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Local Feature Selection for Large-scale Data 
Sets with Limited Labels 

Tian Yang, Yanfang Deng, Bin Yu, Yuhua Qian*, Jianhua Dai* 

Abstract—Processing large-scale data sets with limited labels has always been a difficult task in data mining. Facing this 

difficulty, two local feature selection algorithms, LARD and LRSD, have been proposed based on dependency degree, which 

can process partially labeled data sets and greatly improve the computational efficiency. However, it is very difficult for these 

algorithms to calculate large-scale data with millions of samples on a typical personal computer. Although the related family 

method is a more efficient approach than dependency degree, it cannot be used for partially labeled large-scale data. As a 

result, a local feature selection method based on related family is proposed to accelerate data processing in the paper. 

Experiments show that the proposed algorithm can run 405 times faster than LARD on partially labeled data sets and maintain 

high classification accuracy. In addition, this new algorithm can effectively process partially labeled large-scale data sets with 

5,000,000 samples or 20,000 features on a typical personal computer. 

Index Terms—Data mining, Semi-supervised learning, Local feature selection, Rough set, Related family  
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1 INTRODUCTION

ith the widespread use of various sensors, the rate 
of data generation in human society has become 

much higher than the increase in computing power. At 
the same time, the large amount of data lacks labels for 
sample collection, which is both time-consuming and 
costly. Therefore, the study of big data not only involves 
large-scale samples and ultra-high dimensions, but also 
may encounter problems such as the lack of labels, which 
has become a hot topic in the field of artificial intelligence 
and data mining in recent years [1-12]. To process data 
with limited labels, a plenty of semi-supervised learning 
methods have been proposed, such as co-training [1], 
semi-supervised support vector machines [2], label prop-
agation [3], graph-based semi-supervised learning meth-
od [4], etc. Hou et al. [5] put forward a one-pass method 
to learn and simultaneously evolve instances from data 
with incremental and decremental features, and then a 
safe classification algorithm [6]. Wang et al. [8] proposed 
a scalable graph-based semi-supervised learning algo-
rithm called Efficient Anchor Graph Regularization, and 
then an efficient Hierarchical Anchor Graph Regulariza-
tion approach [9]. And Yu et al. [10-12] brought up the 
progressive semi-supervised ensemble learning approach. 
Although these algorithms have achieved remarkable 
performance in partially labeled data processing, their 
efficiency needs to be improved. Hence, how to develop 
more efficient large-scale data processing methods with 

limited computing resources remains a problem in data 
mining.  

Feature selection is an effective method for large-scale 
data processing, which can not only reduce the dimen-
sions of data, thus reducing the computational cost and 
avoiding the “curse of dimension", but also remove the 
noisy data and improve the accuracy and generalization 
ability of machine learning. Feature selection methods can 
be classified into three categories[13-17]: filter, wrapper 
and embedded. Neural networks can effectively perform 
feature selection[18-20], but the features extracted by neu-
ral networks are generally poorly interpretable and sus-
ceptible to noise interference. Therefore, more and more 
scholars advocate the study of interpretable and more 
robust data processing methods. Granular computing [21-
24] has been widely used in artificial intelligence, data 
mining and intelligent decision making [24-29] due to its 
security, robustness and interpretability. 

Rough set [22, 23] is a typical granular computing 
model and an important theoretical branch of machine 
learning and data mining. Feature selection (also known 
as attribute reduction) algorithm based on rough set has 
become a research hotspot in recent years [30-42]. Hu et al. 
[43] introduced the neighborhood rough set (NRS) and 
designed the feature selection algorithm. Qian et al. [44] 
proposed a positive region acceleration method, which 
provides an accelerated method for feature selection. Dai 
et al. [45] introduced the gain ratio into the fuzzy rough 
set theory. Xia et al. [33] innovated the neighborhood 
generation method, and proposed a self-adaptive feature 
selection algorithm based on ball neighborhood, which 
has linear time complexity relative to the sample size. For 
partially labeled data processing, scholars have proposed 
several strategies[46-49]. Dai et al. [46] proposed two 
semi-supervised feature selection algorithms based on 
discernibility pairs. Liu et al. [47] added false labels to 
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unlabeled samples and proposed a semi-supervised 
learning method. Although these algorithms have 
achieved prominent performance in feature selection, due 
to their high complexity in time or space, none of them 
can compute million-scale samples or ten-thousand-scale 
data on a typical personal computer. To deal with large-
scale partially labeled data, it is necessary to explore new 
computing modes and design feature selection algorithms 
with low time/space complexity.  

Two effective strategies are adopted to construct a new 
computing framework: (1) Localized computation. The 
first corresponding author, Qian [48] and his co-author 
initially proposed a local rough set model, in which only 
the information granules related to the target objects are 
computed, rather than all the information granules (as 
shown in Fig. 3.1). On this basis, a local feature selection 
algorithm (LRSD) was designed. Wang et al. [49] de-
signed a local neighborhood feature selection algorithm 
(LARD) based on local neighborhood rough sets. LARD 
and LRSD can not only effectively process partially la-
beled data, but also greatly improve the computational 
efficiency. However, with the continuous expansion of 
data scale, the localized computation strategy still faces 
enormous challenges. (2) Efficient feature evaluation. In 
most granular computing models, multiple features are 
regarded as a feature subset to generate granules, and 
each feature is evaluated by the granule difference before 
and after the addition or removal of features in the subset. 
In this case, since the feature subset is constantly chang-
ing in the feature selection processing, the information 
granules need to be repeatedly computed. To simplify the 
processing, the first author, Yang and her co-author ini-
tially proposed the related family method[50]. Compared 
with other methods, the related family method only re-
quires a single calculation based on each single feature to 
generate information granules (the computation process 
is shown in Fig. 1.1).  Fujita and his co-author verified the 
effectiveness and efficiency of the related family method 
and proposed the incremental feature selection algo-
rithms for the dynamic covering decision system based 
on related family in several literatures [51-53]. In a bid to 
improve the classification accuracy of noise data pro-
cessing, Ou et al. [54] designed a feature selection algo-
rithm for variable precision covering rough sets based on 
related family. Although the feature selection algorithm 
based on related family has high computational efficiency, 
it cannot directly process partially labeled data. To effi-
ciently process partially labeled large-scale data, a local 
feature selection method based on related family was 
proposed in this paper.  

