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Low-rank matrix approximation (LRMA) has attracted more and more attention in the community of recom-

mendation. Even though LRMA-based recommendation methods (including Global LRMA and Local LRMA)

obtain promising results, they suffer from the complicated structure of the large-scale and sparse rating

matrix especially when the underlying system includes a large set of items with various types and a huge

amount of users with diverse interests. Thus they have to predefine the important parameters, such as the

rank of the rating matrix, the number of submatrices. Moreover, most existing Local LRMA methods are

usually designed in a two-phase separated framework and do not consider the missing mechanisms of rating

matrix. In this paper, a non-parametric unified Bayesian graphical model is proposed for Adaptive Local
low-rankMatrixApproximation (ALoMA).ALoMA has ability to simultaneously identify rating submatrices,

determine the optimal rank for each submatrix, and learn the submatrix-specific user/item latent factors.

Meanwhile, the missing mechanism is adopted to characterize the whole rating matrix. These four parts are

seamlessly integrated and enhance each other in a unified framework . Specifically, the user-item rating matrix

is adaptively divided into proper number of submatrices in ALoMA by exploiting Chinese Restaurant Process.

For each submatrix, by considering both global/local structure information and missing mechanisms, the latent

user/item factors are identified in an optimal latent space by adopting automatic relevance determination tech-

nique. We theoretically analyze the model’s generalization error bounds and give an approximation guarantee.

Furthermore, an efficient Gibbs sampling-based algorithm is designed to infer the proposed model. A series of

experiments have been conducted on six real-world datasets (Epinions, Douban, Dianping, Yelp,Movielens (10M)
and Netflix). The results demonstrate that ALoMA outperforms the state-of-the-art LRMA-based methods

and can friendly provide interpretable recommendation results.
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1 INTRODUCTION
Matrix approximation (MA) is one of the most effective collaborative filtering (CF) methods for

recommendation systems. It formulates the recommendation problem as an unobserved entries

prediction task on sparse user-item rating matrix. The popular MA-based recommendation meth-

ods are designed under the assumption that the whole sparse rating matrix is low-rank. These

methods, denoted as global low-rank matrix approximation (Global LRMA), are generally effective

at estimating the global structure which simultaneously relates to most or all items. However, as

stated in [17], they do not work well especially when there are a large set of items with various

types and a huge amount of users with diverse interests. For example, an Amazon user shares

similar tastes on books with a certain group of users, while having similar preferences with another

group of users on movies.

To capture the user’s diverse interests, more and more researchers consider the local associations

among users/items. They firstly divided the original rating matrix into several submatrices [17, 31,

31, 35, 36], where each submatrix contains a set of like-minded users and the items that they are

interested in. In each submatrix, the LRMA technique is adopted to model the submatrix-specific

latent user/item factors. Finally, the missing entries are estimated with the weighted sum of the

predictions in the submatrices [11]. This kind of methods is called as two-phase separated Local

LRMA, i.e., they require a separate rating matrix partitioning phase that is decoupled from the

low-rank submatrix approximation. To this end, these two phases are combined together via a

unified probabilistic graphical model [4, 33]. Even though these studies have improved over Global

LRMA methods to some extent, they may compromise recommendation quality because each

submatrix only covers partial rating information for a particular user or item, which makes LRMA

overemphasize the local structure but ignore the global information.

Table 1. The root mean square errors (RMSEs) of PMF for users/items (Yelp dataset) with different numbers
of ratings when rank is 10 and 100. When the rank is 10, the users/items with less than 5 ratings achieve lower
RMSEs than the cases when the rank is 100. This indicates that the PMF model overfits the users/items with
less than 5 ratings when rank is 100. Moreover, PMF with rank 100 achieves higher accuracy than PMF with
rank 10, but the improvement comes with sacrificed accuracy for the users and items with a small number of
ratings, e.g., less than 5.

rank = 10 rank = 100

♯ user ratings < 5 1.0573 1.0783

♯ user ratings > 50 0.8533 0.8423

♯ item ratings < 5 1.1531 1.1862

♯ item ratings > 50 0.8641 0.8539

All 0.8733 0.8661

For effective exploiting the global and local structure among rating matrix, researchers incorpo-

rate global and local latent factor identification [9] or embed a previously-learnt global structure

into the local structure training process [10, 19]. However, these methods suffer from two main

issues. One is how to adaptively determine the number of submatrices for capturing the local

information rather than manual tuning [5]. The other is how to adaptively set the proper rank

for each submatrix rather than fixing the rank for all submatrices. In real-world rating matrices,

e.g., Movielens, Netflix and Yelp, users/items have a varying number of ratings. A case study is

conducted on the Yelp dataset with the aid of global latent factor identification method (PMF) as

shown in Table 1. It can be seen that lower rank is helpful for the users/items with less ratings,

while higher rank benefits the users/items with more ratings. This study confirms that, in the

large-scale rating matrix, users/items with a significantly varying number of ratings should be
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Fig. 1. The unified framework of the proposed ALoMA model.

treated differently. Mathematically speaking, internal submatrices with different ranks indeed

coexist in the rating matrix with complex structure. Thus, it is necessary to adaptively find the

user/item submatrices and adaptivley determine submatrix-specific rank. In this case, a submatrix

with few ratings should be of low rank, while a submatrix with many ratings may be of a relatively

higher rank. Meanwhile, in order to effective handle the recommendation data with missing not at
random (MNAR) [24], the missing data should be considered when learning the latent user/item

factors.

