mj=1 = {(yj , gj)|yj ∈ R2, gj ∈ R128}Mj=1.
Usually M 6= N . Without loss of generality, for each feature
point in P we find its tentative matching feature point in Q, i.e.
image I1 is matched to image I2. Next, the feature descriptors
are mapped to binary codes using the LSH method. After
sorting all the nearest neighbors according to their hamming
distance, the feature points are divided into multiple layers.
Finally, we find correspondences with HGMM. It initializes
some seed correspondences from the first layer and gradually
passes them as hard constraint to the next layer. We will
introduce each part separately in the following part.

B. Dividing Feature Points into Multiple Layers with Hashing
Mapping

The basic idea of our multi-layer matching algorithm is:
we can find some reliable prior matches on a small subset
of feature points, and then use them as guidance to find
new matches when more feature points are given. This prior
knowledge reduces the risk of mismatching and speeds up
the optimization. There are two requirements when dividing
layers. (1) Inclusion constraint. Feature points that are likely
to form tentative matches should be in the same layer, that is,
in the same search space. This enables us to traverse the layers
once without any cross-layer matching. (2) Order constraint.
The matching potential between feature points should be
decreasing from lower to higher layers, so that we can initialize
reliable matches in the early stage when no prior knowledge
is available.

To satisfy these requirements, we use the Locality Sensitive
Hashing (LSH) method [33] to transfer the 128D SIFT de-
scriptors to B-bit binary codes by a group of hash functions.

Each hash function hb(v) is a randomly generated hyperplane
and returns one bit of the code:

hb(v) −→ {0, 1}, v ∈ R128, b = 1, · · · , B. (1)

After obtaining these binary codes, for each pi we find its
nearest neighbor q̂j in the hamming space and record the
corresponding distance di. This could be done economically
and efficiently with bitwise operation. In this way, dividing
two unstructured feature point sets now changes to dividing a
set of feature point pairs, which is more friendly to the first
constraint. Since smaller hamming distance indicates higher
matching confidence, di is an approximation of the matching
potential. We sort all the feature point pairs according to di
in ascending order to meet the second requirement. Ideally,
two matching points are close in the feature space and tend
to have the same hash codes. However, it is possible that they
are separated by one of the random hash functions, which is
a small probability event. In order to resist the randomness of
LSH, we generate 20 groups of LSH functions and take the
mean hamming distance.

Note that the nearest neighbor does not necessarily form
a match, but a correct match is most likely to come from a
nearest neighbor with small distance. Due to binary relaxation,
there might be more than one nearest neighbors which are
di far away from pi. These nearest neighbors are treated
as matching candidates of pi. One can set an upper-bound
threshold on di to discard feature points who present very
large feature discrepancy with their nearest neighbors. But we
didn’t do this because we want to find correspondences as
more as possible. All the feature points pi together with their
nearest neighbors are sorted by di in an ascending order and
then divided into segments. An intuitive way is to put all points
with the same hamming distance into a single layer. But this
does not work well in practice since the layers might be quite
unbalanced in size. In this case, dealing with very large layers
is inefficient and becomes a bottleneck. Therefor, we divide
each layer into constant size k. The number of layers K is
then computed from K = ceil(N/k). A feature point from Q
might appear in different layers for the reason that it might
be the nearest neighbor for more than one point from P , but
we found that this issue can be easily solved by redundancy
elimination in the following steps.

C. Finding Matches with the Hybrid Gaussian Mixture Model

After dividing feature points into layers, we start to find
correspondences from the first layer. Since points in this layer
have the most similar features, it’s easy to find some reliable
initial correspondences without any prior. These correspon-
dences are inherited to provide guidance when we match new
feature points in the next layer. If a feature point is not matched
in the current layer, we send it to the next layer and try again.
If the attempt still fails, it is probably an outlier and abandoned
in the following layers. The above steps are repeated until all
the layers have been traversed.

We denote feature points involved in the Lth(1 ≤ L ≤ K)
layer as PL = {pLi }

NL
i=1 = {(xLi , fLi )|xLi ∈ R2, fLi ∈

R128}NLi=1 and QL = {qLj }
ML
j=1{(yLj , gLj )|yLj ∈ R2, gLj ∈
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R128}ML
j=1, respectively. Both PL and QL consist of two parts:

the first sL seed matches S = {pLi , qLi }
sL
i=1 inherited from the

previous layer and the remaining wild points to be matched
with the guidance of these seeds. The final output of our
algorithm is the correspondences found in the last, i.e. the
Kth layer. We can formulate it as the following optimization
problem:

C =argmin
CK ,ΩK

EK(CK , ΩK ;PK , QK , CK−1)

s.t. C0 = ∅,
(2)

in which ΩK contains the parameters of the matching con-
straints in the Kth layer, CK is the correspondences found
in the Kth layer and C is the final output of our algorithm.
Eq. (2) is a recursive optimization problem, since EK is
conditioned by CK−1, which is the correspondences found
in the previous layer. If we want to know the optimal CK , we
need to compute CK−1 by optimizing EK−1 first. The deepest
recursion minimizes E1, which computes correspondences
from the first layer without any guidance, as described by the
equality constraint.

