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Enhanced Qualitative Probabilistic Network (QPN) is to make qualitative network more applicable by
reducing ambiguity in a qualitative way. To reduce ambiguity in the basic QPN inference, we propose
an enhanced QPN based on qualitative mutual information (QMI), named QMIQPN. Firstly, we give a
strict definition of QMI. Secondly, based on the definition, we present the formalism of QMIQPN. Specif-
ically, we take QMI as the strength of qualitative influence in QMIQPN, the qualitative influence with
strength differs from the previous work, which additional expressiveness of the enhancement does not
come at the expense of the property of symmetry of influence. Thirdly, we analyze several relative prop-
erties of qualitative influences with strengths. Furthermore, we improve the Sign-propagation Algorithm
to reduce ambiguity and discuss its complexity. Finally, by experiments on several databases, we analyze
the performance of QMIQPN. Theoretic analysis and experimental results illustrate that QMIQPN is qual-
itative and efficient, yet allows for reducing some ambiguities upon QPN inference.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Qualitative Probabilistic Network (QPN) [1] occupies an impor-
tant region in qualitative representation space because of incom-
plete knowledge and unnecessarily strictly numeric precise for
many applications, and it becomes a popular frame for knowledge
representation in artificial intelligence as Bayesian network [2],
Semantic model [3], Conceptual Graph and Resource Description
Framework [4], etc. Furthermore, reasoning with qualitative prob-
abilities is much more efficient than reasoning with precise ones,
the inference complexity of QPN is a polynomial in the size of
the network [5], rather than NP-hard [6]. Therefore, many
approaches have been proposed for QPN modeling and inference
according to various kinds of applications [7–20].

However, in a QPN, influence relationships between variables
can be modeled as the direction of the shift in the distribution,
but no indication of their strengths can be provided as in a quanti-
fied network. The major drawback of this coarse level is that
ambiguous signs easily arise upon inference, moreover, once an
ambiguous sign has arisen, it will spread throughout major parts
of the network. Although not incorrect, ambiguous signs provide
no information and are not very useful in practice [14]. Thus ambi-
guity reduction, also called trade-off resolution, is a common prob-
lem in the basic QPN inference.

Recently, many methods for reducing ambiguity have been
developed. Parsons [8] has introduced the concept of categorical
influence, which is either an influence that increases a probability
to 1, or an influence that decreases a probability to 0, and thus
serves to reduce some ambiguities in which it is involved. Liu
and Wellman [21] have designed two methods for reducing ambi-
guities based upon the idea of reverting to numerical probabilities
whenever necessary, the methods require the fully quantified
probabilistic network. Renooij et al. [22] have also investigated
the use of order-of-magnitude kappa values to capture influence
strengths in a QPN and detailed the use of these kappas upon infer-
ence, thereby providing for ambiguity reduction. Renooij et al. [14]
have also presented an enhanced formalism of QPN (EQPN) which
introduces a notion of relative strength by distinguishing between
weak and strong influences for ambiguity reduction. Renooij et al.
[9] have presented an algorithm for dealing with unresolved trade-
offs that builds upon the idea of zooming in on the part of a QPN
where the actual trade-offs reside. It is a different approach to
dealing with trade-offs, the authors have proposed to isolate
the unresolved trade-offs and identify from the network the
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information that would serve to resolve them, rather than resolving
them by providing an even finer level of detail. Yue et al. [18]
have adopted the probabilistic-rough-set-based weights to the
qualitative influence, and have presented an enhanced QPN (EQPN)
of providing for a finer level of representation detail. Yue and Liu
[19] have taken another EQPN with interval probability parameters
as indicators of influence strengths to reduce ambiguity.

Unfortunately, the methods [14,18,19] for reducing ambiguity
by providing the strengths of influence relationships have some
disadvantages, they are as follows:

(1) Some additional expressiveness of their enhancement come
at the expense of the property of symmetry of influences,
which may bring about higher computation complexity.

(2) The combining signs of parallel influences are no longer
associative, which can result in loss of information upon
combining several trails having strong and weak conflicting
influences. To achieve the more informative and unique
result, the order of nodes combination is elicited before
combining them. However, such heuristics could increase
the complexity.

(3) The time complexity of inference in these QPNs will be
increased by using Sign-propagation Algorithm, and perhaps
become exponential.

Thus the main motivation of this paper is to avoid the above
disadvantages as much as possible in our method.

It is well known that probability-based information theory has
been founded by Shannon [23,24], in recent years, information-
theoretic measures are increasingly used in many researches
[25–27]. For example, the mutual information(MI) is a measure
of the strength of association between variables and it exhibits
the property of symmetry. To handle the asymmetry of an influ-
ence’s strength in [14,18,19] and to reduce ambiguity in a QPN,
we will propose an enhanced formalism of QPN (QMIQPN) and give
some strict definitions, the details of relative properties in a
QMIQPN, complexity analysis, experiments, etc.

The rest of this paper is organized as follows. Some basic con-
cepts about QPN are briefly reviewed in Section 2. In Section 3,
we give a strict definition of QMI and present a new formalism
of enhanced QPN (QMIQPN) based on the definition, and then
prove four relative properties of qualitative influence in a QMIQPN.
Section 4 improves the basic Sign-propagation Algorithm to reduce
ambiguity and discusses its complexity. Section 5 analyzes the per-
formance of QMIQPN by simulating experiments on several dat-
abases. Finally, Section 6 concludes the paper.
2. Preliminaries

In this section, we will review some basic concepts about QPN.
Fig. 1. An example of Radiotherapy QPN abstracted from BN. (a) Radiotherapy BN.
(b) Radiotherapy QPN.
2.1. The Basic QPN

QPN [1] is proposed as the qualitative abstraction of probabilis-
tic network or Bayesian network (BN) [2]. It encodes statistical
variables and probabilistic relationships between them in a direc-
ted acyclic graph (DAG). The relationships between variables are
not quantified by conditional probabilities as in a BN but are sum-
marized by the signs of qualitative relationships instead. That is, a
QPN Q ¼ ðG; dÞ also comprises a DAG G ¼ ðV ; EÞmodeling variables
and probabilistic relationships between them, and each sign d
(d 2 fþ;�;0; ?g) of qualitative influence that indicates the shift
direction between variables in the distribution. For abbreviation,
all variables are assumed to be binary and their values are ordered,
i.e., writing x for X ¼ True (or X ¼ 1) and �x for X ¼ False (or X = 0),
and x > �x (or 1 > 0).

The qualitative relationships include qualitative influences and
qualitative synergies, qualitative influences include positive influ-
ence, negative influence, zero influence and ambiguous influence.
Since qualitative synergies are not used for reducing ambiguity
in this paper, we will not discuss them, the interested reader can
refer to [1,28].

Definition 1 (Positive Influence [1,14]). Let Q ¼ ðG; dÞ be a QPN,
G ¼ ðV ; EÞ be a DAG, and Pr be a joint probability distribution on V,
and X;Y be variables, and X ! Y 2 E, a positive influence of
variable X on its successor Y, written SþðX;YÞ, iff

PrðyjxmÞP Prðyj�xmÞ ð1Þ

for any combination of values m for the set pðYÞ n fXg of predeces-
sors of Y other than X.

The definition expresses the fact that observing a high value for
X makes the higher value for Y more likely, regardless of any other
direct influences on Y. A negative influence, denoted by S�, and a
zero influence, denoted by S0, are defined analogously, just substi-
tute 6 and ¼ for P in the formula (1), respectively. If the influence
of X on Y is positive for one combination of m and negative for
another combination, in other words, if it is non-monotonic or
unknown, the influence is called ambiguous influence, denoted by
S?.