Motivated by these issues, we present an Adaptive Local low-rank Matrix Approximation

(ALoMA) model for recommendation. ALoMA is a non-parametric unified Bayesian graphical

model to simultaneously identify submatrices, determine the optimal rank for each submatrix, learn

the submatrix-specific user/item latent factors, and estimate the importance of latent feature with

missing mechanisms, so that these four parts could be seamlessly integrated and enhance each

other as shown in Fig.1. The main contributions of this paper are summarized as follows.

• ALoMA captures the local associations among a subset of users/items with the aid of Chinese

Restaurant Process [13], which allows dynamic allocation of statistical capacity among

clusters instead of predefining the number of clusters.

• ALoMA has ability to mine the latent user/item factors from each submatrix, where the

submatrix-specific optimal rank is adaptively determined by automatic relevance determina-

tion technique [27, 34].

• ALoMA builds a unified Bayesian matrix factorization model for recommendation to leverage

the local latent user/item factors, importance of latent features and global user/item bias.

• The generalizagtion error bound of ALoMAmodel is theoretically proved, which guarantees

that the rating matrix can be approximated .

• An efficient Gibbs sampling-based algorithm is developed to infer ALoMA model, which

can deal with large-scale recommendation data.

• A series of experiments are conducted on six real-world data sets (Epinions, Douban, Dianping,
Yelp, Movielens (10M) and Netflix). By comparing with the existing state-of-the-art recom-

mendation methods, ALoMA significantly improves the recommendation performance on

both rating and ranking prediction [14], as well as friendly provide interpretable results.

The rest of the paper is organized as follows. The related work is discussed in Section 2. Section

3 gives the proposed ALoMA model and its theoretical analysis. The Gibbs sampling-based model
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inference is given in Section 4. In Section 5, a series of experiments on six large-scale datasets

(Epinions, Douban, Dianping, Yelp, Movielens (10M) and Netflix) are listed to demonstrate the

performance of ALoMA by comparing with the state-of-the-art methods. Finally, a brief conclusion

is given in Section 6.

2 RELATEDWORK
Suppose there are n users andm items, R =

[
Ri j

]
n×m indicates the user-item rating matrix, where

the observed element Ri j records the rate of j-th item given by the i-th user. Usually, R is very

sparse (less than 1% values are known), thus, our goal is to predict the rating value for unknown cell

set Π = {(i, j) : Ri j is missinд}, i.e., RΠ . Let X =
[
Xi j ∈ {0, 1}

]
n×m be an indicator matrix where

Xi j = 1 if Ri j is observed, and Xi j = 0 if Ri j is missing. In this section, we review the existing work

on recommendation with global low-rank matrix approximation (LRMA), local LRMA, global-local

LRMA techniques and CF with non-random missing assumption.

2.1 LRMA with Global Perspective
Matrix Approximation (MA) is widely used in recommender systems to fill in the missing values

of R. To predict the missing values in original partially observed rating matrix, a popular way is

to design an optimization problem minimizing the predicted rating error. In this case, the general

MA-based recommendation methods can be formulated as

min

θ

∑
Ri j,0

l(Ri j , F (θ )i j ) + αrφ(θ ), (1)

Among them, l(x) denotes the loss function, e.g., square loss. θ is the parameter set, and F (θ )
is a model to fit the ground-truth rating matrix R. φ(θ ) is the regularization term to control the

model complexity. The parameter αr is to trade-off the loss term and regularization term. In

literatures, the fitting model F (θ ) is usually designed under the assumption that rating matrix is

low-rank (e.g., matrix factorization-based collaborative filtering) [1, 12, 16, 29]. More specifically,

the observed rating R is approximated by the inner product of two low-rank latent factors U and

V with Ri j = Ui
⊤Vj , where Ui and Vj indicate the latent representation for user i and item j

respectively.

These methods mentioned above are founded on a common assumption that rating data is

missing at random (MAR). Thus those recommendation methods are modeled solely depend on

observed rating data, as illustrated in (1). However, according to recent research on statistical

theory of missing data and the reported evidences in collaborative filtering [21, 24], the data

in recommendation system is missing not at random (MNAR). Compared with recommendation

methods with MAR data, methods with MNAR data model not only the observed rating matrix R,
but the indicator matrix X. Similarly, the recommendation model can be formulated as

min

θ

∑
Ri j,0

l(Ri j , F (θ )i j ) +
∑
Xi j

l(Xi j , P(θ )i j ) + αrφ(θ ), (2)

where the first term indicates the loss of rating prediction, same with (1). The second term is usually

modeled by the likelihood of generating X. Common variables θ can model the dependency between

missing data and observed rating data. In literature, Marlin et al. [25] considered non-random

missing data mechanism to multinomial mixture model. Hernandez-lobato et al. [15] presented

the first practical implementation of a probabilistic matrix factorization model for MNAR data.