Next we derive the specific form of the objective function
EL(CL, ΩL;PL, QL, CL−1). Since the seeds have fixed corre-
sponding relationship, each xLi can be modeled by a Gaussian
distribution centered at yLi under a transformation TL. That
is,

p(xLi ) =
1√
2πσL

e
− 1

2σ2
L

‖xLi −ŷ
L
i ‖

2

, 1 ≤ i ≤ sL, (3)

in which ŷLi = yLi + TL(y
L
i ) is the new position of yLi

and TL(yLi ) is the spatial displacement vector. While for the
wild feature points, the corresponding relationship is unknown.
Each xLi is then modeled by a Gaussian Mixture Model which
treats all the wild feature points in QL as centers given a
certain transformation TL. So we have:

p(xLi ) =

ML∑
j=sL+1

ŵij√
2πσL

e
− 1

2σ2
L

‖xLi −ŷ
L
j ‖

2

, sL + 1 ≤ i ≤ NL.

(4)
ŵij is the weight for each Gaussian component. If no other
information is available, ŵij can be a constant for different
j. However, if two feature points are more likely to form
a correspondence according to some prior knowledge, the
corresponding weight should be assigned a larger value. In
this paper, we compute ŵij from feature similarity:

ŵij =
e−α‖f

L
i −g

L
j )‖

2∑ML

j=sL+1 e
−α‖fLi −gLj )‖2

, i > sL, j > sL. (5)

Two feature points tend to haver larger weight if they have
similar feature descriptors. In this way, the feature similarity
information is incorporated. The parameter σL in both Eq. (3)
and Eq. (4) is the variance of the Gaussian function. We use
asymmetrical Gaussian model with the same σL in this paper.

Eq. (3) and Eq. (4) can be combined into a more general
formulation, which is:

p(xLi ) =

ML∑
j=1

wijp(x
L
i

∣∣yLj ). (6)

Here p(xLi
∣∣yLj ) = 1√

2πσL
e
− 1

2σ2
L

‖xLi −ŷ
L
j ‖

2

is the jth GMM
component. xLi can be either a seed or a wild feature point in
the Lth layer. The covariance σL is initialized by

σ2
L =

1

2NLML

NL∑
i=1

ML∑
j=1

‖xLi − yLj ‖2. (7)

In Eq. (6), the weight coefficient wij is computed from:

wij =


e
−α‖fLi −g

L
j )‖2∑ML

j=sL+1 e
−α‖fL

i
−gL
j

)‖2 , if i > sL, j > sL

1, if i = j ≤ sL
0, otherwise

. (8)

If xLi is a seed feature point, wij will be 1 for its matching
feature points and 0 for all the other feature points. If xLi is a
wild feature point, wij is a continuous value computed from
Eq. (5). Since the weights of such a Gassian Mixutre Model
are mixture of binary values and continuous values, it is called
the Hybrid Gaussian Mixture Model.

Since not all the extracted feature could find its correspon-
dence, another term should be added to Eq. (6) to account
for outliers. Suppose such unmatchable feature points are
randomly distributed in the image plane, a uniform distribution
can be used to model them:

p(xLi ) = θ
1

NL
+ (1− θ)

ML∑
j=1

ωijp(x
L
i

∣∣yLj ). (9)

θ is a harmonic parameters, which takes value 1 if xLi is a
seed and a positive constant less than 1 (0.7 in this paper)
otherwise.

Similar to [31], we use a non-rigid transformation TL, which
is more flexible. However, as pointed by [30], an uncontrolled
non-rigid transformation may align individual points exactly,
but break the structure (or shape) of the whole point set.
Therefore, a global regularization term which requires the non-
rigid transformation to be smooth and coherent is needed. That
is to say, such a transformation will map nearby points to close
positions so that the topological structure is similar to that
before. The smoothness prior on the transformation is defined
as:

p(T ) = e−
λ
2 ‖TL‖

2
H , (10)

in which ‖ · ‖2H is the norm of function TL in the Reproduc-
ing Kernel Hilbert Space (RKHS). Smoother transformation
will have smaller norm. According to the Motion Coherence
Theory (MCT) [72], such a transformation has the form of
Gaussian Radial Basis Function (GRBF). The displacement
for any position z in the image plane can be computed from
the following equation:

TL(z) =

ML∑
j=1

ϕjG(z, y
L
j ). (11)

where yLj is the jth model point in this layer, ϕj is the GRBF
coefficients. G(z, yLj ) is a kernel computed from:

G(z, yLj ) = e−
1
2β ‖z−y

L
j ‖

2

. (12)
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In this paper, we change the position of all the model points by
the transformation function, so z is one of the model points
rather than a random position. The compact matrix form of
Eq. (11) can be expressed as:

TL(Y
L) = GΦ, (13)

where Y L is the stacked position of all the model points in
that layer. G is a constant ML × ML kernel matrix which
can be computed from the model points, and Φ is a unknown
ML × 2 coefficient matrix.

Given Eq. (9) and Eq. (10), the Maximum a Posteriori
(MAP) problem under the i.i.d. (independent identically dis-
tributed) constraint can be easily derived and it is equivalent
to minimizing:

EL(CL, ΩL;PL, QL, CL−1) = −
NL∑
i=1

log(p(xLi ))+
λ

2
‖TL‖2H,

(14)
with ΩL = {σL,TL} as parameters.