Firstly, local upper and lower approximate operators 
based on covering rough sets are introduced; on this basis, 
a new local feature selection method based on related 
family, namely, the local related family, is proposed. Then, 
a heuristic local feature selection algorithm with linear 
time and space complexities is designed. Experiments 
show that the proposed algorithm can effectively process 
partially labeled data sets while maintaining the classifi-
cation accuracy, and its running speed is hundreds of 
times faster than LARD [49] and GBNRS [33]. In addition, 

as the scale of the data sets increases, so does the efficien-
cy advantage. As a result, the new algorithm can process 
large-scale data sets of 5 million samples or 20,000 fea-
tures on personal computers, whereas other algorithms 
can only compute less than 10% of that scale.  

The contributions of this paper include: (1) a new fea-
ture evaluation framework for partially labeled data, 
namely, the local related family, is proposed; (2) an effi-
cient feature selection algorithm for partially labeled data 
with linear time and space complexities is designed, and 
its feature selection speed is even increased by 405 times. 

The rest of the paper is as follows. In section 2, the 
basic concepts of local rough sets and variable precision 
covering rough sets are introduced. In section 3, a new 
local feature selection method is proposed based on local 
rough sets and related family methods. In section 4, a lo-
cal feature selection algorithm with linear time complexi-
ty is designed. The results of numerical experiments are 
analyzed in Section 5, and finally, a brief conclusion is 
given in Section 6. 

2 BACKGROUND KNOWLEDGE 

2.1 Local Rough Set 

Local rough set (LRS), proposed by Qian et al. [48], is an 
efficient approach for processing partially labeled data. 
Some basic notions in local rough sets are introduced in 
this study. 

Let U  be a nonempty finite set (called universe), R 
U U  be an equivalence relation. For ,  w z U , if ( , )w z   

R , then w is equivalent to z under the relation R, and 
( , )z w R . For  w U  , the equivalence class of object w 
by equivalence relation R  is 

[ ] { | ( , ) }Rw z U w z R=   . 

Definition 1 [48]. Give an universe U  and an equiva-
lence relation R U U  , for  W U , the -lower ap-
proximation operator ( )LR W  and the β-upper approxi-
mation operator ( )LR W of W are defined as 

( ) { | ( / [ ] ) ,  }RLR W w W w w W  =                          (1) 

( ) {[ ] | ( / [ ] ) ,  }R RLR W w W w w W  =                 (2) 

where 0 1    ,  

   
(a) Related family                           (b) Dependency degree 

Fig. 1.1. The computation process comparison of related family and 
dependency degree. 
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is the inclusion degree of [ ]Rw  with respect to W , | * |  is 
the number of elements in *  , [ ]Rw is an equivalence class 
of object w  by equivalence relation R . The ,LR LR   
is called LRS. 

2.2 Variable Precision Covering Rough Set 

Covering rough set (CRS) [55, 56] is an important exten-
sion of classical rough set. To improve the effect of noise 
data processing, CRS is extended to variable precision 
covering rough set (VPCRS) [57, 58]. 

Let  be a non-empty subset family of universe U, if
U =  , the  is a covering of universe U. 

Definition 2 [58]. Let  be a covering of universe U, 
for W U  , the -lower and -upper approximation 
operators are defined by 

( ) { | ( / ) }CM W G W G


 =                            (3) 

( ) { | ( / ) 1 }CM W G W G


 =   −                     (4) 

where 0.5 1  . The subscript  can be omitted if there 
is no confusion. 

3 LOCAL FEATURE SELECTION 

To improve the computational efficiency, a local feature 
selection method based on related family is studied in 
this paper. Firstly, the local upper and lower approxima-
tion operators based on VPCRS are introduced, and the 
local reduction is defined based on this model. Next, a 
local feature selection method is initially proposed. 

According to Definition 2, it can be seen that the -
lower approximation operator of W  may include samples 
other than W . In order to include the lower approxima-
tion of W  in W , upper and lower approximation opera-
tors are reconstructed, as shown below: 

Definition 3. Let  be a covering of universe U, for 
W U  , the local upper and lower approximation oper-

ators are defined by 

( ) { | ( / ) ,  }LC W G W W G G


 =              (5) 

( ) { | ( / ) ,  }LC W G W G G


 =  
             

      (6) 

where 0 0.5 1     . The subscript  can be omitted 
if there is no confusion. 

Let U  be a universe, CF  be a covering family on U , 
D  be the decision attribute, ( , , )U CF D is called a cover-
ing decision information system (CDIS). 

Since CF  is still a covering on U , for any subset W  
of U , the local lower approximation on ( , , )U CF D  can be 
defined as 

( ) { | ( / ) ,  }
CF

LC W G W W G G CF


 =   . 

In practice, collecting sample labels is both time-
consuming and expensive, therefore a lot of data lack la-
bels. In this paper, the set of all labeled samples is regard-
ed as the target set. 

Suppose TS U  is a target set, then TS  is the set of all 
labeled samples and U TS−  is the unlabeled sample set. 
The partition of the target set TS  with respect to D  is de-
fined as 

/ { | ,  / }i i i iTS D W W D TS D U D= =  . 
Since unlabeled samples can also provide some useful 

information, all samples (both labeled and unlabeled) are 
used in this paper to approximate the target set. Then the 
local positive region of D  concerning target set TS  is de-
fined as 

/( ) ( )CF W TS D CF
POS TS LC W



= .  

Proposition 1. Given a CDIS ( , , )U CF D , and the target 
set TS U . If H K CF  , the ( ) ( )H KPOS TS POS TS . 