Bence et al. [6] proposed an extended Bayesian probabilistic matrix factorization method, which

integrates a flexible MNAR model with proper prior for the missing data. However, those methods

construct missing mechanisms in a sophisticated and highly complex strategy, which leads to

time-consuming parameter estimation. Recently, Ohsawa et al. [28] extended probabilistic matrix
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factorization to take into account the dependency between why a user consumes an item and how

that affects the rating behavior. These methods are pretty good to estimate the global structure

where each user is simultaneously related to most or all items. However, at stated in [35], they can

not work well especially when the items have various types and users have diverse interests.

2.2 LRMA with Local Perspective
To capture the local structure of the large-scale rating matrix, researchers attempted to introduce

Local Low-Rank Matrix Approximation (Local LRMA) method. Its main idea is to divide the original

large-scale rating matrix into several submatrices, so that the strong local associations can be

exploited. To sufficiently reduce the approximation error, the original matrix is partitioned several

times to get a set of approximated matrices {R(1),R(2), · · · ,R(K )}, and reconstructed with them and

the corresponding weights in an ensemble manner as follows.

min

θ

∑
Ri j,0

l(Ri j ,
1∑K

τ=1
W(τ )

i j

K∑
τ=1

W(τ )
i j F (τ )(θ )i j ) (3)

where F (τ )(θ ) is the τ -th model to fit the rating information, W(τ )
i j indicates the weight for the i-th

user to the j-th item in the τ -th approximation.

In literature, a simple way is random selecting users/items to form submatrices [23], but it can

not guarantee that the users in the same submatrix share the common interests and the items have

the similar categories. To address this problem, several works [4, 11, 17, 33, 36] focused on how to

partition matrix well. Lee et al. [17] proposed a local low-rank matrix approximation (LLORMA)

method using a kernel smoothing nearest neighbors method to acquire local structure and represent

rating matrix as a weighted sum of several local low-rank matrices. WEMAREC [11] employs

Bregman co-clustering techniques to obtain several submatrices and adopts a rating distribution

based weighting strategy to approximate original rating. bACCAMS [4] uses Bayesian co-clustering

for local structure detection and build concise model for matrix approximation in a additive strategy.

Wang et al. [33] presents a Bayesian formulation of local matrix factorization which integrates

probabilistic matrix factorization with clustering (topic) detection in a joint model and acquire high

recommendation accuracy. Zhang et al. [36] proposed a heuristic anchor-point selecting method to

enhance local low-rank matrix approximation. However, these methods assign each user/item to

only one single cluster, which make them can not well handle the users with multiple interests.

Thus, researchers introduced an affiliation score to characterize the strength between user/item

and the corresponding submatrices [35, 37].

2.3 LRMA with Local and Global Perspectives
Although the Local LRMA obtained promising results on rating prediction, it may suffer from

insufficient data in each submatrix because each submatrix only covers partial rating information

for a particular user or item, which makes LRMA overemphasize the local structure but ignore the

global information. Actually, before Local LRMA, Global LRMA is one of the most popular methods

in collaborative filtering, which can effectively mine overall structures by exploiting the whole

ratings set.

Recently, researchers integrated Global LRMA and Local LRMA [9, 10, 19], called as Global-local

LRMA. Chen et al. [9] exploit global information to unify global latent factors and local latent

factors of users and items by a Gaussian mixture model to improve recommendation accuracy.

Chen et al. [10] demonstrates an extension of clustering-based matrix approximation method,

where a previous-trained standard MA model is introduced to capture global information, and local

models are combined with global information for further prediction. It is a good way to unify local
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Fig. 2. The Bayesian graphical model of the proposed ALoMA.

associations in user-item submatrices and common associations among all users/items to improve

the recommendation performance. However, like Local LRMA methods, these Global-local LRMA

methods have to fix the latent space size when determining the user/item factors.

As mentioned in [18], adopting a fixed latent space size for all users and items can not perfectly

model the internal structures of whole rating matrix, which may result in imperfect approximation

as well as degraded prediction accuracy. Consequently, Li et al. [18] approximated the whole rating

matrix with a mixture of global low-rank matrix approximation models (MRMA) with different

ranks. However, MRMA has higher computational complexity because it has to try different ranks

in a large range.

3 THE PROPOSED ALOMAMETHOD
Given a rating matrix with n users andm items, our goal has three facets. The first one is to identify

submatrices from rating matrix, where the number of submatrices can be adaptively determined

rather than predefined. The second is to adaptively learn the user/item factors in an optimal latent

space from each submatrix by integrating the global users/items information, and the third one is

that the missing mechanism with missing not at random assumption is adopted to build a unified

Bayesian matrix factorization model for the indicator values and observed rating scores in each

submatrix. To reach this goal, we propose an adaptive local low-rank matrix approximation method

(ALoMA) with the aid of non-parametric Bayesian graphical model, as shown in Fig. 2.