Directly optimizing Eq. (14) is difficult. However, it can be
solved using the Expectation Maximization (EM) algorithm
in an iterative fashion. The EM algorithm alternates between
correspondence computing and parameter updating. The E-
step estimates the correspondences CL while fixing the current
parameters ΩL. The matching probability between the ith data
point and the jth model point is computed from:

p(yLj |xLi , σL,TL) =
(1−θ)wij

2πσ2 e−‖x
L
i −(y

L
j +TL(y

L
j ))‖

2/2σ2
L

(1− θ)
∑ML

k=1 wikp(x
L
i |yLk ) + θ/NL

,

(15)
where σL and TL are the parameters with their current
estimation in the Lth layer. The matrix P formed by all these
pairwise matching probabilities is a fuzzy representation of
the correspondences.

The M-step then updates the parameters ΩL = {σL,TL}
according to the current correspondences CL by minimizing:

argmin
ΩL

log σ2
L

NL∑
i=1

ML∑
j=1

p(yLj |xLi , ΩL)

+
1

2σ2
L

NL∑
i=1

ML∑
j=1

p(yLj |xLi , ΩL)
∥∥xLi − (yLj + TL(y

L
j )
)∥∥2

+
λ

2
tr(ΦTGΦ). (16)

Formula (16) is convex with respect to the variables, so the
optimal value is the solution which makes the partial derivative
zero. The new σL can be computed by:

σ2
L =

∑NL
i=1

∑ML

j=1 p(y
L
j |xLi , ΩL)

∥∥xLi − (yLj + TL(y
L
j ))
∥∥2

2
∑NL
i=1

∑ML

j=1 p(y
L
j |xLi , ΩL)

.

(17)
The new Φ is the solution of

(diag(P1)G+ λσ2)Φ = PXL − diag(P1)Y L, (18)

where XL ∈ RNL×2, Y L ∈ RML×2 are the stacked
coordinates of the data and model points in the Lth layer.
1 is a column vector with all elements equal 1.

Algorithm 1 The Proposed Matching Algorithm
Input: SIFT keypoint sets P and Q.
Output: Correspondences C.

1: Part I: Dividing layers
2: Generate B LSH functions and map 128D SIFT features

to B-bit hash codes
3: Compute the average hamming distance matrix
4: Sort candidate feature point pairs in a distance ascending

order
5: Divide them into K layers: {PL}KL=1 and {QL}KL=1

6: Part II: Matching with HGMM
7: Initialize the seeds as ∅
8: for L = 1;L <= K;L++ do
9: Build HGMM from (6), (8), (9) with the seeds, un-

matched points in the previous layers and points in the
current layer

10: repeat
11: Solving the EM algorithm from (15), (17) and (18)
12: Find correspondences and filter with ρ
13: Increase ρ
14: until ρ > 0.5 and the number of correct matches does

not change for 3 times
15: Update the seeds
16: if the increase of seeds is less than 20 then
17: Break
18: end if
19: end for
20: Return the seeds as correspondences C

After the EM algorithm converges, each data point will take
the model point who has the largest matching probability as its
correspondence. All the correspondences found in the current
layer will be inherited as seeds in the next layer. In order to
make sure that the seeds are absolutely correct, we adopt a
match-and-filter strategy in each layer. That is, the retained
matching feature points are re-matched and filtered by a set
of increasing probability threshold ρ, until the current ρ is
greater than 0.5 and the number of retained correspondences
does not change for three successive filtering. Although we
have to match the points multiple times, it is still efficient
because most of them are carried out based on the optimal
solution of the last step. The final correspondences are denoted
as CL and they are passed to the next layer. We also found
that we only get a small increase of correct correspondences
in higher layers, but have to spend more time efforts. The
trick is not to deal with higher layers if the increase ratio of
the total number of correspondences found in two consecutive
layers falls below a threshold (20 in this paper). The complete
method is summarized in Algorithm 1.

IV. EXPERIMENT RESULTS

A. Dataset Description

The proposed feature point matching method is quantita-
tively tested on three public datasets. The following is a brief
introduction of them:
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Fig. 3. Comparison with different hash code length B. (a) The mean and standard deviation of the number of nearest neighbors for all the feature points on
an image. (b) The ratio of matchable feature points. (c) The completeness of matchable feature points. (d) The time needed for dividing layers.

Fig. 4. The distribution of the matching probability after the EM algorithm converges. From left to right: 50 correct correspondences are manually selected
and different amount of outliers are added to both sets. From top to bottom are the distribution for correct and false correspondences, respectively.

I VGG dataset [28]. This dataset contains 8 groups of chal-
lenging situations such as different viewpoints, rotation,
illumination or blurring. Each group contains 6 images
and the first image is matched to the other five images(in
total 40 image pairs). The homography matrix H between
every image pair is provided as ground truth.

I Lebeda dataset [73]. This dataset contains image pairs
with large viewpoint differences or very wide baseline.
It has two parts: Lebeda-A and Lebeda-B. Lebeda-A
contains 16 image pairs with non-planar scenes. The
fundamental matrix F between two views is provided
as ground truth. Lebeda-B contains 16 image pairs with
planar scenes. The homography matrix H between two
views is provided as ground truth.