Proof: Since /( ) ( )K W TS D KPOS TS LC W


= , ( )KLC W


=

{ | ( / ) ,  }G W W G G K   .  
Then ( ) { ( ) | / }K KPOS TS LC W W TS D


=   

{ |  and /  s.t. ( / ) }G W G K W TS D W G =      
{ |  and /  s.t. ( / ) }G W G H W TS D W G =      

( { | ( ) and /  s.t. ( / ) })G W G K H W TS D W G  −     
( ) ( { | ( ) and /  HPOS TS G W G K H W TS D=  −    

s.t. ( / ) })W G  . Thus ( ) ( )H KPOS TS POS TS . □ 
The purpose of local feature selection for CDIS is to 

find a minimal feature subset (called a local feature reduct 
or a local attribute reduct in this paper) maintaining the 
local positive region unchanged. 

Definition 4. Given a CDIS ( , , )U CF D  and the target 
set TS U . For CF , if ( { })( ) ( )CF CFPOS TS POS TS−= , 
then  is local redundancy in CF  with respect to TS , 
otherwise  is local necessary in CF  with respect to TS . 
For K CF , if each feature K  is local necessary and 

( ) ( )CF KPOS TS POS TS= , then K  is called a local feature 
reduct (or a local attribute reduct, short for a local reduct) 
of CF  with respect to TS . 

Let ( )RED CF  be the set of all local reducts of CF  with 
respect to TS , then the core of local reduct is 

( ) ( )CORE CF RED CF= . 
Then a new local feature selection method, named lo-

cal related family is developed to compute all local re-
ducts. 

The -consistent set is a key notion in local related fam-
ily method, composed of all -consistent information 
granules whose inclusion degree for a decision class is 
greater than , defined as following. 

Definition 5. Given a CDIS ( , , )U CF D  and the target 
set TS U , 1 2/ { ,  ,  , }sTS D W W W=  is the partition of the 
target set TS  with respect to D . Then -consistent set of 
TS  is defined as (7): 

( ) { | /  s.t. ( / ) }CF i iM TS G CF W TS D W G  =           (7) 

Each element in the -consistent set is called an -
consistent information granule of CF  with respect to TS . 
If iw G and the label of iw  is the same as the label of 
most samples in G , iw  is consistently included by G ,  
and noted as iw G . 

In an -consistent information granule, there may be 
unlabeled samples and samples with different labels, thus 
the consistent inclusion relation is defined in Definition 5. 
For any sample ( )CFiw POS TS , there is at least one fea-
ture that generates an -consistent information granule G  
consistently including sample iw . 

Since the local positive region does not contain any un-
labeled samples, we only need to calculate the related sets 
of labeled samples instead of all samples, which saves a 
lot of time (as shown in Fig. 3.1). The local related family 
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is defined as follows: 
Definition 6. Given a CDIS ( , , )U CF D  and the target 

set TS U . For iw TS  ,  the local related set of iw  is de-
fined as (8), and the local related family of target set TS  is 
defined as (9): 

( ) { | ( ) s.t. }i CF iw CF G M TS w G =              (8)
 

( , , ) { ( ) | ( ) ,  }i i iLR TS CF D w w w TS  =                     (9) 

where ( )CFM TS
  is the -consistent set of TS . 

Each local related set ( )iw  in the local related family is 
the collection of all features which generate at least one -
consistent information granule G  consistently including 
sample iw . If ( )iw  , then the sample iw  belongs to the 
local positive region. Where each information granule is 
generated based on a single feature without the need for 
multiple calculations. 

Unlike the related family, the local related family 
method does not need to calculate the relevant infor-
mation of all samples (no need to compute the related sets 
rn+1, rn+2, …, rn+m), but only calculates the samples in the 
target set (only calculate related sets r1, r2, …, rn), which 
greatly reduces the time consumption. As shown in Fig. 
3.1. 

Theorem 1. H  is a local reduct of CF  if and only if H  
is a minimal feature subset that satisfying the following 
condition: ( )iH w   for every ( ) ( , , )iw LR TS CF D  . 

Proof: ( )  Suppose H  is a local reduct of CF , then 
( ) ( )CF HPOS TS POS TS= . For ( ) ( , , )iw LR TS CF D  , since 

( )iw  is nonempty, we have ( )CFiw POS TS  and 
( )Hiw POS TS . It implies there exists ( )HG M TS  and

H  such that iw G  . It is evident that
( )CFG M TS and ( )iw . Therefore ( )iw H , then 

( )iH w  . Since each feature H  is local necessary 
in H , H  is a minimal feature subset that satisfying the 
condition. 

( )  Suppose H  is a minimal feature subset that satis-
fying the condition. For ( )CFiw POS TS  , since ( )iw 

and ( )iH w  , suppose ( )iH w , then there is
G   such that ( )Hi

M TSw G


  .  Then ( )Hiw POS TS

and ( ) ( )CF HPOS TS POS TS . Since H CF , then 
( ) ( )H CFPOS TS POS TS . Thus ( ) ( )H CFPOS TS POS TS= . 

Furthermore, H  is a minimal feature subset that satisfy-
ing the condition, which means each feature H  is lo-
cal necessary in H . Therefore H  is a local reduct of CF . 
□ 

Proposition 2. The (( ) { | )CFiCORE CF w POS TS=  
  

s.t. ( ) { }}iw = . 
Proof: ( ) Suppose ( )CORE CF , then ( )CFPOS TS 

( { }) ( )CFPOS TS− . Let ( { })( ) ( )CF CFiw POS TS POS TS− − , 
then there exists a -consistent information granule G  
such that iw G  , and is the only feature which 
generates at least one -consistent information granule G  
consistently including sample iw , thus ( ) { }iw = . 

( )  Suppose ( ) { }iw = , then is the only feature 
which generates at least one -consistent information 
granule G  consistently including sample iw . Therefore 

( { }) ( )CFiw POS TS− , which means ( )CORE CF . □ 
 Based on the local related family, a new feature selec-

tion method is proposed based on Boolean functions. 
Definition 7. Let ( , , )U CF D  be a CDIS, TS U  be the 

target set, and the covering family 1 2{ , , , }kCF = . 
The local related function ( , , )f TS CF D  is defined as: 

 1 2( , , )( ,  ,  ,  ) {( ( )) | ( )

                                                      ( , , )}

k i if TS CF D w w

LR TS CF D

 =   
      (10) 

Where ( , , )LR TS CF D  is the local related family of target 
set TS , k Boolean variables  1 , 2 , …, k  correspond to 
k coverings 1 , 2 , …, k . 