InALoMA, ci and dj denote the i-th user’s cluster assignment and j-th item’s cluster assignment

respectively. The ij-th rating entry (Ri j ) will be assigned to the (cd)-th submatrix R(cd )
i j if the i-th

user belongs to c-th cluster (i.e. c = ci ) and the j-th item belongs to d-th cluster (i.e. d = dj ). For
each rating submatrix R(cd ) ∈ Rnc×nd , we introduce an indicator matrix X(cd ) ∈ {0, 1}nc×nd to denote

whether the rating is missing, where nc is the number of users in user cluster c and nd is the

number of items in item cluster d . U(cd )
i and V(cd )

j are the corresponding latent user/item factors

in the (cd)-th submatrix. Λ(cd )
l controls the generation procedure for the l-th component of the

submatrix-specific latent factors. H(cd )
i j captures the importance of each latent feature on every

rating entry, which is modeled by G(cd )
i and Z(cd )

j . Among them, G(cd )
i denotes what features of

items a user seeks to enjoy, and Z(cd )
j denotes what features an item emphasizes, which are learnt

from the indicator matrix X(cd )
. Besides, bui and bvj indicate the user/item bias to capture the

global user/item information. All variables can be generated according to their distributions and

more detail will be given in next subsections.
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3.1 Generating Rating Submatrix
In order to capture local structure from large-scale rating matrix R, our primary goal is to divide

users/items into an appropriate number of subgroups, so that a user-cluster can be taken as

a collection of users that express similar preferences over the items, and an item-cluster as a

collection of items that have similar properties attracting users. To accomplish this, we apply

Chinese Restaurant Process (CRP) [13] on rating matrix to co-cluster the rows and columns, which

simultaneously allow dynamic allocation of statistical capacity among clusters. More specifically, the

cluster assignments c = {ci }ni=1
with ci ∈ {1, ...,kn} for user i and d = {dj }mj=1

with dj ∈ {1, ...,km}

for item j can be generated as follows.

ci ∼ CRP(γc ) and dj ∼ CRP(γd ) (4)

CRP is adopted because it can be taken as a Dirichlet process based nonparametric Bayesian

model, which allows for an unrestricted number of clusters, i.e., the number of user clusters kn and

the number of item clusters km can be adaptively allocated rather than being predefined. Specifically,

the first user is assigned to the first cluster. The i-th user will be handled in two cases. In one hand,

it may be assigned to an existing cluster c with probability proportional to the number of users

already in cluster c . On the other hand, it may create a new cluster with probability proportional to

the scaling parameter γc :

p(ci = c |γc ) =
{
nc/(n − 1 + γc ) if nc > 0

γc/(n − 1 + γc ) if nc = 0

(5)

An analogous expression is available for items with scaling parameterγd . Note thatγc andγd control
the probability of creating new cluster. Larger value will encourage larger number of clusters. In

this case, the users belonging to the c-th cluster and items belonging to the d-th cluster form a

subgroup (cd). Then, the whole rating matrix will be divided into kn × km submatrices and each

submatrix is denoted as R(cd )
.

3.2 Generating Local Latent Factor in Optimal Space
As the existing local LRMA methods, once having the submatrices, we can determine the local

latent user/item factors. Different from the existing models, ALoMA can adaptively determine the

rank of each submatrix. This ability is necessary because different submatrices may have different

ranks so that the local latent user/item factors can be mined in an optimal latent space. For instance,

users or items in more sparse submatrix should be of a lower rank and be of a higher rank in a

more dense submatrix.

For each submatrix R(cd )
, let U(cd )

and V(cd )
indicate the latent user/item factors and can be

characterized as

U(cd ) = [U(cd )
1
, . . . ,U(cd )

i , . . . ,U(cd )
n(cd )

] ∈ Rr
(cd )×n(cd ),

V(cd ) = [V(cd )
1
, . . . ,V(cd )

j , . . . ,V(cd )
m(cd )

] ∈ Rr
(cd )×m(cd ) .

where n(cd ) andm(cd )
be the number of users and items that the (cd)-th submatrix has, r (cd ) be the

optimal rank of this submatrix. Similar to the rating model of PMF, the l-th component of latent

vector U(cd )
i and V(cd )

j is modeled via a Gaussian distribution with mean 0 and variance λ(cd )l as

follows.

U(cd )
l i ∼ N(0,λ(cd )l ) V(cd )

l j ∼ N(0,λ(cd )l ),

λ(cd )l ∼ IG(ηa ,ηb ).
(6)
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The latent features are assumed independent to each other. In this case, U(cd )
i and V(cd )

j can be

modeled with the following Gaussian distribution

U(cd )
i ∼

r(cd )∏
l=1

N(0,λ(cd )l ) = N(0,Λ(cd ))

V(cd )
j ∼

r(cd )∏
l=1

N(0,λ(cd )l ) = N(0,Λ(cd ))

(7)

where Λ(cd ) = diaд(λ(cd )) ∈ Rr
(cd )×r (cd )

is the covariance matrix of latent factors, which is a diagonal

matrix whose l-th diagonal element is λ(cd )l . To determine the optimal rank r (cd ), we take advantage
of the automatic relevance determination (ARD) techniques [27, 34]. Recall that each latent feature

(l ) is assumed having zero mean, thus, the feature with small variance (λ(cd )l ) will approach to zero.