I Panorama dataset [74]. This dataset contains 10 scene
groups in total and we use 4 medium-sized subsets:
carmel (18 images and 47 pairs), diamondhead (23 im-
ages and 59 pairs), fishbowl (13 images and 35 pairs) and
halfdome (14 images and 51 pairs). All the image pairs
are provided with the homography matrix H as ground
truth.

I Non-rigid dataset. We use four image pairs “tiger”, “bee”,
“cushion” and “tshirt” to test the matching result on non-
rigid images. The first two image pairs are collected from
on-line videos by ourselves. The last two pairs are from
[75] and [76]. Since no ground truth are provided, we
identify correct correspondences manually.

For quantitative evaluation, we use precision, recall and F-
score. In our experiment, a pair of matching points (x, x′) will

be thought as correct if its homography residual

resH(x, x′) = ‖x′ −Hx‖2 (19)

or its epipolar residual

resF (x, x
′) =

(x′Fx)2

‖Fx‖2 + ‖x′F‖2
(20)

is smaller than 2.0 pixels. Precision is the ratio of true positives
in the final matching set. Recall reflects how many correct
matches in the input set are contained in the final result. It
can be computed from:

recall =
TPO
TPI

, (21)

where TPO and TPI are the number of true positives in the
output and input, respectively. However, since the matching
relationship between our input point sets is unknown in
advance, computing TPI is not as straightforward as [13] and
[15]. Our strategy is to build a large putative set by matching
each point to its 2 nearest neighbors in the feature space, and
then use the ground-truth to identify true positives. We use
the top two nearest neighbors in case of missing possible true
positives. After getting recall from Eq. (21), we can compute
F-score from:

Fscore =
2 ∗ precision ∗ recall
precision+ recall + ε

, (22)

where ε is a very small positive value for numerical stability.
F-score will be used as an overall evaluation of both precision
and recall.
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B. Parameters and Settings

To show the impact of different binary code length B, we
test on a pair of image from the VGG matching dataset. The
extracted feature points are classified into two parts: matchable
and unmatchable. If there is at least one feature point on I2
who is less than 2 pixels from Hxi, then xi will be thought as
matchable. Otherwise xi is thought as unmatchable. Note that
although this is a rough estimation for matchability, it’s enough
to reveal the differences with different B. Fig. 3 (a) shows
the mean and standard deviation of the number of nearest
neighbors for feature points on I1. Smaller B will lead to more
frequent collision. As the candidate matching set becomes
larger, the matching results may be affected by the outliers.
This is further illustrated in Fig. 3 (b), which shows the ratio of
matchable feature points when more and more feature points
are added to the multi-layer matching framework. Fig. 3 (c)
shows the completeness of matchable feature points as more
and more feature points are involved. More matchable feature
points will be included in the earlier stage when B is larger.
However, longer codes require heavier computational cost,
which is shown in Fig. 3 (d). Here computing the pairwise
hamming distance takes the majority of the running time.
It is implemented with the matlab function pdist2 and the
“hamming” flag. Using C/C++ will reduce the magnitude of
time but the trend doesn’t change. As a trade-off, we set
B = 256 throughout this paper.

Ideally, the matching probability should be close to 1 for
correct correspondences and close to 0 for false ones. But
this may be different when there is noise. Fig. 4 shows how
the distribution of matching probability changes when the data
contains different amounts of outliers. We first setup two inlier
sets by manually selecting 50 correct correspondences. Next,
different amounts of unmatchable feature points are randomly
added to both inlier sets and the matching probability matrix
is computed via EM optimization. Note that in this process
there is no prior knowledge on correspondences and which
feature point is inlier or outlier is unknown, neither. As we
can see from Fig. 4, when outliers are as many as inliers, the
matching probability still exhibits good property. When we
add three times of outliers, the distribution of correct corre-
spondences moves towards 0 a little bit and the distribution of
false correspondences covers the entire interval. This is more
obvious when more outliers are added, which makes it difficult
to distinguish correct and false correspondences. To this end,
we should avoid setting the segment size k too large since the
ratio of outliers in the first few layers will increase rapidly.
However, k should not be very small. This is because a small
layer can not capture enough structure information to build
robust matches. In this paper, we empirically set k = 300.

Fig. 4 also tells us that using a single probability threshold
will either exclude correct or include false correspondences.
However, we find that this can be solved by iteratively
matching and filtering with a set of increasing thresholds ρ.
A small threshold can filter a part of false correspondences
while saving almost all correct ones. Since the remaining data
contains fewer outliers, the two distributions will separate from
each other, which enables us to use a higher threshold to

Fig. 5. The error bar curves of precision (left) and recall (right) for different
methods when adding outliers to the 50 ground truth matches.

further remove bad results. We empirically sample ρ from
[0.1, 0.5] by step 0.1, from [0.55, 0.9] by step 0.05, from
[0.91, 0.99] by step 0.01 and from [0.991, 0.999] by step 0.001.
Such a non-uniform sampling enables us to quickly remove
outliers in a coarse-to-fine manner. In practice, there is no
need to traverse all values in ρ. It stops if the current ρ is
greater than 0.5 and the number of retained correspondences
does not change for three successive filtering. Even though
we have to match the points multiple times, it is still efficient
because: (1) The data becomes cleaner and the scale of the
problem is reduced as outliers are gradually removed. (2) Most
of them are carried out based on the optimal solution of the
last step. No mismatching removal methods are applied as a
post-processing step since the results are satisfactory enough
and it’s more impartial for the comparison. For the other
parameters we set θ = 0.7, λ = 5, β = 3.5 and α = 0.1
according to the reported work [31].