Theorem 2. Given a CDIS ( , , )U CF D and the target set 
TS U . ( , , )LR TS CF D  is the local related family of target 
set TS , ( , , )f TS CF D  is the local related function. If the 

1 2
( ) ( ) ( ) ( ), , yg P P PTS CF D =       is the simplified 

disjunctive form derived from ( , , )f TS CF D  by using the 
conjunction and disjunction rules, and for 1, 2, , j y= , 
every element in jP  is unique. Then 1 2( ) { ,  ,P PRED CF =

},  yP . 
Proof: ( )  For 1, 2, , j y= and ( ) ( ,iw LR TS 

, )CF D , since ( )j iP w   , then ( )j iP w  . Let 
1

{ }j jP P= −  for any jP , then 
1

1( , , ) (j

tg TS CF D −

=  
1

1) ( ) ( ( ))
y

j t jt t
P P P= +    . Suppose 

1
( )j iP w   for every  

( ) ( , , )iw LR TS CF D  , then 
1

( )j iwP    . That means 
1

11( ) ( ) ( ( ))( , , )
yj

j t jt t tP P Pg TS CF D = +=       , which is a 
contradiction. Therefore, ( ) ( , , )iw LR TS CF D   such that 

1 ( )j iwP  = . Thus jP  is the local reduct of CF .  
( ) For ( )R RED CF   and ( ) ( , , )iw LR TS CF D  , 

since ( )iwR   , thus ( , , ) ( ) ( ( ))if TS CF D R w  =     
( )R R =  . That means ( , , ) ( , , )R f TS CF D g TS CF D  = . 
Suppose for 1, 2, , j y= , jP R −  , then j jP R  − . 
By rewriting 1( ) ( ), ,

y

j jg TS CF D ==   , then 1

y

j jR =   . 
Therefore j  such that jR  , it implies there is  

j R , which is a contradiction. That means jP  such 
that =jP R − , that is jP R , since R  and jP

 
are both the 

local reduct, it means  jP R= . Thus 1 2( ) {  ,,  ,P PRED CF =

}yP . □ 
An example is given to further illustrate the reduction 

process of this method presented in this paper. 
Example 1. Given a CDIS ( , , )U CF D , where 1 2{ ,  ,U w w=

3 4 5 6 7 8, , , , , }w w w w w w , 1 2 3 4{ , , , }CF = , {1,  1, 1, 2, *, *,D =
 

*, *} , where *  means no label. Let parameter =0.65   
and target set TS 1 2 3 4{ ,  , , }w w w w= . 

1 1 2 3 2 7 8 3 5 4 6{{ ,  ,  },  { ,  ,  },  { ,  },  { ,  }}w w w w w w w w w w= , 

2 1 2 2 5 6 8 3 7 4{{ ,  },  { ,  ,  ,  },  { ,  },  { }}w w w w w w w w w= , 

3 1 3 2 4 3 7 6 8 4 5{{ ,  },  { ,  },  { ,  ,  ,  },  { ,  }}w w w w w w w w w w= , 

4 1 3 5 2 3 4 5 2 3 4 5 6

4 5 6 7 8

{{ ,  ,  },  { ,  ,  ,  },  { ,  ,  ,  ,  },  

          { ,  ,  ,  ,  }}.

w w w w w w w w w w w w

w w w w w

=
 

/TS D 1 2 1 2 3 4{ ,  } {{ ,  ,  },  { }}W W w w w w= = . 

Then we construct the -consistent set and the local 
positive region. Since 1 2 3 1{ ,  ,  }w w w W , the inclusion degree 

1 1 2 3( / { ,  ,  }) 1 0.65W w w w =  , then information granule 

 
Fig. 3.1. The local related family (no need to compute the related 
sets rn+1, rn+2, …, rn+m). 

 

w1

…

…

…
wn wn+1 wn+m
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…
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1 2 3{ ,  ,  }w w w  is -consistent. Therefore, 1 2 3{ ,  ,  }w w w  is added 
to the -consistent set. Similarly, the inclusion degrees of 
other information granules relative to 1W  or 2W  are calcu-
lated respectively to get the -consistent set:  

1 2 3 1 2 4 1 3

1 3 5

( ) {{ ,  ,  },  { ,  },  { },  { ,  },

                     { ,  ,  }}.

CFM TS w w w w w w w w

w w w

 =
  

1 2 3 4( ) { ,  , , }CFPOS TS w w w w= . 

Next, the local related sets of all iw  TS  are obtained 
based on the -consistent set and the local positive region. 
For a labeled sample 1w , since there are four -consistent 
information granules 1 2 3 1{ ,  ,  }w w w  , 1 2 2{ ,  }w w  , 1 3{ ,  }w w 

3 , and 1 3 5 4{ ,  ,  }w w w   which contain 1w , then the local 
related set of 1w  is 1 1( ) { ,w = 2 3 4,  ,  } . Similarly, 
we can obtain other local related sets: 

1 1 2 3 4( ) { ,  ,  ,  }w = ,   2 1 2( ) { ,  }w = , 

3 1 3 4( ) { ,  ,  }w = ,          4 2( ) { }w = . 

As a result, the local related family is obtained: 

1 2 3 4

1 2 3 4 1 2

1 3 4 2

( , , ) { ( ),  ( ),  ( ),  ( )}

                       {{ ,  ,  ,  },  { ,  },  

                            { ,  ,  },  { }}

LR TS CF D w w w w   =

=  

     Then the local related function is formed to compute 
all local reducts： 

1 2 3 4 1 2

1 3 4 2

1 2 2 3 2 4

( , , ) ( ) ( )

                         ( ) ( )

                     ( ) ( ) ( ).

f TS CF D =       

   

=     

  

Thus, 1 2 2 3 2 4( ) {{ ,  },  { ,  },  { ,  }}RED CF =  and 

2( ) { }CORE CF = . 
It shows that all local reducts of a covering decision 

system can be computed by the local related family meth-
od.  

4 LOCAL FEATURE SELECTION ALGORITHMS 

Although all local reducts can be computed by the local 
related function, it is proved to be NP hard to obtain all 
local reducts or an optimal reduct. To quickly obtain a 
local reduct, a heuristic algorithm based on local related 
family (LRF) is designed. The flowchart of LRF is shown 
in Figure 4.1.  