In this case, the latent features with small variance will not be used to characterize users and items.

In other words, only the latent features with larger variance (empirically greater than 0.05) are

useful to form the latent space. The rationale behind this is that, with a zero mean in the prior for

this column, a very small variance indicates that this column will shrink to zero and hence will not

contribute to explaining the data.

3.3 Estimating the Importance of Latent Feature with Missing Mechanisms
In the existing Local LRMA models, the latent features are determined only from the observed data

because they assume that the ratings are missing at random. However, this assumption is violated

in recommendation systems [6, 15, 24, 25, 28], i.e., the ratings are missing not at random.

In order to model the missing mechanism of the rating submatrix, we introduce the indicator

X(cd )
for each rating submatrix R(cd )

, where X(cd )
i j = 1 indicates that the rating R(cd )

i j is observed,

otherwise X(cd )
i j = 0. As demonstrated in [28], the indicator entry X(cd )

i j can be modeled with the aid

of user’s attention and item’s attraction. This is based on the underlying fact, a user consumes an

item with some probability that depends on what factors the user seeks to enjoy (i.e., the attention

of the user) and what factors the item emphasizes (i.e., attraction of the item).

Let G(cd )
i ∈ Rr

(cd )
(1 ≤ i ≤ n(cd )) and Z(cd )

j ∈ Rr
(cd )×m(cd )

(1 ≤ j ≤ m(cd )
) be the i-th user’s attention

vector and j-th item’s attraction vector in the cd-th submatrix. Since the indicator entry X(cd )
i j

denotes whether R(cd )
i j is observed or not, we adopt Bernoulli distribution to characterize it, i.e.,

X(cd )
i j ∼ B(д(G(cd )

i
⊤

Z(cd )
j )) (8)

where B(p) is the probability density function of the Bernoulli distribution with mean p. The

function д(x) is the logistic function д(x) = 1

1+exp(−x ) and bounds the rang of G(cd )
i

⊤
Z(cd )
j with [0, 1].

Meanwhile, the elements of G(cd )
i and Z(cd )

j independently follow Beta distribution

G(cd )
i ∼

r (cd )∏
l=1

Be(G(cd )
l i |aд ,bд) Z(cd )

j ∼

r (cd )∏
l=1

Be(Z(cd )
l j |az ,bz ) (9)

Here Beta distribution is adopted due to that Beta distribution is the conjugate prior of Bernoulli
distribution, which enables the sampling-based algorithmmore efficient. Following this distribution,

the element G(cd )
l i has the support on [0, 1], and all elements in G(cd )

i are independent to each other,

so that each user can simultaneously focus on multiple aspects. Similarly, the element Z(cd )
l j has
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the support on [0, 1], and all elements in Z(cd )
j are independent to each other, so that each item can

simultaneously attracts users from several aspects.

Then for each pair of user-item, we can estimate the importance of each latent feature with

user’s attention and item’s attraction as follows.

H(cd )
i j =

1

G(cd )
i

⊤
Z(cd )
j

diaд(G(cd )
1i Z(cd )

1j , · · · ,G
(cd )
r (cd )i

Z(cd )
r (cd ) j

) ∈ Rr
(cd )×r (cd )

(10)

The element G(cd )
l i Z(cd )

l j takes a large value when both user’s attention and items’ attraction on the

l-th latent feature have large values. The coefficient G(cd )
i

⊤
Z(cd )
j guarantees that the trace of H(cd )

i j
is 1.

3.4 Modeling Observed Ratings
Except for focusing on the local structure of rating matrix, we take into account the global informa-

tion among all users and items. Specifically, we introduce the user/item bias to characterize the

global user preference and item popularity. Let bui and bvj denote the i-th user bias and j-th item

bias respectively, and they are assumed following the Gaussian distribution with zero mean, i.e.,

bui ∼ N(bui |0,σu ) and bvj ∼ N(bvj |0,σv )

σu ∼ IG(ua ,ub ) and σv ∼ IG(va ,vb )
(11)

where σu and σv are user variance and item variance respectively. The Inverse Gamma distribution
for variance is used here for generating a full Bayesian approach.

Following probabilistic matrix factorization, each observed rating belonging to (cd)-th submatrix,

R(cd )
i j is assumed following Gaussian distribution. Instead of mean U(cd )

i
⊤

V(cd )
j , we model R(cd )

i j with

mean U(cd )
i

⊤
H(cd )
i j V(cd )

j + bui + bvj and variance σ (cd )
as follows.

R(cd )
i j ∼ N(U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd ))

σ (cd ) ∼ IG(ζa , ζb ).
(12)

whereH(cd )
i j is a diagonalmatrix, and each diagonal entry indicates the importance of the correspond-

ing latent feature. It will back to traditional PMF for each submatrix when H(cd )
i j = 1

r (cd )
Ir (cd )×r (cd ) .