Now a piece of fictitious medical knowledge is described to
serve as our example application throughout the paper.

Example 1 (From [9,29]). We consider the probabilistic Radiother-
apy network shown in Fig. 1(a). Node T models the therapy
instilled, R models a reduction of the tumor, and S models the
development of scar tissue. L models the life-expectancy of a
patient after therapy, where l indicates that the patient will survive
for at least 6 weeks. Thus we can obtain the corresponding
qualitative abstraction of Radiotherapy network and show its QPN
as Fig. 1(b).
2.2. Sign-propagation Algorithm

Since variables not only influence each other directly along arcs,
they can also exert indirect influence on one another. Three prop-
erties [1,14] hold for these qualitative influences, namely
symmetry; transitivity and composition properties.

� The property of symmetry guarantees that, if a network includes
the influence SdðA;BÞ, then it also includes SdðB;AÞwith the same
sign d.
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� The property of transitivity asserts that qualitative influences
along an active trail without head-to-head nodes combine into
an indirect influence whose sign is determined by the �-opera-
tor from Table 1.
� The property of composition asserts that multiple qualitative

influences between variables along parallel active trails com-
bine into a composite influence whose sign is determined by
the �-operator from Table 1.

For inference in a QPN, Druzdzel and Henrion [5] have proposed
an efficient algorithm termed Sign-propagation Algorithm. The goal
of this algorithm is to determine the sign of each target node. In
essence, the algorithm computes the influence sign along all active
trails between the newly observed variable and the other variables
in the network, building upon the properties of symmetry, transi-
tivity and composition of influences. The algorithm is summarized
in pseudocode as Algorithm 1.

Algorithm 1. Sign-propagation Algorithm in QPN
Input: A QPN, the evidence node (the observed node) and its
sign d 2 fþ;�;0; ?g

Output: d of each target node
1: for each node Vi 2 V in QPN do
2: d½Vi�  ‘0’
3: PropagateSign(;;O;O; d of evidence node)
4: end for
5: Procedure PropagateSign(trail; from; to; messagesign):
6: d½to�  d½to� �messagesign
7: trail trail [ ftog
8: for each active neighbor Vi of to do
9: linksign d of influence between to and Vi

10: messagesign d½to� � linksign
11: if d½Vi� R trail and d½Vi�– d½Vi� �messagesign then
12: PropagateSign(trail; to;Vi;messagesign)
13: end if
14: end for

In this algorithm, the character of the sign addition operator
implies that each node can change its sign at most twice — first
from ‘0’ to ‘+’, ‘�’, or ‘?’ and then from ‘+’ or ‘�’ only to ‘?’, which
can never change to any other sign. From this observation, we have
that no variable is ever visited more than twice upon inference,
which guarantees that the algorithm can be halt and be quadratic
in the size of the network.
3. QMIQPN

In this section, we first describe the problem of inference ambi-
guity in basic QPN by example, and then propose an enhanced QPN
based on qualitative mutual information, named QMIQPN.
Table 1
The �- and �-operators.

� + � 0 ? � + � 0 ?

+ + � 0 ? + + ? + ?
� � + 0 ? � ? � � ?
0 0 0 0 0 0 + � 0 ?
? ? ? 0 ? ? ? ? ? ?
3.1. The description of inference ambiguity problem

Example 2 (Continued from Example 1). If the patient receives
radiotherapy, his life expectancy may decrease due to stenosis and
will on the other hand increase if the tumor is reduced. From the
probabilities in the quantitative network, we have that the effect of
stenosis on life expectancy is much smaller than the effect of
tumor reduction. That is, the influence of S on L is much weaker
than the influence of R on L is.

However, in a qualitative network shown in Fig. 2(a), we only
know node-sign. Suppose that a patient is taking radiotherapy. The
variable T is observed and we update its node-sigh to ‘+’. According
to Sign-propagation Algorithm, variable T thereupon propagates a
message, with sign ‘þ�þ ¼ þ’, towards S. Variable S updates its
node-sign to ‘+’ and sends a message with sign ‘þ�� ¼ �’ to L.
Variable L updates its node-sign to ‘�’, it sends no messages as it
has no neighbors that need to update their sign. Variable L does not
pass on a sign to R, since the trail from S via L to R is not active.
Variable T also sends a message on the other hand, with sign
‘þ�þ ¼ þ’, to R. Variable R updates its node-sign accordingly and
passes a message with sign ‘þ�þ ¼ þ’ to L. Variable L thus
receives the additional sign ‘+’. This sign is combined with the
previously updated node-sign ‘�’, which results in the ambiguous
node-sign ‘��þ ¼ ?’ for L, which shows in Fig. 2(b).

Note that in a QPN, such an ambiguity will arise when parallel
influences with opposite basic signs are combined with the �-
operator in Table 1. In fact, to some extent, the ambiguity can be
reduced. Thus we will study the problem of ambiguity reduction in
this paper.
3.2. Qualitative mutual information

In general, we can measure the strength between random vari-
ables (also read ‘‘nodes’’) X and Y using mutual information [25].

Definition 2 (Mutual Information, MI [30]). Consider two random
variables X and Y with a joint probability distribution Prðx; yÞ and
the marginal probability distribution PrðxÞ and PrðyÞ. The mutual
information (MI) IðX; YÞ is the relative entropy between the joint
distribution and the product distribution PrðxÞPrðyÞ, that is,

IðX; YÞ ¼
X
Yj2Y

X
Xi2X

PrðXi;YjÞ log
PrðXi;YjÞ

PrðXiÞPrðYjÞ

� �
; ð2Þ

where 0 6 IðX; YÞ 6 1.

The MI between nodes can tell us if the two nodes are depen-
dent and if so, how close their relationship is. The bigger the
IðX; YÞ is, the closer the relationship of variable X and Y is. We
would claim that X and Y are independent iff IðX; YÞ ¼ 0.

Moreover, we have the following theorems [30] on MI.
Fig. 2. The ambiguity in QPN inference. (a) Radiotherapy QPN. (b) Given T = ‘+’, the
ambiguity arises in node L.
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Theorem 1 (Symmetry).

IðX; YÞ ¼ IðY; XÞ: ð3Þ
Theorem 2 (Data-processing Inequality). If X ! Y ! Z is a Markov
chain, then

IðX; YÞP IðX; ZÞ and IðY; ZÞP IðX; ZÞ: ð4Þ
Theorem 3 (Chain Rule for Information).

IðX1;X2; . . . ;Xn; YÞ ¼
Xn

i¼1

IðXi; YjXi�1;Xi�2; . . . ;X1Þ: ð5Þ

In a QPN, Given edge ðX; YÞ or X ! Y , all variables are assumed
to be binary, so the MI between X and Y is

IðX; YÞ ¼ Prðx; yÞ log
Prðx; yÞ

PrðxÞPrðyÞ

� �
þ Prðx; �yÞ log

Prðx; �yÞ
PrðxÞPrð�yÞ

� �

þ Prð�x; yÞ log
Prð�x; yÞ

Prð�xÞPrðyÞ

� �
þ Prð�x; �yÞ

� log
Prð�x; �yÞ

Prð�xÞPrð�yÞ

� �
: ð6Þ

If variable X positively influences Y, that is, SþðX;YÞ. According
to Definition 1, we have