The proposed algorithm is implemented using MATLAB
and C-Mex files. All the methods are tested with their default
parameters. The experimental platform is a machine with one
Intel Xeon E5 2.1GHz CPU, 32GB memory and Ubuntu 16.04
operating system.

C. Evaluation on the VGG Dataset

For the VGG dataset, we first use the image pair
(graf1,graf4) to test the robustness of the proposed method.
This image pair is challenging due to large distortion. We
manually selected 50 feature points on each image so that
they form 50 correct ground truth matching pairs. Different
amount of outliers (from 20 to 500) are randomly added to
both images. The correspondences are computed by CPD [30],
NGMM [31] and the proposed method. Two metrics are used
to evaluate the performance: precision and recall. Precision is
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Fig. 6. Visualization of the sparse correspondences (top) and the interpolated
dense vector field (bottom) when different amount of outliers are added. Green
and red quivers indicate correct and wrong matches, respectively.

the ratio of correct matches found by the method and recall
is the ratio of ground truth matches that are found. When
adding random outliers, we repeat 10 times and compute the
mean and variance. The results are shown in Fig. 5. It shows
that the CPD algorithm is sensitive to geometric distortion
and outliers. The NGMM algorithm performs better. It has
a precision over 80% even though the outliers are 10 times
more than the inliers. However, its recall drops a lot. For the
proposed method we use two different settings: layer size 30
(denoted as Ours-30) and layer size 80 (denoted as Ours-80).
Here we do not use k = 300 as suggested before because in
this experiment we have only 50 inliers. If k is large, the outlier
ratio in the first layer would be high and the success rate of
finding correct seed correspondences will drop. Both of them
work well when the number of outliers is less than 6 times
of the inliers. But the precision of Ours-30 drops significantly
and its recall fluctuated as more outliers are added. In contrast,
Ours-80 achieves the best performance. This is because a small
layer does not contain enough structure information to resist
outliers. Fig. 6 shows some visualization results. This example
shows that the proposed method is more robust to outliers.

With the same settings of Fig. 5, an ablation study of the
proposed method is presented in Fig. 7. More specifically,
the matching results with and without hard constraint between
different layers are compared. When hard constraint is aban-
doned, there are no binary weights in our GMM and it is
equivalent to a multi-layer version of NGMM. As we can see
from the figure, without hard constraint the matching result,

Fig. 7. An ablation study. The proposed method with and without the hard
constraint between different layers are in blue and red, respectively. The error
bar curves of precision (left) and recall (right) are plotted with the same
settings in Fig. 5.

TABLE I
THE QUANTILE STATISTICS FOR THE NUMBER OF LAYERS AND THE

AVERAGE NUMBER OF FILTERING WHEN MATCHING EACH PAIR OF IMAGE.

Quantile 10% 25% 50% 75% 90% 100%
#Total Layers 5 5 7 8 11 11

#Added Layers 2 3 5 8 11 11
#Filtering 5.1 5.3 5.7 7 15 26

especially recall, is vulnerable to outliers. On the contrary,
by imposing hard constraint between different layers, our
algorithm is still robust even if there are 10 times of outliers.

The evaluation results on the whole VGG dataset compared
with SIFT [27], RANSAC [24], CPD [30], GMMReg [48],
OSM [58], PGM [62], PRGLS [21], NGMM [31] and GMS
[43] are presented in Fig. 8. We plot the quantile statistics of
precision, recall and F-score. The first four image groups, i.e.
bark, boat, graf and wall contain relative geometry differences
such as large viewpoint changing or rotation, while the last
four groups, i.e. ubc, leuven, trees and bikes mainly contain
image quality but small spatial differences. CPD can find some
correct matches on the last four groups, but its precision is
low. It almost fails on all the first four groups. GMMReg,
however, is the worst on most cases, for the reason that it
does not consider feature information. We do not compare
with them any more in the following experiments for their
bad performance. The GMS algorithm can find the most
correspondences for most image pairs. This is because it
uses up to 104 ORB features instead of 102 ∼ 103 SIFT
features for each view. However, it is sensitive to geometric
changing (see the first four image groups). Similar situation
happens to OSM, PGM and PRGLS as well. PRGLS is good
at finding high precision correspondences when there is no
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Fig. 8. The results on eight image groups in the VGG matching dataset [28]. For each image group, the quantile statistics (x-axis) for precision, the number
of correct matches and the F-score (y-axis) are plotted. Each position (cx, cy) on the curve means that there are cx (percentage) image pairs whose evaluation
results are smaller than cy .

big geometric difference, but easily fails on the opposite case.
For most image pairs, OSM and PGM are not as effective as
the widely used SIFT algorithm. This is because unmatchable
feature points offer misleading structure information when
they compute the subspace or the graph. RANSAC improves
SIFT matching result effectively. Although it is not the best
one, it is efficient and stable on different data. As an overall
evaluation, the proposed method has better performance than
the others, especially when the geometric difference is large.