Similar to user/item bias, the Inverse Gamma distribution is enforced on variance σ (cd )
for full

Bayesian approach.

3.5 ALoMA Model
The proposed ALoMA model, as shown in Fig. 2, integrates the above four components, i.e.,

generating the optimal number of submatrices, determining the local user/item factors in optimal

latent space, estimating the importance of latent features and modeling the observed ratings. To

form a full Bayesian approach, all parameters Θ = {ηa ,ηb , ζa , ζb ,σu ,σv ,γc ,γd ,σ
(cd ),aд ,bд ,az ,bz }

are generated via the corresponding distributions which are conjugate to the likelihood terms. The

whole generative process of ALoMA is summarized in Algorithm 1.

Our goal is to maximize the posterior of all latent variables, according to Bayesian rule, which

can be implemented by maximizing the joint probability of observed data and all latent variables.
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ALGORITHM 1: ALoMA Generative Process

1. For each hyperparameter:

a) Draw hyperparameters {ηa ,ηb , ζa , ζb ,ua ,ub ,va ,vb , ζa , ζb }
2. For each variance:

a). Draw σu ∼ IG(ua ,ub ), σv ∼ IG(va ,vb )
3. For each user i:

a) Draw user cluster ci ∼ CRP(γc )
b) Draw user bais bui ∼ N(0,σu )

3. For each item j:
a) Draw item cluster dj ∼ CRP(γd )
b) Draw item bais bvj ∼ N(0,σv )

4. For each submatrix R(cd )
:

a). Draw σ (cd ) ∼ IG(ζa , ζb )
b) For each latent dimension l :

i). Draw λ(cd )l ∼ IG(ηa ,ηb )

c) For each user i in subgroup (cd)

i). Draw latent user factors U(cd )
i ∼ N(0,Λ(cd ))

ii). Draw user attention G(cd )
i ∼

∏r(cd )
l=1

Be(G(cd )
l i |aд ,bд)

d) For each item j in subgroup (cd)

i). Draw latent item factors V(cd )
j ∼ N(0,Λ(cd ))

ii). Draw item attraction Z(cd )
j ∼

∏r(cd )
l=1

Be(Z(cd )
l j |az ,bz )

e) For each element in indicator submatrix X(cd )

i). Draw boolean variable X(cd )
i j ∼ B(д(G(cd )

i
⊤

Z(cd )
j ))

f) For each observed rating assigned by user i to item j in submatrix R(cd )
:

i). Draw the rating R(cd )
i j ∼ N(U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd ))

Following the generative process of ALoMA model, the joint probability can be expressed as:

p(U(cd ),V(cd ),G(cd ),Z(cd ), c, d, bu, bv,Λ(cd ),R,X|Θ)

=
∏
cd

[ ∏
R(cd )
i j ,0

N(R(cd )
i j |U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd ))
∏

X(cd )
i j

B(X(cd )
i j |д(G(cd )

i
⊤

Z(cd )
j ))

]

×
∏
cd

[ n(cd )∏
i=1

N(U(cd )
i |0,Λ(cd ))

m(cd )∏
j=1

N(V(cd )
j |0,Λ(cd ))

r (cd )∏
l=1

IG(Λ(cd )
l |ηa ,ηb )]

]
×

∏
cd

[ n(cd )∏
i=1

r (cd )∏
l=1

Be(G(cd )
l i |aд ,bд)

m(cd )∏
j=1

r (cd )∏
l=1

Be(Z(cd )
l j |az ,bz )

]
×

n∏
i=1

CRP(ci |γc )
m∏
j=1

CRP(dj |γd )

×

n∏
i=1

N(bui |0,σ 2

u )

m∏
j=1

N(bvj |0,σ 2

v ).

(13)

where the first term is to characterize the observed rating and indicator matrix via (12) and (8), the

second term aims to determine the submatrix-specific latent user/item factors and the corresponding

latent feature variance and adaptively identify the optimal number of user/item clusters, the third
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term is to capture user attention and item attraction for each factors, the forth term is to assign

users and items to clusters, and the last term is to mine the global user and item biases so that the

observed rating could be approximated more accurately.

3.6 Theoretical Analysis
In this subsection, we will theoretically analyze the generalization error bounds of the proposed

ALoMA model. Here, the mean squared error (MSE), equivalent to Frobenius norm, between the

ground truth ratings (R) and the predicated ratings (R̂) with n users andm items, is used as the

metric to establish the error bound of the proposed method, i.e.

E(R̂) =
1

nm

∑
R̂i j

(Ri j − R̂i j )2 =
1

nm
| |R − R̂| |F

According to the generative process of ALoMA, it can be seen that the whole rating matrix is

approximated by several submatrices, thus, we firstly prove the error bound of each submatrix. To

make the theorems more convincing, we make several standard assumptions: (1) each submatrix

R(cd )
is incoherent[8, 32], (2) each submatrix is well-conditioned[8], and (3) the number of users is

larger than items in each submatrix (n(cd ) ≥ m(cd )
). As shown in Theorem 7 in [7], a theoretical

bound to matrix completion problem is existing as follows.