PrðyjxÞP Prðyj�xÞ: ð7Þ

Further,

1� PrðyjxÞ 6 1� Prðyj�xÞ () Prð�yjxÞ 6 Prð�yj�xÞ: ð8Þ

and since

PrðyÞ ¼ PrðyjxÞPrðxÞ þ Prðyj�xÞPrð�xÞ: ð9Þ
Prð�yÞ ¼ Prð�yjxÞPrðxÞ þ Prð�yj�xÞPrð�xÞ: ð10Þ

the formula (7) and (8) are substituted into the formula (9) and (10),
so

PrðyÞ ¼ PrðyjxÞPrðxÞ þ Prðyj�xÞPrð�xÞ
6 PrðyjxÞPrðxÞ þ PrðyjxÞð1� PrðxÞÞ ¼ PrðyjxÞ: ð11Þ

PrðyÞ ¼ PrðyjxÞPrðxÞ þ Prðyj�xÞPrð�xÞ
P Prðyj�xÞð1� Prð�xÞÞ þ Prðyj�xÞPrð�xÞ ¼ Prðyj�xÞ: ð12Þ

Prð�yÞ ¼ Prð�yjxÞPrðxÞ þ Prð�yj�xÞPrð�xÞ
6 Prð�yj�xÞð1� Prð�xÞÞ þ Prð�yj�xÞPrð�xÞ ¼ Prð�yj�xÞ: ð13Þ

Prð�yÞ ¼ Prð�yjxÞPrðxÞ þ Prð�yj�xÞPrð�xÞ
P Prð�yjxÞPrðxÞ þ Prð�yjxÞð1� PrðxÞÞ ¼ Prð�yjxÞ: ð14Þ

Furthermore,

Prðx; yÞ ¼ PrðxÞPrðyjxÞP PrðxÞPrðyÞ; ð15Þ
Prð�x; �yÞ ¼ Prð�xÞPrð�yj�xÞP Prð�xÞPrð�yÞ; ð16Þ
Prðx; �yÞ ¼ PrðxÞPrð�yjxÞ 6 PrðxÞPrð�yÞ; ð17Þ
Prð�x; yÞ ¼ Prð�xÞPrðyj�xÞ 6 Prð�xÞPrðyÞ: ð18Þ

Therefore,

log
Prðx; yÞ

PrðxÞPrðyÞ

� �
P 0; log

Prð�x; �yÞ
Prð�xÞPrð�yÞ

� �
P 0;

log
Prðx; �yÞ

PrðxÞPrð�yÞ

� �
6 0; log

Prð�x; yÞ
Prð�xÞPrðyÞ

� �
6 0:

ð19Þ
Moreover, since Prðx; yÞ þ Prð�x; �yÞ þ Prðx; �yÞ þ Prð�x; yÞ ¼ 1, we con-
clude that the higher Prðx; yÞ þ Prð�x; �yÞ is, the bigger IðX; YÞ is. That
is, when the values of X and Y are also true or false, their MI is bigger
than the value in any other cases.

Similarly, If variable X negatively influences Y, the higher
Prðx; �yÞ þ Prð�x; yÞ is, the bigger IðX; YÞ is. That is, when two variables
X and Y obtain different values, their MI is bigger than the value in
any other cases.

Further, in the following, we give a definition of qualitative MI.

Definition 3 (Qualitative MI, QMI). Given discrete variables X and
Y, and threshold value bð0:5 6 b 6 1Þ,

(1) if d ¼ þ and b 6 Prðx; yÞ þ Prð�x; �yÞ 6 1, or if d ¼ � and
b 6 Prðx; �yÞ þ Prð�x; yÞ 6 1, the Qualitative MI of variables X
and Y is called strong MI, denoted by ISðX; YÞ.

(2) if d ¼ þ and 0:5 6 Prðx; yÞ þ Prð�x; �yÞ < b, or if d ¼ � and
0:5 6 Prðx; �yÞ þ Prð�x; yÞ < b, the Qualitative MI of variables
X and Y is called weak MI, denoted by IWðX; YÞ.

From Definition 3, we have that QMI includes strong and weak
MI, that is, QMI 2 fS;Wg.

Since the ambiguity arises from the composition of multiple
non-ambiguous opposite basic signs along the parallel trails, we
only need to consider the positive qualitative sign and the negative
qualitative sign, the zero and ambiguous sign do not need to do
here.
3.3. The formalism of QMIQPN

Based on QMI, we propose a new enhanced QPN (QMIQPN)
which can distinguish between strong and weak influences, differ-
ing from the basic QPN.

Definition 4 (Positive Influence with Strength). Let Q ¼ ðG; dÞ be a
QPN, G ¼ ðV ; EÞ be a DAG, and X;Y be variables in V with X ! Y 2 E,
given threshold value bð0:5 6 b 6 1Þ, the influence with strength of
variable X on Y is strongly positive, written SþþðX; YÞ, iff

d ¼ þ and b 6 Prðx; yÞ þ Prð�x; �yÞ 6 1:

The influence of variable X on variable Y along the arc is weakly
positive, written SþðX;YÞ, iff

d ¼ þ and 0:5 6 Prðx; yÞ þ Prð�x; �yÞ < b:
Definition 5 (Negative Influence with Strength). Let Q ;G;X;Y ; b be
as in Definition 4, the influence with strength of variable X on Y
is strongly negative, written S�ðX;YÞ, iff

d ¼ � and b 6 Prð�x; yÞ þ Prðx; �yÞ 6 1:

The influence of variable X on variable Y along the arc is weakly neg-
ative, written S�ðX; YÞ, iff

d ¼ � and 0:5 6 Prð�x; yÞ þ Prðx; �yÞ < b:

Furthermore, the definition of QMIQPN can be given below.
Definition 6 (QMIQPN). An enhanced QPN based on QMI
(QMIQPN) Q ¼ ðG; deÞ also comprises a DAG G ¼ ðV ; EÞ modeling
variables and the probabilistic relationships between them. Instead
of qualitative influences in QPN, however, the QMIQPN associates
its digraph with a set deðde 2 fþþ;��;þ;�;0; ?gÞ of qualitative
influences with strength based on QMI.
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Example 3. Now we consider the above Radiotherapy QPN again,
the known sample data is shown in Table 2. Let b ¼ 0:75, we have

0:5 < Prðt; sÞ þ Prð�t;�sÞ ¼ 0:52 < b;

b < Prðt; rÞ þ Prð�t;�rÞ ¼ 0:84 < 1;

0:5 < Prðs;�lÞ þ Prð�s; lÞ ¼ 0:52 < b;

b < Prðr; lÞ þ Prð�r;�lÞ ¼ 0:80 < 1:

According to Definitions 4–6, the Radiotherapy QMIQPN is obtained
and shown by Fig. 3.

For example, from Fig. 3, we have Sde ðT; SÞ ¼ SþðT; SÞ, which
shows that variable T weak positively influence S. The illustrations
for other influences with strengths are quite similar.

3.4. Relative properties

The properties of symmetry, transitivity and parallel composi-
tion hold for qualitative influences in a QPN. In this subsection,
we address the property of symmetry of qualitative influences
with strengths, followed by a discussion and enhancement of
�- and �-operators (renamed �e- and �e-operators) provide for
the properties of transitivity and parallel composition of
qualitative influences with strengths, respectively. The strengths
of the zero and ambiguous influences would not be considered.
That is, for ‘0’ and ‘?’, they are the same that of in QPN.

3.4.1. Symmetry
In a QPN, the property of symmetry guarantees that, if a vari-

able X exerts an influence on variable Y, then variable Y also exerts
an influence of the same sign on variable X. However, does the
symmetry property hold for the strength of an influence in a
QMIQPN?