LRF is divided into two steps:  
Step 1: Calculate the local related family by Definite 6. 

For any sample iw  in the data table, the information 
granule of iw  induced by a condition feature is define as 

( ) { || ( ) ( ) | }a i j i jw w a w a w = −  , 

where ( )ia w  is the value of sample iw  under Feature a , 
[0,1]  is the neighborhood radius that controls the size 

of all information granules. 
 Step 2: Calculate local reducts by greedy strategy on 

the basis of local related family.  

Algorithm 1: Local feature selection algorithm based on 
local related family (LRF). 

Input: A data table ( , , )U CF D , the target set TS U , a 
variable precision   and a neighborhood radius  ; 
Output:  A local reduct RED .  
      // Step 1: Calculating the local related family. 
1: For any iw  TS , let ( )iw =  and ( , , )LR TS CF D = . 
2: for 1 i m  , ia CF , 1 2{ ,  ,  ...,  }mCF a a a=  
3: for 1 j n  , jw  TS ,  1 2{ ,  ,  ...,  }nTS w w w=  
4: If ( )jia w  go to 5, otherwise skip to the next cycle; 
5: computing information granule ( )ia jw ; 
6: if ( / ( ))ia jW w   , where [ ]j DwW TS=  
7: If ( )ia jtw w  for any tw W , then ( ) ( ) { }t t iw w a = ; 
8: end if 
9: end for 
10: end for 

11: ( , , ) { ( ) |i iLR TS CF D w w TS=   and ( ) }iw  ; 

// Step 2: Calculating local reduct by greedy strategy 
on the basis of local related family. 
12: RED = ; 
13: while ( , , )LR TS CF D    
14: if ( , , )a LR TS CF D  and || || max{|| ||: ( , ,a a a LR TS CF=   

)}D  % || ||a  is the number of occurrences of a  in ( ,LR TS  
, )CF D % 

15: let { }RED RED a= ; 
16: If ( )ia w  for any ( ) ( , , )iw LR TS CF D  ,  

then let ( , , ) ( , , ) { ( )}iLR TS CF D LR TS CF D w= − ; 
17: end if 
18: end while 
19: Output the local reduct RED , end.  

We analyze the time and space complexities of the LRF 
algorithm, and compare them with existing three elegant 
algorithms: Local Attribute Reduction of target Decision 
(LARD) [49], Granular Ball Neighborhood Rough Sets 
(GBNRS) [33] and Global Related Family (GRF) [54].  

Given a data table ( , , )U CF D , ( )TS TS U  is the set of 
all samples with labels. The time and space complexities 
of four algorithms is shown in Table 4.1. 

The time complexity of LRF in Step 1 is (| || || |)CF TS U , 
and in Step 2 is (min{| |,| |})CF TS . Therefore, the time 
complexity of LRF is (| || || | min{| |,| |})CF TS U CF TS + . The 
space complexity is (| || |)CF TS . 

The time complexity of the global related family algo-
rithm GRF [54] is 2(| || | min{| |, | |})CF U CF U + . And the 
space complexity of GRF is (| || |)CF U . It is evident that 
the time and space complexities of LRF is lower than GRF. 

The time complexity of LARD [49] is 
| |

2

1 1 1

( (| | 1)( | || |+ | | ))
CF r r

j j

i ii

i j j

CF i UW W
= = =

 − +   , 

where 1( )iU U U U = , 1( )i iTS U TS TS = , /
j

iiW TS D . And 
 

Fig. 4.1. The flowchart of LRF. 
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the space complexity of LARD is (| || |)CF TS . Since 
| |

1

| | (| | 1)
CF

i

CF CF i
=

 − + , 
11

1

| | | |
r

j

j

W TS
=

=   and 2

1 1

1

| | | |
r

j

j

TS W
=

 , 

the time complexity of LRF is lower than LARD.  
To show the difference visually, the computation pro-

cesses of LRF and LARD are compared in Fig. 1.1. During 
the computation of LARD, the data needs to be granulat-
ed multiple times based on multiple features, while each 
feature only needs to be granulated once for LRF, which 
significantly reduces the computation time. 

The time complexity of GBNRS [33] is 2( | | | |)L CF U , 
where L is an unpredictable number，it is usually a large 
number, and its space complexity is 2(| | / 2)U . The time 
and space complexities of LRF is lower than GBNRS. In 
next section, efficiency advantage of the new algorithm is 
verified by several experiments. 

5 EXPERIMENT ANALYSIS 

In this section, numerical experiments are conducted 
based on 13 public datasets (downloaded from the UCI 
database http://archive.ics.uci.edu/ml/datasets.php and 
the KEEL database http://sci2s.ugr.es/keel/datasets.php) 
to test effectiveness and efficiency of LRF. Normalization 
was conducted for each data set. The description of all 
datasets is listed in Table 5.1 and Table 5.4. 

LRF is compared with three existing algorithms: Local 
Attribute Reduction of target Decision (LARD) [49], 
Granular Ball Neighborhood Rough Sets (GBNRS) [33] 
and Global Related Family (GRF) [54]. It is notable that 
the results provided by GBNRS and GRF are computed 
based on raw data sets without deleting any label. In an-
other word, LRF is compared with one local and two 
global algorithms.  Actually, comparing LRF with global 
algorithms is much more challenging and authentic than 
comparing with some semi-supervised algorithms. (1) For 
classification accuracy, considering some of semi-
supervised algorithms need adding pseudo labels to 
samples without any label, the results based on pseudo 
labels are usually less reliable and less accurate than those 
based on real labels. (2) For computation efficiency, ap-
plying global algorithms avoids generating pseudo labels, 
which saves a lot of time for comparing algorithms. Fur-
thermore, LARD [49], GBNRS [33] and GRF [54] are excel-
lent feature selection algorithms highly rated by scholars  
[51, 52]. Thus, the results in this paper are credible. 

All experiments are implemented by MATLAB R2017a, 

on a PC with Windows 10 system, Intel Core i5-1035G7 
CPU 1.5GHz and 8.0GB memory.  