Theorem 3.1. If submatrixR(cd ) is well-conditioned and incoherent such that |Ω | ≥ Cµ2m(cd )r (cd )loд6m(cd ),
then with high probability 1 −

3

√
m(cd ), R(cd ) satisfies

| |R(cd ) − R̂(cd ) | |F ≤ 4ε

√
(2 + ρ)m(cd )

ρ
+ 2ε

where ρ = |R(cd ) |

n(cd )m(cd ) , ε = max(R̂) − min(R̂) and Ω is the set of observed ratings.

This theorem indicates that the prediction error of each submatrix R̂(cd )
is bounded. Then, we can

analyze the generalization error bound of the proposed ALoMA method on whole rating matrix

via the following theorem.

Theorem 3.2. If each submatrix satisfied theorem 3.1, then with high probability 1− δ , R̂ is divided
into kn × km submatrices satisfies

P
(
| |R − R̂| |F ≤ 4εkm

√
(2 + ρ)nkn

ρ
+ 2εknkm

)
≥ 1 − δ

where δ = 3

√
2nknk

2

m .

Proof. According to the triangle inequality of Frobenius norm, we have

| |R − R̂| |F ≤
∑
(cd )

| |R(cd ) − R̂(cd ) | |F .

Applying theorem 3.1 on each submatrix, and using Cauchy Inequality∑
(cd )

√
m(cd ) ≤

√
knkm

∑
(cd )

m(cd ) ≤ kn
√
mkm

we can obtain the error bound of R̂ as stated above. The adjustments confidence level
3

√
2nknk

2

m is

obtained using the union bound. □
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Meanwhile, we show that the approximation guarantee of the whole rating matrix based on

partial observed values via the following theorem.

Theorem 3.3. With high probability 1 − δ over the set of observed entities Ω, for predictive rating
matrix R ∈ Rn×m and δ > 0, we have that R̂ satisfies

P

(
E(R̂) − EΩ(R̂) ≤

√
− logδ

2|Ω |
ε2

)
≥ 1 − δ

Proof. Based on Hoeffding Inequality

P(E(R̂) − EΩ(R̂) ≥ ϵ) ≤ exp(−2|Ω |2ϵ2/
∑
R̂i j

ε2) = exp(−2|Ω |ϵ2/ε2),

and setting ϵ =
√

− log δ
2 |Ω |

ε2
, we obtain the approximate guarantee of ALoMA as stated above. □

4 ALOMAMODEL INFERENCE
In ALoMA model, we have to learn the variables including user/item cluster assignments ci and dj
for submatrix R(cd )

determination, latent user factors U(cd )
, item factors V(cd )

, the attention of users

G(cd )
and the attraction of items Z(cd )

in each submatrix, global user/item bias bu and bv in the

whole rating matrix, and several corresponding variances σu ,σv ,σ
(cd ),Λ(cd )

. It is difficult to directly

maximize the joint probability due to the complex coupling of variables and hyper-parameters.

In this section, we make use of Gibbs sampling algorithm [3] for both inference and variable

updating. We alternatively infer user/item cluster assignment, update the latent user/item factors,

user attention, item attraction and global user/item bias and infer the corresponding parameters

until the algorithm converges.

4.1 Inferring the User/item Cluster Assignment
For sampling the user cluster membership, we need to specify the posterior probability of the user

cluster assignment. We introduce a sampling for the discrete cluster membership. Specifically, the

conditional probability for each user cluster c consists of three parts, the CRP prior, the likelihood

of the indicator values and the likelihood of the observed ratings.

Fixing all user/item local latent factors, user attention, item attraction, global bias and variances

(all these variables are denoted as rest ), we can derive the conditional distribution p(ci = c |rest) for
each user (i.e., the conditional probability that i-th user belongs to the existing cluster c) as below

p(ci = c |rest) = p(ci = c |R,X,U,V,G,Z, bui, bv, d,γc ,γd ,σ
(cd ))

∝ CRP(ci = c |γc ) ×
∏
d

∏
X(cd )
i j

B(X(cd )
i j |д(G(cd )

i
⊤

Z(cd )
j ))

×
∏
d

∏
R(cd )
i j ,0

N(R(cd )
i j |U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd ))

∝
nc

γc + n − 1

×
∏
d

∏
X(cd )
i j

[д(G(cd )
i

⊤
Z(cd )
j )]

X(cd )
i j [1 − д(G(cd )

i
⊤

Z(cd )
j )]

1−X(cd )
i j

×
∏
d

∏
R(cd )
i j ,0

1√
2πσ (cd )

exp

(
−

1

2σ (cd )
(e(cd )i j )2

)
(14)
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Meanwhile, the probability that the i-th user assigned to a new user cluster cn is

p(ci = cn )|rest) ∝
γc

γc + n − 1

×
∏
d

∏
X(cnd )
i j

[д(G(cnd )
i

⊤
Z(cnd )
j )]

X(cnd )
i j [1 − д(G(cnd )

i
⊤

Z(cnd )
j )]

1−X(cnd )
i j

×
∏
d

∏
R(cnd )
i j ,0

1√
2πσ (cnd )

exp

(
−

1

2σ (cnd )
(e(cnd )i j )2

) (15)

where e(cd )i j = R(cd )
i j −U(cd )

i
⊤

H(cd )
i j V(cd )

j −bui −bvj indicates the approximation error for each observed

rating, γc is a parameter to control the probability that creates new cluster, nc denotes the number

of users assigned to the cluster c , n is the total number of users.