Theorem 4. Let QMIQPN = ðG; deÞ and G ¼ ðV ; EÞ, where X;Y 2 V and
X ! Y 2 E. Then,
SdeðX;YÞ () Sde ðY;XÞ:
Proof. We know, the set d of qualitative influences in a QPN exhib-
its the symmetry property. That is,

SdðX;YÞ () SdðY;XÞ:

For the strengths of qualitative influences in a QMIQPN, since

Prðx; yÞ ¼ Prðy; xÞ; Prð�x; �yÞ ¼ Prð�y; �xÞ;
Prð�x; yÞ ¼ Prðy; �xÞ; Prðx; �yÞ ¼ Prð�y; xÞ;

QMI is also symmetry by Definition 3, Therefore, we conclude that

SdeðX;YÞ () Sde ðY;XÞ: �

Note that QMI is a special form of MI and also symmetry, which
is consistent with Theorem 1. As a result, in a QMIQPN, signs
(de 2 fþþ;��;þ;�;0; ?g) can be propagated in both directions of
an arc during inference.
Table 2
The given sample data. V denotes the variables, N denotes the sample number.

V n N 1–5 6–10 11–15 15–20 21–25

T 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 1
S 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
R 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1
L 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1
3.4.2. Transitivity
In QMIQPN, it will be evident that the enhancement of the

�-operator (renamed �e-operator) need to be taken into consider-
ation when multiplying signs. To address Sign-product of two qual-
itative signs, we consider the serial fragment shown in Fig. 4(a), it
is a Morkov chain X ! Y ! Z, and includes an active trail that is
composed of the variables X;Y; Z and two qualitative influences
with strengths between them.

According to data-processing inequality in Theorem 2, from the
serial fragment in Fig. 4(a), we also have

QMIðX; YÞP QMIðX; ZÞ and QMIðY ; ZÞP QMIðX; ZÞ:

In other words,

QMIðX; ZÞ 6 minfQMIðX; YÞ;QMIðY ; ZÞg:

Thus, for abbreviation and high efficiency upon inference, sign-
product differing from the basic QPN is defined as follows.

Definition 7 (Sign-product differing from the basic QPN). Let
QMIQPN = ðG; deÞ and G ¼ ðV ; EÞ, where X;Y ; Z 2 V and X ! Y ;
Y ! Z (or X ! Y ! Z) are the only active trails between the
variables X and Z. Then
Sde ðX; ZÞ ¼ Sd1
e ðX;YÞ�eSd2

e ðY; ZÞ ¼ Sd1 ½QMI1 �ðX;YÞ�eSd2 ½QMI2 �ðY ; ZÞ

¼ Sd1�d2 ½minfQMI1 ;QMI2g�ðX; ZÞ:

where QMI1;QMI2 2 fS;Wg, and S > W , de; d
1
e ; d

2
e 2 fþþ;��;þ;�g,

d1; d2 2 fþ;�g.

According to Definition 7, we have the �e-operator as Table 3.
Table 3 now defines the �e-operator, which shapes the transitivity
property for qualitative influences with strengths in a QMIQPN.
From the table, it is readily seen that the ‘+’, ‘�’, ‘0’, and ‘?’ signs
in essence combine just as in a basic QPN, the only difference is
in the handling of the influence strength.

3.4.3. Composition
Similarly, to address Sign-sum of two signs in QMIQPN, we have

to enhance the �-operator (renamed �e-operator). We consider
the parallel fragment shown in Fig. 4(b). The fragment includes
two parallel active trails between the variables X and Z, one of
which captures a direct influence of X on Z (the strength is denoted
Fig. 4. Two fragments in QMIQPN. (a) Serial fragment. (b) Parallel fragment.



Table 3
The �e-operator.

�e ++ + 0 � � � ?

++ ++ + 0 � � � ?
+ + + 0 � � ?
0 0 0 0 0 0 0
� � � � � 0 ++ + ?
� � � 0 + + ?
? ? ? 0 ? ? ?

Y. Lv et al. / Knowledge-Based Systems 71 (2014) 114–125 119
by QMI1) and the other one captures an indirect influence through
Y (the strength is denoted by QMI2).

By Chain Rule for Information in Theorem 3, we have

QMIðX;Y; ZÞ ¼ QMIðX; ZÞ þ QMIðY; ZjXÞ
¼ QMIðY ; ZÞ þ QMIðX; ZjYÞ:

Further,

QMIðX;Y; ZÞP QMI1 and QMIðX;Y ; ZÞP QMI2:

That is, if QMI1 and QMI2 are the QMI of X ! Z in two parallel trail,
then

QMIðX; ZÞP maxfQMI1ðX; ZÞ;QMI2ðX; ZÞg:

Therefore, in a QMIQPN, we built the following theorem on Sign-
sum of two signs differing from the basic QPN.

Theorem 5 (Sign-sum differing from the basic QPN).

Sde ðX; ZÞ ¼ Sd1
e ðX; ZÞ�eSd2

e ðX; ZÞ ¼ Sd1 ½QMI1 �ðX; ZÞ�eSd2 ½QMI2 �ðX; ZÞ

¼

Sd1�d2 ½maxfQMI1 ;QMI2g�ðX; ZÞ; if d1 ¼ d2;

Sd1 ½QMI1 �ðX; ZÞ; if d1 – d2 and QMI1 > QMI2;

Sd2 ½QMI2 �ðX; ZÞ; if d1 – d2 and QMI1 < QMI2;

Sd1�d2 ; if d1 – d2 and QMI1 ¼ QMI2:

8>>>><
>>>>:

where QMI1;QMI2 2 fS;Wg, and S > W, de; d
1
e ; d

2
e 2 fþþ;��;þ;�g,

d1; d2 2 fþ;�g.
Proof. It will be proved by means of the following Propositions 1–
3. h

In order to prove Theorem 5, we will analyze the 16 different
cases for the only difference in the handling of the influence
strengths, as is shown in Table 4. The following several proposi-
tions show that the �e-operator correctly captures the sign of a
combination of two parallel influences with strengths. The proofs
for the other combinations of influences are quite similar. Proposi-
tion 1 addresses the case that two same qualitative influences
along parallel trails are combined into a composite influence.

Proposition 1. Let Q ¼ ðG; deÞ be a QMIQPN. Let X; Z be variables in G
and t1; t2 be parallel active trail in G from X to Z, where t1kt2 is their
trail composition. Then,

SþþðX; Z; t1Þ�eSþþðX; Z; t2Þ ) SþþðX; Z; t1kt2Þ:
Table 4
The 16 cases of �e-operator differing �-operator.

�e n cases 1 2 3 4

d1
e�ed

2
e

þþ�e þþ þþ�eþ þ�e þþ þ�eþ
�e n cases 9 10 11 12

d1
e�ed

2
e

þþ�e� ��e þþ ���eþ þ�e �
Proof. We assume that the trail t1 consists of a single arc X ! Z
and the trail t2 consists of the arcs X ! Y and Y ! Z, as parallel
fragment in Fig. 4(b). The serial influence in trail t2 can be obtained
by applying the transitivity property. Additional parallel trails
between X and Z can be handled by repeated application of the
composition property, and are therefore disregarded here. Given
SþþðX; Z; t1Þ and SþþðX; Z; t2Þ, by Definition 4, we have

d1 ¼ þ and b 6 Prðx; zÞ þ Prð�x;�zÞ 6 1; ð20Þ
d2 ¼ þ and b 6 Prðx; zÞ þ Prð�x;�zÞ 6 1: ð21Þ

If variables X and Z in two parallel trails take the same values, all
true or all false, the probability range of variables X and Z taking
the same values is ½2b;2� other than the probability of superposition
computation. Since the probability of superposition computation at
most is the minimal range of formula (20) and (21), the probability
range of variables X and Z taking the same values at least is the
maximal range of formula (20) and (21), that is,

b 6 Prðx; zÞ þ Prð�x;�zÞ 6 1;

moreover, the composition of qualitative influences in a basic QPN,
d1 � d2 ¼ þ�þ ¼ þ. We therefore conclude that SþþðX; Z; t1kt2Þ
according to Definition 4. h

From the above proposition, we have that two same qualitative
influences the �e-operator captures the sign of their composition.
Similar observations hold for the composition, such as the cases
1, 2, 3, 4, 5, 6, 7, and 8 in Table 4, of two same qualitative signs,
be they weak or strong, and be they positive and negative.