Then we analyze the efficiency of the proposed method.
Since we have set two stopping conditions on adding new
layers and filtering with a higher ρ, it is worth seeing how
many layers are actually added and how many times the
filtering is carried out. Table I is a quantile statistics for these
things. The second and third rows are the total number of

layers and the number of added layers. It shows that for about
75% of the image pairs we don’t have to process all the feature
points. The last row is the average number of filtering for all
the layers when matching an image pair. For about 75% of
the image pairs, we could get satisfactory results after filtering
7 times. Here ρ reaches 0.6. For the other 20% challenging
cases, we need much more filtering and ρ grows as high
as 0.99. Fig. 9 shows the comparison with NGMM in the
matching time and the number of iterations. As can be seen,
the proposed method runs faster and needs fewer iterations
than NGMM. There are two reasons for this acceleration. (1)
After dividing layers, the original large scale optimization
problem is divided into several small scale problems. As
pointed by [31], the computational complexity of the matching
procedure is O(M3) + O(MN), in which M and N are
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TABLE II
THE MATCHING RESULTS EVALUATED BY THE GIVEN FUNDAMENTAL MATRIX FOR DIFFERENT METHODS ON LEBEDA-A. THE PRECISION, RECALL AND

F-SCORE ARE LISTED. IF NO MATCHES ARE FOUND, BOTH PRECISION AND RECALL ARE TREATED AS ZERO. THE BEST F-SCORE IS IN BOLD.

Data Precision / Recall / F-score
OSM [58] PGM [62] RANSAC [24] GMS [43] NGMM [31] Ours

booksh 12.7% / 0.61 / 0.211 1.3% / 0.42 / 0.025 84.6% / 0.63 / 0.724 0% / 0 / 0 94.0% / 0.48 / 0.636 95.2% / 0.72 / 0.823
box 1.0% / 0.08 / 0.018 0.5% / 0.17 / 0.010 27.9% / 0.22 / 0.247 15.3% / 0.005 / 0.010 40.1% / 0.27 / 0.329 42.7% / 0.66 / 0.519

castle 10.7% / 0.44 / 0.173 24.3% / 0.63 / 0.351 69.5% / 0.35 / 0.472 62.5% / 0.46 / 0.535 68.2% / 0.29 / 0.414 70.4% / 0.67 / 0.691
corr 51.0% / 0.75 / 0.609 63.0% / 0.65 / 0.641 91.1% / 0.85 / 0.880 81.6% / 0.81 / 0.817 99.3% / 0.90 / 0.946 99.3% / 0.89 / 0.941
head 4.5% / 0.10 / 0.063 60.9% / 0.51 / 0.558 77.9% / 0.52 / 0.624 73.4% / 0.64 / 0.689 90.3% / 0.40 / 0.554 87.6% / 0.34 / 0.496

kampa 5.9% / 0.35 / 0.101 25.3% / 0.72 / 0.376 66.6% / 0.46 / 0.549 69.4% / 0.36 / 0.481 79.4% / 0.43 / 0.558 91.4% / 0.51 / 0.655
Kyoto 0.7% / 0.11 / 0.014 35.9% / 0.55 / 0.437 41.1% / 0.28 / 0.334 70.1% / 0.59 / 0.641 65.1% / 0.16 / 0.260 58.6% / 0.33 / 0.428
leafs 0.5% / 0.17 / 0.010 9.5% / 0.60 / 0.164 22.3% / 0.21 / 0.220 0% / 0 / 0 29.0% / 0.06 / 0.102 61.1% / 0.07 / 0.135
plant 6.4% / 0.37 / 0.110 1.4% / 0.35 / 0.028 67.7% / 0.39 / 0.500 63.5% / 0.33 / 0.441 74.6% / 0.37 / 0.495 44.7% / 0.75 / 0.561

rotunda 1.4% / 0.26 / 0.026 6.6% / 0.79 / 0.122 31.4% / 0.20 / 0.246 0% / 0 / 0 23.5% / 0.05 / 0.089 45.9% / 0.20 / 0.283
shout 3.5% / 0.34 / 0.064 0.4% / 0.27 / 0.008 48.1% / 0.31 / 0.382 49.5% / 0.16 / 0.244 81.8% / 0.12 / 0.222 86.6% / 0.48 / 0.619

valbonne 2.8% / 0.32 / 0.052 0.9% / 0.60 / 0.018 37.2% / 0.25 / 0.299 48.8% / 0.15 / 0.237 63.6% / 0.21 / 0.325 53.6% / 0.29 / 0.379
wall 1.1% / 0.18 / 0.021 36.2% / 0.75 / 0.491 70.2% / 0.39 / 0.507 66.5% / 0.61 / 0.637 91.1% / 0.17 / 0.293 86.2% / 0.36 / 0.511

zoom 4.3% / 0.37 / 0.077 15.2% / 0.64 / 0.245 66.0% / 0.43 / 0.527 9.3% / 0.01 / 0.018 83.6% / 0.32 / 0.464 93.9% / 0.43 / 0.593

Fig. 9. Efficiency comparison with NGMM. For 40 image pairs we plot the
quantile statistics (x-axis) of: (a) the time for matching and (b) the number of
EM iterations (y-axis). Each position (cx, cy) on the curve means that there
are cx (percentage) image pairs whose evaluation results are smaller than cy .

the size of the model and data set respectively. The total
cost of running several small scale problems is still smaller
than running on a single large scale problem if M and N
decrease. (2) With the guidance provided by the previous
layer in HGMM, fewer iterations are needed before the EM
algorithm reaches its optimal solution. This also contributes
to a faster convergence in each layer.