5.1 Parameter analysis 

In this subsection, experiments are conducted based on 
data sets in Table 5.1 to test different parameters of LRF. 
We obtain partially labeled data sets by retaining labels of 
the first 10% samples for each data set. 

LRF has two parameters, namely, the variable preci-
sion and neighborhood radius, where the range of varia-
ble precision is (0.5,  1]   and neighborhood radius, 

[0,  0.5]  . Within the above range, 10 different variable 
precision values: 0.55, 0.60, 0.65, …, 1, and 11 different 
radius values: 0, 0.05, 0.1, …, 0.5, are chosen respectively. 
KNN(K=3) and SVM classifiers are used to evaluate the 
classification accuracy of all feature subsets selected by 
the LRF under different parameters. The experimental 
results are as shown in Figure 5.1. 

Since results of different data sets are in similar pattern, 
we only show results of two data sets in Figure 5.1. As 
can be seen from Figure 5.1, the optimal KNN classifica-
tion accuracy usually occurs when [0,  0.3]  . Therefore, 
[0, 0.3] is the recommended value range of neighborhood 
radius  . Since   is set to 0.001 for LARD in [49], the 

TABLE 4.1 
The Time and Space Complexities of Four Algorithms 

Algorithm        Time complexities            Space complexities    

LARD 
| |

2

1 1 1

( (| | 1)( | || |+ | | ))
CF r r

j j

i i i

i j j

CF i W U W
= = =

 − +    
(| || |)CF TS  

GBNRS 2( | | | |)L CF U  
2(| | / 2)U  

GRF 2(| || | min{| |  | |})CF U CF U + ，  (| || |)CF U  

LRF (| || || | min{| |  | |})CF TS U CF TS + ，  (| || |)CF TS  

TABLE 5.1 
The Information of Datasets 

Data Samples Features Class 

1 hill-valley 606 100 2 

2 page blocks 5472 10 5 

3 satimage 6435 36 7 

4 anuran calls 7195 22 4 

5 thyroid 7200 21 3 

6 crowdsourced 10545 28 6 

7 magic 19020 10 2 

8 shuttle 57999 9 5 

9 census 142521 41 2 

 

   

Fig. 5.1. Parameter Comparison.  
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radius value is also set to 0.001 in the following experi-
ment for the sake of comparison.  

For the variable precision parameters, the optimal val-
ue is between (0.5, 0.85]. Therefore, (0.5, 0.85] is the rec-
ommended value range of the variable precision for LRF. 
Since the better range of variable precision parameters for 
GRF is [0.7, 1], in the following experiments, three values 
(0.55, 0.75, and 0.95) are set for both LRF and GRF. 

5.2 Computation efficiencies 

In this subsection, the running time of four algorithms is 
compared. To obtain partially labeled data sets, the first 10% 
samples of each data set in Table 5.1 were collected as the 
target set, and the rest samples are regarded as unlabeled.  

In the experiment, the parameters are respectively set as 
0.55 = , 0.75 , 0.95 ,  and 0.001 = , with results shown in 

Figure 5.2 and Table 5.2. In this paper, “*” in all tables refers 
to insufficient memory, “\” indicates that the running time 
is more than 72 hours, and no result is returned in either case. 

As seen from Figure 5.2 and Table 5.2, LRF is much 
faster than three other algorithms for all datasets. There-
fore, the columns of LRF in Figure 5.2 are too short to spot.  
In addition, the larger the data set scale, the greater the 
efficiency advantage of LRF. For example, Table 5.2 
shows that on Data 2 (page blocks with 5472 samples, 10 
features) the running time of LRF is about 1/75 of that of 
LARD, on Data 5 (thyroid with 7200 samples, 21 features), 
1/126, and on Data 3 (satimage with 6435 samples, 36 
features), 1/265. Furthermore, on Data 9 (census with 
142521 samples, 41 features), the running time of LRF is 
1/406 of that of LARD and 1/92 of that of GRF, while 
GBNRS runs out of memory. That means LRF can run 405 
times faster than LARD and 91 times faster than GRF. 

TABLE 5.2 
Running Time of Four Algorithms (in seconds) 

Data  LARD GBNRS GRF LRF 

1 

0.55 2.650 

65.995 

0.263 0.016 

0.75 2.605 0.234 0.015 

0.95 2.627 0.212 0.016 

2 

0.55 2.806 

2.456 

1.933 0.037 

0.75 2.825 1.847 0.032 

0.95 2.675 1.814 0.015 

3 

0.55 40.648 

13.029 

8.878 0.153 

0.75 40.282 8.854 0.092 

0.95 40.318 8.605 0.083 

4 

0.55 19.834 

14.353 

6.919 0.218 

0.75 19.78 6.616 0.157 

0.95 19.459 6.147 0.135 

5 

0.55 17.435 

36.812 

11.01 0.138 

0.75 17.164 11.247 0.098 

0.95 17.18 9.466 0.082 

6 

0.55 67.397 

38.479 

15.611 0.338 

0.75 67.245 14.976 0.226 

0.95 66.836 14.341 0.255 

 7 

0.55 33.171 

3.434 

21.247 0.297 

0.75 33.148 21.17 0.215 

0.95 32.865 21.371 0.176 

8 

0.55 316.12 

4.002 

184.278 2.258 

0.75 315.213 181.027 1.815 

0.95 339.91 177.35 1.634 

9 

0.55 48751.04 

* 

11031.64 119.919 

0.75 33164.68 11029.34 94.41 

0.95 28374.14 10330.4 85.402 

 

 

 

Fig. 5.2. Running time comparison of four algorithms.  
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To show the different patterns of efficiency changes of 
four algorithms when the number of samples increases 
gradually, each data set in Table 1 is equally divided into 
ten sub-data sets. A sub-data set is randomly selected as 
the initial set ( 1U ) to be computed. Then one sub-data set 
is added to the set at each step, for example, | 1| | | /10U U= , 
| 2 | 2 | | /10U U= , …, | 10 | 10 | | /10U U= . The target set is the 
first 10% samples of the set. At each step, the reduct of the 

set is computed and the running time is recorded.  
The running time is shown in Figure 5.3. Compared with 

the other three algorithms, the computational efficiency of 
LRF goes up with the increase of the sample scale. On a 
larger data set, the computational time differences are up 
to hundreds of times. It is worth noting that the trend of 
time growth is linear, and the growth rate is very low. 
Meanwhile, it is obvious that, even the global algorithm 
GRF is much faster than LARD and GBNRS on seven data 
sets. Therefore, the local strategy based on related family 
significantly improves the computational efficiency of 
feature selection.  