Ambiguities arise in essence from combining two or more con-
flicting influences along parallel active trails. The next proposition
provides for the combination of conflicting influences and
describes the type of ambiguity that can now typically be reduced.

Proposition 2. Let Q ;X; Z; t1; t2 and t1kt2 be as in the previous
Proposition 1. Then,

SþþðX; Z; t1Þ�eS�ðX; Z; t2Þ ) SþþðX; Z; t1kt2Þ:
Proof. The proof proceeds in a similar way as the proof of Propo-
sition 1. Given SþþðX; Z; t1Þ and S�ðX; Z; t2Þ, according to Definitions
4 and 5, we know

d1 ¼ þ and b 6 Prðx; zÞ þ Prð�x;�zÞ 6 1; ð22Þ
d2 ¼ � and 0:5 6 Prð�x; zÞ þ Prðx;�zÞ < b: ð23Þ

and since

Prðx; zÞ þ Prð�x;�zÞ þ Prð�x; zÞ þ Prðx;�zÞ ¼ 1:

Furthermore, we have

d2 ¼ � and 1� b < Prðx; zÞ þ Prð�x;�zÞ 6 0:5: ð24Þ

If variables X and Z in two parallel trails take the same values, then
the probability range of variables X and Z taking the same values is
[1,1.5] other than the probability of superposition computation.
Similarly, the maximal range of formula (22) and (24) is
5 6 7 8
���e �� ���e� ��e �� ��e�
13 14 15 16

� þþ�e �� ���e þþ þ�e� ��eþ
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b 6 Prðx; zÞ þ Prð�x;�zÞ 6 1;

and d1 � d2 ¼ þ�� ¼ ?. However, since the positive influence is
known to be stronger than the conflicting negative one, we may
conclude the combined influence to be positive, that is ‘+’, thereby
effectively reducing the ambiguity. We therefore have SþþðX; Z; t1kt2Þ
according to Definition 4. h

From Proposition 2, for two different influences with differ-
ent strengths, the �e-operator captures the sign of their com-
position. Similar observations hold for the composition of two
different qualitative signs with different strengths, be they
positive and negative, such as the cases 9, 10, 11, and 12 in
Table 4.

To some extent, there are some ambiguities that do not be
reduced. These cases are considered in Proposition 3.

Proposition 3. Let Q ;X; Z; t1; t2 and t1kt2 be as in the previous
Proposition 1. Then,
SþþðX; Z; t1Þ�eS��ðX; Z; t2Þ ) S?ðX; Z; t1kt2Þ:

Proof. According to the composition of qualitative influences,
þ�� ¼ ?. Since the strongly positive influence is unknown to be
stronger than the conflicting strongly negative one, we may con-
clude the combined influence to be ambiguous. In this case, the
ambiguity could not be reduced. h

From Proposition 3, we have that for two different influences
with the same strength, the �e-operator captures the sign of their
composition. Similar observations hold for the composition of two
different influences with the same strength, be they weak or
strong, such as the cases 13, 14, 15, and 16 in Table 4.

Based on the above analysis, we conclude the �e-operator as
Table 5. For ‘+’, ‘�’, ‘0’, and ‘?’ signs combine as in a basic QPN,
the only difference is in the handling of the influence strengths.

3.4.4. Algebraic property of composition
Theorem 5 and Table 5 give the effective method for combin-

ing two influences with strengths. However, the order of
strengths does matter for �e-operator while having more than
two influences. That is, the �e-operator for combining signs of
parallel influences are no longer associative, which can result
in loss of information upon combining several trails having
strong and weak conflicting influences. This is illustrated by
the following example:

ðþ þ �eþÞ�e� ¼ þþ�e� ¼ þþ;þþ�eðþ�e�Þ ¼ þþ�e? ¼ ?:

We stress that both combinations in this example lead to correct
results, the first is just more informative than the second. Heuris-
tics, for example, searching the influence sign with maximal
strength as the first influence to combine them, can be designed
to prevent unnecessary ambiguous results due to order of combina-
tion. Such heuristics can be done in OðmÞ time, where m is the num-
ber of participating influences.
Table 5
The �e-operator.

�e ++ + 0 � � � ?

++ ++ ++ ++ ? ++ ?
+ ++ + + � � ? ?
0 ++ + 0 � � � ?
� � ? � � � � � � � � ?
� ++ ? � � � � ?
? ? ? ? ? ? ?
4. Ambiguity reduction

In Section 3, we have introduced the formalism of QMIQPN and
have addressed relative properties. Building upon the two
enhanced operators, in this section, we first improve straightfor-
wardly the basic Sign-propagation Algorithm to reduce some ambi-
guities, and then illustrate the application of the improved
algorithm. In addition, we analyze its complexity.

4.1. The improved Sign-propagation Algorithm

In QMIQPN, the improved Sign-propagation Algorithm is summa-
rized in pseudocode in Algorithm 2. In essence, the QMIQPN first
can be obtained by means of (small) sample data and the known
QPN, then we infer the sign of the influence with strength along
all active trails, building upon the properties of symmetry, transi-
tivity and composition of influences with strength. In the process
of inference we need to search the influence sign with maximal
strength as the first influence when there are more than two
influences.

Algorithm 2. The improved Sign-propagation Algorithm
Input: A QPN, (small) sample data, the evidence node (the
observed node) and its sign de 2 fþþ;þ;��;�;0; ?g

Output: de of each target node
1: Obtain QMIQPN by (small) sample data and QPN;
2: for each node Vi 2 V in QMIQPN
3: de½Vi�  ‘0’
4: PropagateSign(;;O;O; de of evidence node)
5: end for
6: Procedure PropagateSign(trail; from; to;messagesign):
7: de½to�  de½to��e messagesign
8: trail trail [ ftog
9: for each active neighbor Vi of to

10: linksign de of influence between to and Vi

11: messagesign de½to��e linksign
12: Searching the influence sign with maximal strength

as the first influence when more than two influences
13: if de½Vi� R trail and de½Vi�– de½Vi��e messagesign then
14: PropagateSign(trail; to;Vi;messagesign)
15: end if
16: end for
Example 4. Upon inference with the basic Sign-propagation Algo-
rithm, we recall that entering the sign ‘+’ for variable T results in
the ambiguous sign ‘��þ ¼ ?’ for variable L which is shown in
Fig. 2(b). Now, we consider reducing ambiguity with the improved
Sign-propagation Algorithm. First the Radiotherapy QMIQPN shown
in Fig. 5(a) is obtained by QPN and the given data in Example 3.
Since there are at most two influences to participate in composi-
tion, we do not consider the order of composition nodes in this net-
work. Then we enter the sign ‘++’ for variable T, reflecting a
strongly positive observation for T. T propagates a message with
sign ‘þþ�eþ ¼ þ’ towards S. S updates its node-sign to ‘+’ and
sends a message with sign ‘þ�e� ¼ �’ to L. L updates its node-sign
to ‘�’ and sends no messages. T also sends a message, with sign
‘þþ�e þþ ¼ þþ’, to R. R updates its sign and passes a message
with sign ‘þþ�e þþ ¼ þþ’ to L. L receives the additional sign
‘++’. L will now combine the signs it has received from the two par-
allel trails originating in T, ‘��e þþ ¼ þþ’. The result of this com-
bination depends on the �e� operator used, thus the ambiguity in
variable L can be reduced, which is shown in Fig. 5(b).