D. Evaluation on the Lebeda Dataset

In this part, we test our algorithm on the Lebeda Dataset.
This dataset is quite challenging because image pairs are
either very wide-baseline (Lebeda-A) or with extremely small
scene overlap (Lebeda-B). For this reason, some of the tested
methods may fail in the matching task. In our experiment, if
four or more methods find less than 8 correct correspondences
we will think this image pair as a failure case. Table II
shows the evaluation results on Lebeda-A between OSM [58],
PGM [62], RANSAC [24], GMS [48], NGMM [31] and the
proposed method. PRGLS [21] failed on too many cases so
it’s results are not shown. The two failure cases graff and
wash are not listed in the table. For each method, we measure
the precision, recall and F-score. GMS also returns the most
correct matches but its recall is not the highest because its
input contains more true positives as well. It achieves the best

Fig. 10. The matching results of the proposed method on some typical image
pairs. Blue and red lines indicate correct and wrong matches, respectively.

overall performance on head, Kyoto and wall, but fails on
booksh, leafs and rotunda. OSM and PGM manages to find
some correct matches, but their precision is poor. Our method
achieves the highest overall performance except for corr, head,
Kyoto, leafs and wall. Similarly, the results on Lebeda-B
are reported in Table III. Five failure cases CapitalRegion,
ExtremeZoom, LePoint1, LePoint2 and LePoint3 are not listed.
RANSAC doesn’t fail on any case in both Table II and Table
III. Although it does not achieve the best performance, the
results show its stability and effectiveness on a wide range
of scenarios. This verifies why it still plays an important role
nowadays in real application such as Structure from Motion
(SfM). Our method has the highest score for most cases.

Fig. 10 shows the matching results for some typical image
pairs in both datasets. We can see that this dataset is very
challenging due to large viewpoint differences and small
scene overlap. Although our method achieves the best overall
performance, there is still large room to improve both precision
and the number of correct matches.

E. Evaluation on the Panorama dataset

The panorama dataset contains ten different scenes. It is
originally used for image stitching, which combines a set of
overlapping images into a larger image with a wider field
of view [77]–[79]. Here we use four medium-sized subsets:
carmel, diamondhead, fishbowl and halfdome. Fig. 11 shows
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TABLE III
THE MATCHING RESULTS EVALUATED BY THE GIVEN HOMOGRAPHY MATRIX FOR DIFFERENT METHODS ON LEBEDA-B. THE PRECISION, RECALL AND

F-SCORE ARE LISTED. IF NO MATCHES ARE FOUND, BOTH PRECISION AND RECALL ARE TREATED AS ZERO. THE BEST F-SCORE IS IN BOLD.

Data Precision / Recall / F-score
OSM [58] PGM [62] RANSAC [24] GMS [43] NGMM [31] Ours

adam 25.3% / 0.74 / 0.377 18.0% / 0.39 / 0.247 65.2% / 0.88 / 0.749 52.1% / 0.67 / 0.589 62.7% / 0.81 / 0.709 73.6% / 0.89 / 0.806
boat 1.8% / 0.47 / 0.034 4.8% / 0.57 / 0.088 23.7% / 0.95 / 0.381 21.5% / 0.42 / 0.287 27.2% / 0.58 / 0.372 25.1% / 0.91 / 0.394

Boston 9.5% / 0.49 / 0.160 53.2% / 0.65 / 0.587 78.2% / 0.84 / 0.811 66.5% / 0.80 / 0.729 84.1% / 0.38 / 0.525 94.4% / 0.96 / 0.953
BostonLib 1.3% / 0.24 / 0.026 0% / 0 / 0 42.1% / 0.87 / 0.568 66.6% / 0.74 / 0.704 60% / 0.50 / 0.548 70.2% / 0.82 / 0.757

BruggeSquare 0.8% / 0.24 / 0.016 7.5% / 0.61 / 0.135 9.7% / 0.70 / 0.171 16.4% / 0.53 / 0.251 10.5% / 0.32 / 0.159 10.9% / 0.85 / 0.193
BruggeTower 4.9% / 0.49 / 0.089 9.7% / 0.54 / 0.165 43.8% / 0.84 / 0.576 54.7% / 0.67 / 0.604 46.3% / 0.71 / 0.563 50.7% / 0.92 / 0.654

Brussels 2.8% / 0.22 / 0.050 31.9% / 0.69 / 0.438 37.6% / 0.84 / 0.521 31.2% / 0.50 / 0.385 40.3% / 0.46 / 0.432 38.9% / 0.95 / 0.552
city 12.0% / 0.56 / 0.198 19.3% / 0.50 / 0.280 71.1% / 0.55 / 0.621 60.4% / 0.69 / 0.645 62.0% / 1.00 / 0.765 86.36% / 0.65 / 0.745