5.3 Classification accuracy 

In this subsection, the effectiveness of the LRF algorithm is 
verified by comparing the classification accuracy of the other 
three algorithms. KNN (K=3) and SVM classifiers are used to 
evaluate the classification accuracy of different feature sub-
sets selected by the four algorithms. As shown in Table 5.3, 
each result is obtained using the 10-fold cross-validation 
method, and the number of features selected is shown in 
parentheses. 

Table 5.3 shows that among the 9 data sets computed 
by LRF, the KNN (K=3) and SVM classification accuracy 
of 4 data sets is the highest. The average KNN (K=3) and 
SVM classification accuracy of LRF is basically the same 
as global algorithms GBNRS and GRF, and is slightly 
higher than the local algorithm LARD. Evidently, LRF is 
an effective feature selection method for partially labeled 
data sets. 

5.4 Testing for large-scale data sets 

To compare the performances of four algorithms on large-
scale data sets, two data sets, SUSY and Gene expression 
cancer (GEC) are downloaded from UCI Database. Where 
SUSY is a large sample data set with 5000000 samples, 18 
features and 2 classes of labels; GEC is an ultrahigh dimen-
sion data set with 801 samples, 20531 features and 5 classes 
of labels. By extracting 4000000 and 3000000 samples from 
SUSY, we get SUSY1 and SUSY2. The description of the data 
sets is shown in Table 5.4. 

In this experiment, the first 10% samples of data sets 
SUSY, SUSY1 and SUSY2 are set as the target sets. Whereas 
for GEC, since the sample scale of it is relatively small, the 
first 50% samples are set as the target set.  

Considering that the scale of SUSY, SUSY1 and SUSY2 is 
very large, reasonable parameters are selected for each algo-
rithm based on the results in Subsection 5.2, so that each 
algorithm is run once only on the three data sets. To get bet-
ter performance, the variable precision parameter for Algo-
rithms LRF and LARD is set as 0.55 = , and for Algorithm 
GRF in this subsection, as 0.95 = . The neighborhood pa-
rameter is set as 0.001 = . 

Since the sample scale of GEC is small, the values of 
radius   from 0.001 to 0.05 with a step size of 0.001 are 
tested. Altogether 50 results are recorded for GRF and 
LRF, and the running time in Table 5.5 is the total time of 
50 runs. Since LARD runs for more than 72 hours at a 
time, no LARD results are recorded. And as GBNRS has 
no radius parameter and can only run twice in 72 hours, 

 

 

 
Fig. 5.3. Comparison running time of four algorithms.  

0

10

20

30

40

50

60

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

R
u

n
n

in
g 

ti
m

e 
(S

)

(a) hill-valley

LARD

GBNRS

GRF

LRF

0

0.5

1

1.5

2

2.5

3

3.5

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
R

u
n

n
in

g 
ti

m
e

 (
S)

(b) page blocks

LARD

GBNRS

GRF

LRF

0

5

10

15

20

25

30

35

40

45

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

R
u

n
n

in
g 

ti
m

e
 (

S)

(c) satimage

LARD

GBNRS

GRF

LRF

0

5

10

15

20

25

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

R
u

n
n

in
g 

ti
m

e 
(S

)

(d) anuran calls

LARD

GBNRS

GRF

LRF

0

5

10

15

20

25

30

35

40

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

R
u

n
n

in
g 

ti
m

e
 (

S)

(e) thyroid

LARD

GBNRS

GRF

LRF

0

10

20

30

40

50

60

70

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

R
u

n
n

in
g 

ti
m

e 
(S

)

(f) crowdsourced

LARD

GBNRS

GRF

LRF

0

5

10

15

20

25

30

35

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

R
u

n
n

in
g 

ti
m

e
 (

S)

(g) magic

LARD

GBNRS

GRF

LRF

0

50

100

150

200

250

300

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

R
u

n
n

in
g 

ti
m

e
 (

S)

(h) shuttle

LARD

GBNRS

GRF

LRF

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

R
u

n
n

in
g

ti
m

e
 (

S)

(i) census

LARD

GBNRS

GRF

LRF

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3181208

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanxi University. Downloaded on July 17,2022 at 04:25:40 UTC from IEEE Xplore.  Restrictions apply. 



YANG:  LOCAL FEATURE SELECTION FOR LARGE-SCALE DATA SETS WITH LIMITED LABELS 9 

 

two results are recorded, and the running time in Table 
5.5 is the total time of two runs. Then, the results with the 
highest sum of classification accuracy evaluated by KNN 
and SVM classifiers for each algorithm are selected. The 
results are shown in Table 5.5 and Table 5.6, with the 
numbers of features in parentheses.  

Table 5.5 shows the running time of four algorithms. 
For Data GEC, even if GBNRS only runs twice, it is 173.6 
times of the total time of LRF running 50 times. The run-
ning time of GRF is 3.89 times that of LRF. LARD algo-
rithm cannot complete the computing of initial parame-
ters within 72 hours, so it does not return any results. In 
the computing of large sample data SUSY, SUSY1 and 
SUSY2, LARD and GRF fail to return any results because 
the running time exceeds 72 hours. GBNRS cannot com-
pute due to insufficient memory and does not return any 
results, and only LRF can successfully compute all feature 
reducts. As can be seen from Table 5.6, the classification 
accuracy of the data after LRF reduction is basically the 
same as that of the original data, or it is significantly im-
proved.  