Fig. 5. The ambiguity reduction in QMIQPN. (a) Radiotherapy QMIQPN. (b) Give
T = ‘++’, the ambiguity is reduced in node L. Fig. 7. Three QPNs. (a) Lawn sprinkler QPN. (b) Antibiotics QPN. (c) The simplified

Boerlage’s QPN.
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4.2. Complexity analysis

First, the symmetry property holds for influence strength in a
QMIQPN, so it has lower computation complexity in obtaining
QMIQPN from sample data than other EQPNs which enhancement
comes at the expense of the property of symmetry of influence
strength.

Secondly, as mentioned in the algebraic property of composi-
tion, the �e-operator for combining signs of parallel influences
are no longer associative, the order of strengths does matter when
combining more than two influences. We exactly desire to achieve
the much informative and unique results of combing influence
strengths as a measure for the given strengthen influences. Thus,
we search the influence with the maximal strength as the first par-
ticipating influence to combine multiple parallel influences.
Searching the first composition node with maximal strength can
be done in OðmÞ time, where m is the number of participating influ-
ences. However, Yue et al. [18] adopt the non-increasing order of
strengths and the composition can be done in OðmlogmÞ time.

Thirdly, the basic Sign-propagation Algorithm for inference in a
QPN has a worst-case runtime complexity that is polynomial in
the number of nodes of the network’s digraph, regardless of the
digraph’s topology. The main difference between our improved
Sign-propagation Algorithm and the basic one is that, in multiply
connected digraphs, the limit of two visits to each variable no
longer applies. Although a variable’s enhanced node-sign can
change at most three times — first from ‘0’ to ‘++’, ‘��’ or ‘?’, then
‘+’, ‘�’ or ‘?’, and then only to ‘?’, the time complexity of QMIQPN
inference is still polynomial in the number of nodes of the net-
work’s digraph.
5. Experiments

In this section, we will analyze the performance of our method
by experiments, including the reduction ratio of ambiguities,
denoted by RR, and the accuracy ratio of inference results, denoted
by AR. Specially, we definite
Fig. 6. Three BNs. (a) Lawn sprinkler BN. (b) Ant
RR ¼ the reduction number of ambiguities
the number of ambiguities in QPN inference

; ð25Þ

AR ¼ the number of consistent trend with BN inference

jvariablesj2 � jvariablesj
: ð26Þ

where jvariablesj is the number of variables in a network.
In addition, several methods are proposed for reducing ambigu-

ity. Because our method and EQPN based on RS as the above men-
tioned have the same prerequisite (QPN and data), we stress to
directly compare our method with EQPN based on RS in the follow-
ing analysis. First we discuss analyze on single dataset, and then on
multiple datasets.
5.1. Experiment setting

All the methods have been implemented in Matlab by making
use of Bayes net toolbox [31]. We analyze the performance of
our method by experiments on three probabilistic networks, such
as Lawn sprinkler network [31], Antibiotics network [14], and the
simplified Boerlage0s network [32], three BNs are shown in Fig. 6.
The corresponding QPNs are shown in Fig. 7.
5.2. Experimental analysis on single dataset

First we experiment on Lawn sprinkler network, and only con-
sider the case of evidence value increasing. The case of evidence
value decreasing is similar. For example, we regarded the evidence
change from PrðC ¼ 1Þ ¼ 0 to PrðC ¼ 1Þ ¼ 1 as the increase, while
the change from PrðC ¼ 1Þ ¼ 1 to PrðC ¼ 1Þ ¼ 0 as the decrease of
C0s True values in Lawn sprinkler BN. Likewise we could observe
the trend of increase or decrease of other nodes.

According to Junction Tree Algorithm [31], the inference
result of Lawn sprinkler BN is shown in Table 6, and that of the
corresponding QPN is shown in Table 7 by using Sign-propagation
Algorithm (see Fig. 8).
ibiotics BN. (c) The simplified Boerlage’s BN.



Table 6
Lawn sprinkler BN inference: Junction Tree Algorithm.

Evidence C S R W

Cð0! 1Þ � 0.5000 ? 0.1000 0.2000 ? 0.8000 0.5490 ? 0.7452
Sð0! 1Þ 0.6429 ? 0.1667 � 0.5857 ? 0.3000 0.5271 ? 0.9270
Rð0! 1Þ 0.2000 ? 0.8000 0.4200 ? 0.1800 � 0.3780 ? 0.9162
Wð0! 1Þ 0.3610 ? 0.5758 0.0621 ? 0.4298 0.1187 ? 0.7079 �

Table 7
Lawn sprinkler QPN inference: Sign propagation Algorithm.

Evidence C S R W

CðþÞ + � + ?
SðþÞ � + � ?
RðþÞ + � + ?
WðþÞ ? ? ? +

Fig. 8. Lawn sprinkler networks. (a) Lawn sprinkler QMIQPN. (b) Lawn sprinkler
EQPN based on RS.

Fig. 9. The comparison of two methods. (a) The c
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Further, we sample 35 data records from Lawn sprinkler BN. Let
threshold value a ¼ b ¼ 0:75, and then we obtain Lawn sprinkler
QMIQPN shown in Fig. 8(a) and EQPN based on RS shown in Fig. 8(b).

According to Algorithm 2, when each evidence node increases,
the inference result of QMIQPN is shown in Table 8, and that of
EQPN based on RS by Algorithm in [18] is shown in Table 9.

From Tables 6–9, we can obtain RR and AR as follows:

1. RR. By comparing the results of the inference among
Lawnsprinkler BN, QPN and QMIQPN or EQPN based on RS, we
have that there are 6 ambiguities in Table 7, but 2 ambiguities
in Table 8 and 1 ambiguity in Table 9. In a word, the RR is
0.6667(4/6) in QMIQPN, and that is 0.8333(5/6) in EQPN based
on RS. The results show that some ambiguities can be reduced
to some extent in our method and EQPN based on RS, but they
cannot be reduced completely.

2. AR. By checking whether the trend of inference in QMIQPN or
EQPN based on RS was consistent with that in BN, we verify
the accuracy of results. From Table 9we have that all the results
in QMIQPN inference are consistent with the trends of its BN’s
inference. But from Table 9 the results are not all consistent
with each other, i.e. �½0:252� in Table 9 indicates the trend
omparison of RR. (b) The comparison of AR.



Table 8
Lawn sprinkler QMIQPN inference: The Improved Sign propagation Algorithm.

Evidence C S R W

CðþþÞ ++ � ++ ++
SðþþÞ � ++ � ?
RðþþÞ ++ � ++ ++
WðþþÞ ++ ? ++ ++

Table 9
Lawn sprinkler EQPN based on RS inference: Sign propagation Algorithm.

Evidence C S R W

Cðþ½0:9�Þ +[0.9] �[0.45] +[0.9] +[0.8865]
Sðþ½0:9�Þ �[0.27] +[0.9] �[0.27] ?[0.27]
Rðþ½0:9�Þ +[0.9] �[0.45] +[0.9] +[0.8865]
Wðþ½0:9�Þ +[0.8892] �[0.252] +[0.8892] +[0.9]

The bold value shows the value is not consistent with the trends of its BN’s
inference.

Table 10
The comparison of QMIQPN with EQPN based on RS on three datasets. SN denotes sample d
of ambiguities, and AR is the accuracy ratio of inference results.