Eiffel 1.47% / 0.27 / 0.027 12.3% / 0.59 / 0.204 55.2% / 0.82 / 0.663 15.4% / 0.56 / 0.242 71.9% / 0.50 / 0.594 92.3% / 0.80 / 0.858
graf 5.6% / 0.33 / 0.096 13.9% / 0.69 / 0.231 39.8% / 0.69 / 0.505 33.4% / 0.59 / 0.428 33.8% / 0.87 / 0.488 42.5% / 0.84 / 0.565

WhiteBoard 0.6% / 0.25 / 0.013 8.2% / 0.55 / 0.143 46.6% / 0.82 / 0.595 62.9% / 0.61 / 0.623 78.5% / 0.48 / 0.600 68.5% / 0.89 / 0.777

Fig. 11. For all the image pairs in carmel, diamondhead, fishbowl and halfdome, the quantile statistics (x-axis) for precision, recall and F-score (y-axis) are
plotted. Each position (cx, cy) on the curve means that there are cx (percentage) image pairs whose evaluation results are smaller than cy .

the comparison results between RANSAC [24], OSM [58],
PGM [62], PRGLS [21], GMS [48], NGMM [31] and the
proposed method on these four scenes. We can see that these
image pairs are still challenging since none of these methods
can achieve 100% precision on all of them. For each scene,
PRGLS fails on nearly half of the image pairs since SIFT
matching doesn’t provide correct initialization as well. OSM
and PGM seldom fails, but their precision need improvement.
GSM performs better than the above two methods. It finds
the most correct matches and is more accurate than OSM
and PGM. The precision of RANSAC is greater than OSM,
PGM, PRGLS and GMS, but lower than NGMM and the
proposed method. It has stable performance across different
testing images. Although the proposed method fails on one
or two image pairs in the last three scenes, we have higher
precision, comparable recall and the best overall performance
in general.

We then show the matching and stitching results on some
typical image pairs in Fig. 12. In order to generate a panorama
image from two views, we estimate the planar homography

transformation with the correspondences. Since some wrong
correspondences are included in the matching results, we adopt
the RANSAC strategy. The better the matching results are,
the more accurate the homography transformation will be.
As we can see from the results, our method produces good
correspondences and aligns pixels in the overlapping region
well.

F. Evaluation on non-rigid images
We show that our method can deal with images with

mild non-rigid deformation. Four image pairs “tiger”, “bee”,
“cushion” and “tshirt” are used in this test. Our method is
compared with SIFT and NGMM. Since no ground truth
are provided, we identify correct correspondences manually.
The precision and number of correct matches are given in
Table IV and Table V, respectively. As we can see from the
results, our method has similar or higher precision on these
images. At the same time, we get more correct matches than
the other methods. Fig. 13 shows example matches of the
proposed method. Green lines indicate correct matches and
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Fig. 12. Matching and stitching results for some typical image pairs in each scene. Green circles and dots indicate correct matches aligned by the homography
transformation. Red circles and dots are wrong matches.

TABLE IV
THE MATCHING PRECISION FOR DIFFERENT METHODS ON NON-RIGID

IMAGES.

Method tiger bee cushion tshirt
SIFT 64.19% 63.91% 60.18% 69.49%

NGMM 75.45% 63.00% 57.85% 80.00%
Ours 78.52% 63.96% 62.58% 80.95%

TABLE V
THE NUMBER OF CORRECT MATCHES FOR DIFFERENT METHODS ON

NON-RIGID IMAGES.

Method tiger bee cushion tshirt
SIFT 104 62 65 41

NGMM 83 63 81 40
Ours 128 71 92 51

red lines represent wrong matches. For clarity only a subset
of correspondences are plotted.

V. CONCLUSION AND DISCUSSION

In this paper, a novel multi-layer feature matching algorithm
is proposed. It divides feature points into different layers
according to their matching uncertainties. Correspondences
with lower matching uncertainties could be found earlier and
then used to guide the search of new correspondences. Such a
strategy avoids involving outliers too early and improves the
robustness. To achieve this goal, a Hybrid Gaussian Mixture
Model, which imposes both intra and inter layer constraints
is proposed. Extensive experiments are carried out to test the
performance of the proposed method. It has the best overall
performance for most cases, especially when images have

Fig. 13. The matching result of our method on non-rigid images. Green lines
indicate correct matches and red lines represent wrong matches. For clarity
only a subset of correspondences are plotted.

large viewpoint differences or small scene overlap. Besides,
owing to the self-provided guidance, it converges faster than
the traditional GMM based methods.

For images with very large geometric or photometric dif-
ferences, the distances between matching feature points will
increase and matching them is a challenging task. In this case,
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the seed correspondences found in the first layer may include
some outliers, which will further affect the following matching
procedure. We found in the experiments that other compared
methods failed as well. We have to seek for new technologies
to tackle this problem. What’s more, it’s possible to combine
the proposed method with the L2E estimation, which is more
robust to outliers than the EM algorithm used currently. We
will plan this as a future work.
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