Next, the actual scale of the data that can be comput-
ed by the four algorithms on the personal computer is 
tested and compared on the data set SUSY. Under the 
fixed 18 feature dimensions, the sample size is gradually 
increased, and the computing time is limited to 8-10 

hours. Among them, LRF takes 31008 seconds (about 8.6 
hours) to compute the data set of five million samples; 
GRF takes 33,741 seconds (about 9.4 hours) to compute 
the data set of 500,000 samples; LARD takes 32009 sec-
onds (about 8.9 hours) to compute the data set of 350,000 
samples. Although it takes 9040 seconds for GBNRS to 
compute 100,000 sample data, when the sample reaches 
110,000, GBNRS cannot continue to compute due to insuf-
ficient memory. The comparison results of the computing 
power of the four algorithms are shown in Figure 5.4. As 
can be seen, the computing power of LRF far exceeds the 
other three algorithms. Therefore, LRF algorithm can 
quickly and efficiently process partially labeled large-
scale data with limited resources. 

TABLE 5.3 
Classification Accuracy of Reduct Data 

Data  
KNN SVM 

LARD GBNRS GRF LRF LARD GBNRS GRF LRF 

1 

0.55 0.5382(2) 

0.5297(13) 

0.5329(5) 0.5448(2) 0.5116(2)  0.5049(5) 0.5016(2) 

0.75 0.5382(2) 0.5412(6) 0.5330(3) 0.5116(2) 0.5033(13) 0.5000(6) 0.5081(3) 

0.95 0.5382(2) 0.5282(11) 0.5330(3) 0.5116(2)  0.5034(11) 0.5081(3) 

2 

0.55 0.9912(3) 

0.9929(6) 

0.9629(1) 0.9921(7) 0.9479(3)  0.8708(1) 0.9741(7) 

0.75 0.9912(3) 0.9894(2) 0.9923(6) 0.9479(3) 0.9655(6) 0.9069(2) 0.9739(6) 

0.95 0.9912(3) 0.9921(4) 0.9923(6) 0.9479(3)  0.9611(4) 0.9739(6) 

3 

0.55 0.9857(6) 

0.9880(16) 

0.9800(3) 0.9905(19) 0.9467(6)  0.9229(3) 0.9549(19) 

0.75 0.9857(6) 0.9887(6) 0.9902(23) 0.9467(6) 0.9577(16) 0.9772(6) 0.9624(23) 

0.95 0.9857(6) 0.9905(24) 0.9901(16) 0.9467(6)  0.9571(24) 0.9632(16) 

4 

0.55 0.8460(4) 

0.9857(14) 

0.8767(2) 0.9830(9) 0.6646(4)  0.8389(2) 0.8866(9) 

0.75 0.8460(4) 0.9736(8) 0.9833(11) 0.6646(4) 0.9197(14) 0.8693(8) 0.8746(11) 

0.95 0.8460(4) 0.9914(22) 0.9882(16) 0.6646(4)  0.9338(22) 0.9077(16) 

5 

0.55 0.9255(8) 

0.9393(16) 

0.9258(1) 0.9264(3) 0.9258(8)  0.9258(1) 0.9258(3) 

0.75 0.9255(8) 0.9258(1) 0.9264(3) 0.9258(8) 0.9258(16) 0.9258(1) 0.9258(3) 

0.95 0.9255(8) 0.9469(10) 0.9264(3) 0.9258(8)  0.9271(10) 0.9258(3) 

6 

0.55 0.7921(3) 

0.9687(26) 

0.8720(2) 0.9460(15) 0.7991(3)  0.8015(2) 0.8418(15) 

0.75 0.7921(3) 0.9393(12) 0.9406(14) 0.7991(3) 0.8612(26) 0.8277(12) 0.8601(14) 

0.95 0.7921(3) 0.9696(28) 0.9431(14) 0.7991(3)  0.8739(28) 0.8521(14) 

7 

0.55 0.9984(2) 

0.9984(3) 

0.9984(2) 0.9984(3) 0.9982(2)  0.9982(2) 0.9982(3) 

0.75 0.9984(2) 0.9984(2) 0.9984(3) 0.9982(2) 0.9982(3) 0.9982(2) 0.9982(3) 

0.95 0.9984(2) 0.9984(2) 0.9984(3) 0.9982(2)  0.9982(2) 0.9982(3) 

8 

0.55 0.9997(6) 

0.9998(5) 

0.9355(1) 0.9998(8) 0.9598(6)  0.8696(1) 0.9598(8) 

0.75 0.9997(6) 0.9707(2) 0.9998(8) 0.9598(6) 0.9698(5) 0.8697(2) 0.9598(8) 

0.95 0.9997(6) 0.9998(8) 0.9998(8) 0.9598(6)  0.9598(8) 0.9598(8) 

9 

0.55 0.9412(19) 
 

0.9378(1) 0.9309(3) 0.9478(19) 
 

0.9427(1) 0.9429(3) 

0.75 0.9412(19) * 0.9378(1) 0.9309(3) 0.9478(19) * 0.9427(1) 0.9429(3) 

0.95 0.9412(19) 
 

0.9417(17) 0.9309(3) 0.9478(19) 
 

0.9458(17) 0.9429(3) 

average 0.8909(5.89) 0.9253(12.37) 0.9128(6.81) 0.9226(7.96) 0.8557(5.89) 0.8876(12.37) 0.8723(6.81) 0.8898(7.96) 

 
TABLE 5.4 

The Information of Datasets 

Data Samples Features Class 

Gene expression 

cancer (GEC) 
801 20531 5 

SUSY 5000000 18 2 

SUSY1 4000000 18 2 

SUSY2 3000000 18 2 
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6 CONCLUSION AND FUTURE WORK 

In order to improve the computational efficiency of the 
feature selection and process partially labeled large-scale 
data, a new feature evaluation method, namely, the local 
related family, is proposed in this paper. This method can 
evaluate features more efficiently by computing only the 
relevant information of labeled samples instead of com-
puting all samples. Then a local feature selection algo-
rithm LRF with linear time and space complexities is de-
signed. The experiment results show that, compared with 
the other three effective algorithms, this algorithm im-
proves the computational efficiency by even 405 times 
and achieves good performance in processing partially 
labeled large-scale data sets. However, there are limita-
tions in processing small sample partially labeled data 
sets. Therefore, how to make full use of the potential la-

beling information of unlabeled samples and how to im-
prove the classification accuracy based on semi-
supervised learning method need to be further studied. 
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