Dataset SN EQPN-RS(+[0.9])

a RR

Lawn Sprinkler 35 a1 ¼ 0:58 0.500
a2 ¼ 0:68 1.000
a3 ¼ 0:78 0.000

50 a1 ¼ 0:58 0.666
a2 ¼ 0:68 0.666
a3 ¼ 0:78 0.666

80 a1 ¼ 0:58 1.000
a2 ¼ 0:68 1.000
a3 ¼ 0:78 1.000

100 a1 ¼ 0:58 0.500
a2 ¼ 0:68 1.000
a3 ¼ 0:78 1.000

200 a1 ¼ 0:58 0.666
a2 ¼ 0:68 1.000
a3 ¼ 0:78 1.000

300 a1 ¼ 0:58 0.666
a2 ¼ 0:68 1.000
a3 ¼ 0:78 0.666

500 a1 ¼ 0:58 0.666
a2 ¼ 0:68 1.000
a3 ¼ 0:78 1.000

1000 a1 ¼ 0:58 0.666
a2 ¼ 0:68 1.000
a3 ¼ 0:78 1.000

3000 a1 ¼ 0:58 0.666
a2 ¼ 0:68 1.000
a3 ¼ 0:78 1.000

5000 a1 ¼ 0:58 0.666
a2 ¼ 0:68 1.000
a3 ¼ 0:78 1.000

Antibiotics 35 a1 ¼ 0:58 0.833
a2 ¼ 0:68 0.666
a3 ¼ 0:78 0.333

50 a1 ¼ 0:58 0.500
a2 ¼ 0:68 0.666
a3 ¼ 0:78 0.666

80 a1 ¼ 0:58 0.666
a2 ¼ 0:68 0.666
a3 ¼ 0:78 0.500

100 a1 ¼ 0:58 0.500
a2 ¼ 0:68 0.666
a3 ¼ 0:78 0.666

200 a1 ¼ 0:58 0.833
a2 ¼ 0:68 0.666
a3 ¼ 0:78 0.500

300 a1 ¼ 0:58 0.666
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decreasing, but in Table 6 the trend is increasing (that is,
0.0621 ? 0.4298). In a word, the AR is 1.0000(12/12) in
QMIQPN, and that is 0.9167(11/12) in EQPN based on RS. The
results show that the reduction methods maybe have the wrong
inference.

5.3. Experimental analysis on multiple datasets

To further analyze the performance of QMIQPN, now we discuss
the experimental results on the above mentioned three datasets.
Specially, in each dataset, we give different data records and differ-
ent threshold values. The data records are 35, 50, 80, 100, 200, 300,
500, 1000, 3000, and 5000 in each dataset. Let threshold values
a ¼ b in each data records, they are 0.58, 0.68,0.78, respectively.
Similarly, we only consider the case of evidence value increasing.
Then we compare the RR and AR of our method with that of EQPN
based on RS in these cases. The comparison results are shown in
Table 10.
ata number, a and b denote threshold value in two networks, RR is the reduction ratio

QMIQPN(++)

AR b RR AR

0 1.0000 b1 ¼ 0:58 1.0000 1.0000
0 0.9167 b2 ¼ 0:68 1.0000 1.0000
0 0.9167 b3 ¼ 0:78 0.3333 1.0000
7 1.0000 b1 ¼ 0:58 1.0000 0.8333
7 1.0000 b2 ¼ 0:68 0.6667 1.0000
7 0.9167 b3 ¼ 0:78 0.6667 1.0000
0 1.0000 b1 ¼ 0:58 1.0000 1.0000
0 0.9167 b2 ¼ 0:68 0.6667 1.0000
0 1.0000 b3 ¼ 0:78 0.6667 1.0000
0 1.0000 b1 ¼ 0:58 1.0000 0.8333
0 0.9167 b2 ¼ 0:68 1.0000 1.0000
0 1.0000 b3 ¼ 0:78 0.3333 1.0000
7 0.9167 b1 ¼ 0:58 1.0000 0.8333
0 0.8333 b2 ¼ 0:68 1.0000 1.0000
0 1.0000 b3 ¼ 0:78 0.6667 1.0000
7 0.9167 b1 ¼ 0:58 1.0000 1.0000
0 0.8333 b2 ¼ 0:68 1.0000 1.0000
7 0.9167 b3 ¼ 0:78 0.6667 1.0000
7 0.9167 b1 ¼ 0:58 1.0000 1.0000
0 0.9167 b2 ¼ 0:68 1.0000 1.0000
0 1.0000 b3 ¼ 0:78 0.6667 1.0000
7 0.9167 b1 ¼ 0:58 1.0000 1.0000
0 0.9167 b2 ¼ 0:68 1.0000 1.0000
0 1.0000 b3 ¼ 0:78 0.6667 1.0000
7 0.9167 b1 ¼ 0:58 1.0000 1.0000
0 0.9167 b2 ¼ 0:68 1.0000 1.0000
0 1.0000 b3 ¼ 0:78 0.6667 1.0000
7 0.9167 b1 ¼ 0:58 1.0000 1.0000
0 0.9167 b2 ¼ 0:68 1.0000 1.0000
0 1.0000 b3 ¼ 0:78 0.6667 1.0000

3 0.9000 b1 ¼ 0:58 0.6667 1.0000
7 1.0000 b2 ¼ 0:68 0.6667 1.0000
3 1.0000 b3 ¼ 0:78 0.6667 1.0000
0 0.9000 b1 ¼ 0:58 1.0000 0.8000
7 1.0000 b2 ¼ 0:68 0.6667 1.0000
7 1.0000 b3 ¼ 0:78 0.6667 1.0000
7 1.0000 b1 ¼ 0:58 0.6667 1.0000
7 1.0000 b2 ¼ 0:68 0.6667 1.0000
0 1.0000 b3 ¼ 0:78 0.6667 1.0000
0 1.0000 b1 ¼ 0:58 0.6667 1.0000
7 1.0000 b2 ¼ 0:68 0.6667 1.0000
7 1.0000 b3 ¼ 0:78 0.6667 1.0000
3 0.9000 b1 ¼ 0:58 0.6667 1.0000
7 1.0000 b2 ¼ 0:68 0.6667 1.0000
0 1.0000 b3 ¼ 0:78 0.6667 1.0000
7 1.0000 b1 ¼ 0:58 1.0000 1.0000

(continued on next page)



Table 10 (continued)

Dataset SN EQPN-RS(+[0.9]) QMIQPN(++)

a RR AR b RR AR

a2 ¼ 0:68 0.6667 1.0000 b2 ¼ 0:68 0.6667 1.0000
a3 ¼ 0:78 0.6667 1.0000 b3 ¼ 0:78 0.6667 1.0000

500 a1 ¼ 0:58 0.6667 1.0000 b1 ¼ 0:58 1.0000 1.0000
a2 ¼ 0:68 0.6667 1.0000 b2 ¼ 0:68 0.6667 1.0000
a3 ¼ 0:78 0.5000 1.0000 b3 ¼ 0:78 0.3333 1.0000

1000 a1 ¼ 0:58 0.6667 1.0000 b1 ¼ 0:58 1.0000 1.0000
a2 ¼ 0:68 0.8333 1.0000 b2 ¼ 0:68 0.6667 1.0000
a3 ¼ 0:78 0.5000 1.0000 b3 ¼ 0:78 0.6667 1.0000

3000 a1 ¼ 0:58 0.6667 1.0000 b1 ¼ 0:58 1.0000 1.0000
a2 ¼ 0:68 0.6667 1.0000 b2 ¼ 0:68 0.6667 1.0000
a3 ¼ 0:78 0.5000 1.0000 b3 ¼ 0:78 0.6667 1.0000

5000 a1 ¼ 0:58 0.6667 1.0000 b1 ¼ 0:58 0.6667 1.0000
a2 ¼ 0:68 0.6667 1.0000 b2 ¼ 0:68 0.6667 1.0000
a3 ¼ 0:78 0.5000 1.0000 b3 ¼ 0:78 0.6667 1.0000

Boerlage’s simplified network 35 a1 ¼ 0:58 0.2222 0.8667 b1 ¼ 0:58 0.2222 1.0000
a2 ¼ 0:68 0.1111 0.9333 b2 ¼ 0:68 0.2222 1.0000
a3 ¼ 0:78 0.0000 0.9000 b3 ¼ 0:78 0.0000 1.0000

50 a1 ¼ 0:58 0.0000 1.0000 b1 ¼ 0:58 0.6111 1.0000
a2 ¼ 0:68 0.0000 0.9333 b2 ¼ 0:68 0.1111 1.0000
a3 ¼ 0:78 0.0000 0.9667 b3 ¼ 0:78 0.1111 1.0000

80 a1 ¼ 0:58 0.2778 1.0000 b1 ¼ 0:58 0.3333 1.0000
a2 ¼ 0:68 0.5000 0.9667 b2 ¼ 0:68 0.1111 1.0000
a3 ¼ 0:78 0.0556 0.9667 b3 ¼ 0:78 0.1111 1.0000

100 a1 ¼ 0:58 0.3889 0.8667 b1 ¼ 0:58 0.2222 1.0000
a2 ¼ 0:68 0.0000 0.9333 b2 ¼ 0:68 0.1111 1.0000
a3 ¼ 0:78 0.0000 0.9667 b3 ¼ 0:78 0.1111 1.0000

200 a1 ¼ 0:58 0.4444 0.9000 b1 ¼ 0:58 0.6111 1.0000
a2 ¼ 0:68 0.0000 0.9333 b2 ¼ 0:68 0.1111 1.0000
a3 ¼ 0:78 0.0000 0.9000 b3 ¼ 0:78 0.1111 1.0000

300 a1 ¼ 0:58 0.3889 1.0000 b1 ¼ 0:58 0.3333 1.0000
a2 ¼ 0:68 0.3333 0.9333 b2 ¼ 0:68 0.1111 1.0000
a3 ¼ 0:78 0.0000 0.9333 b3 ¼ 0:78 0.1111 1.0000

500 a1 ¼ 0:58 0.4444 0.9333 b1 ¼ 0:58 0.1111 1.0000
a2 ¼ 0:68 0.3333 1.0000 b2 ¼ 0:68 0.1111 1.0000
a3 ¼ 0:78 0.0000 0.9667 b3 ¼ 0:78 0.0000 1.0000

1000 a1 ¼ 0:58 0.4444 1.0000 b1 ¼ 0:58 0.1111 1.0000
a2 ¼ 0:68 0.3333 0.9333 b2 ¼ 0:68 0.1111 1.0000
a3 ¼ 0:78 0.0000 0.9333 b3 ¼ 0:78 0.0000 1.0000

3000 a1 ¼ 0:58 0.3889 1.0000 b1 ¼ 0:58 0.1111 1.0000
a2 ¼ 0:68 0.2222 1.0000 b2 ¼ 0:68 0.1111 1.0000
a3 ¼ 0:78 0.0000 0.9333 b3 ¼ 0:78 0.0000 1.0000

5000 a1 ¼ 0:58 0.3889 1.0000 b1 ¼ 0:58 0.1111 1.0000
a2 ¼ 0:68 0.2222 1.0000 b2 ¼ 0:68 0.1111 1.0000
a3 ¼ 0:78 0.0000 0.9333 b3 ¼ 0:78 0.0000 1.0000
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From Table 10, we can obtain the comparison of RR shown in
Fig. 9(b) and the comparison of AR Fig. 9(b) in two methods under
90 cases.

Fig. 9(a) and Fig. 9(b) from Table 10, we can obtain the
following conclusions:

1. From Table 10 and Fig. 9(a), we have that RR depends on the
threshold value a or b. Let a ¼ b, for 30 cases in
Lawn Sprinkler network, there are 22 cases that RR in QMIQPN
is higher than or equal to that in EQPN based on RS, that is,
the percentage of QMIQPN performs better than EQPN based
on the RS about RR is 73%(22/30); for 30 cases in Antibiotics net-
work, the percentage is 87%(26/30); for 30 cases in Boerlage’s
simplified network, the percentage is 60%(18/30). Thus for every
dataset, QMIQPN has higher RR than EQPN based on RS. In addi-
tion, the percentage is lower in Boerlage’s simplified network
than that in Lawn sprinkler network and Antibiotics network.
The reasons are as follows:

(a) On the one hand, for abbreviation and high efficiency upon
inference, we give Definition 7 as QMIðX; ZÞ ¼minfQMIðX;

YÞ;QMIðY;ZÞg, in fact, QMIðX;ZÞ6minfQMIðX;YÞ;QMIðY ;ZÞg.
(b) On the other hand, Because in Lawnsprinkler network
and Antibiotics network, there is only one �e-operator,
but in Boerlage’s simplified network, there are two serial
�e-operators.

Thus, our method is more suitable for dealing with the ambi-
guity which has arisen by one �e-operator. For more than
two serial �e-operators, we can find the actual ambiguity
that resides with one �e-operator and then deal with it.
2. From Table 10 and Fig. 9(b), in all 90 cases, we have that 86
cases that AR in QMIQPN is higher than or equal to that in EQPN
based on RS. That is, the percentage of QMIQPN performs better
than EQPN based on the RS about AR is 96%(86/90). Thus in
most cases, QMIQPN has much higher AR than that EQPN based
on RS in three networks. But QMIQPN has also a few error
inference, the main reason is, for abbreviation and high effi-
ciency upon inference, QMIðX; ZÞ ¼minfQMIðX; YÞ;QMIðY ; ZÞg
in Definition 7 is defined, in fact, QMIðX; ZÞ 6 minfQMIðX; YÞ;
QMIðY; ZÞg.

3. More important, in Table 10, there are 13 cases of RR ¼ 0 and
AR – 0 marked in bold in EQPN based on RS. That is, EQPN
based on RS can also generate error inferences where the actual
unambiguity resides, but QMIQPN cannot generate them.
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6. Conclusion

To measure the qualitative influence and reduce the ambiguity
upon inference in QPN, we introduce QMI as indicators of influence
strengths to avoid some disadvantages in other reduction methods.
The main contributions of this paper can be summarized as follows:

� We give a strict definition of QMI.
� We present a QMIQPN based on definition of QMI, and analyze

its relative properties. Specially, the symmetry holds for the
influence strength.
� We improve the basic Sign-propagation Algorithm to reduce

ambiguity to some extent, the complexity of eliciting order of
composition nodes is (OðmÞ) and computation complexity is
polynomial in the node number in the network, where m is
the node number of participating composition.
� By experiments on single and multiple databases respectively,

we discuss and analyze the performance of QMIQPN.

In brief, theoretic analysis and experimental results show that
QMIQPN is qualitative and efficient, yet allows for reducing some
ambiguities correctly in most cases.

The method proposed in this paper also raises some other inter-
esting research issues. Based on QMIQPN, we can further study the
adaptive threshold value for ambiguity reduction, and improve the
reduction rate of ambiguity not only in simple topology networks
but also in complex ones or having more than two serial �e-oper-
ators. As well, the integration of multiple QPNs by reducing ambi-
guities as many as possible need to be further exploited. These are
exactly our future work.
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