With the similar strategy in (14) and (15), the posterior distribution for an existing item cluster d
and a new cluster dn can be approximated by

p(dj = d |rest) ∝
nd

γd +m − 1

×
∏
c

∏
R(cd )
i j ,0

1√
2πσ (cd )

exp

(
−

1

2σ (cd )
(e(cd )i j )2

)
×

∏
c

∏
X(cd )
i j

[д(G(cd )
i

⊤
Z(cd )
j )]

X(cd )
i j [1 − д(G(cd )

i
⊤

Z(cd )
j )]

1−X(cd )
i j

(16)

and

p(dj = dn )|rest) ∝
γd

γd +m − 1

×
∏
c

∏
R(cdn )

i j ,0

1√
2πσ (cdn )

exp

(
−

1

2σ (cdn )
(e(cdn )i j )2

)
×

∏
c

∏
X(cdn )

i j

[д(G(cdn )
i

⊤
Z(cdn )
j )]

X(cdn )

i j [1 − д(G(cdn )
i

⊤
Z(cdn )
j )]

1−X(cdn )

i j

(17)

4.2 Updating Local User/Item Latent Factor
For each submatrix, fixing the global bias, user attention, item attraction and variances (all these

variables are denoted as rest ), we can update the local user/item latent factors.

Due to the use of conjugate priors for the parameters and hyperparameters in the ALoMA, the
conditional distribution over the local user latent vector U(cd )

i is a Gaussian distribution,

p(U(cd )
i |rest) = p(U(c)

i |R(cd ),V(cd ),G(cd ),Z(cd ), bui , bv, d,Λ(cd ),σ (cd ))

∝
∏

R(cd )
i j ,0

N(R(cd )
i j |U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd )) × N(U(cd )
i |0,Λ(cd ))

∝ N(U(cd )
i |µ∗u , [Λ

∗
u ]

−1)

(18)

where

Λ∗
u =

1

σ (cd )

∑
R(cd )
i j ,0

H(cd )
i j V(cd )

j V(cd )
j

⊤
H(cd )
i j

⊤
+ Λ(cd )

µ∗u = [Λ∗
u ]

−1
1

σ (cd )

∑
R(cd )
i j ,0

(R(cd )
i j − bui − bvj )H

(cd )
i j V(cd )

j

(19)
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Note that the conditional distribution over the user latent feature matrix U(cd )
factorizes into the

product of conditional distributions over the individual user feature vectors:

p(U(cd )) =

n(cd )∏
i=1

N(U(cd )
i |0,Λ(cd )).

Therefore we can easily speed up the sampler by sampling from these conditional distributions

in parallel. The speedup could be substantial, particularly when the number of users is large in

submatrix. Meanwhile, the sampler in different submatrix can be processed in parallel.

The local item latent factor {V(cd )
j } can be learned similarly, which are omitted here due to page

limitation.

4.3 Updating User Attention and Item Attraction
For each indicator submatrix X(cd )

, fixing the local user latent factors U(cd )
, item factors V(cd )

, the

attraction of item Z(cd)
and global biases, we can derive the conditional probability of the l-th dim

attention of user G(cd )
l i via the user attention prior, the likelihood of the indicator values and the

likelihood of the observed ratings.

p(G(cd )
l i |rest) = p(G(c)

l i |R(cd ),V(cd ),X(cd ),Z(cd ), bui , bv, d,σ (cd ),aд ,bд)

∝
∏

R(cd )
i j ,0

N(R(cd )
i j |U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd ))

×
∏

X(cd )
i j

B(X(cd )
i j |д(G(cd )

i
⊤

Z(cd )
j )) × Be(G(cd )

l i |aд ,bд)

=
∏

R(cd )
i j ,0

N(R(cd )
i j |U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd ))

× Be(G(cd )
l i |aд +

∑
X(cd )
i j

[
X(cd )
i j Z(cd )

l j

]
,bд + ncnd −

∑
X(cd )
i j

[
X(cd )
i j Z(cd )

l j

]
)

(20)

To efficiently approximate the conditional probability p(G(cd )
l i |rest), we replace Beta distribu-

tion Be(G(cd )
l i |āд , ¯bд) with an optimal Gaussian distribution N(G(cd )

l i |µ̂д , σ̂д). Note that āд = aд +∑
X(cd )
i j

[
X(cd )
i j Z(cd )

l j

]
and

¯bд = bд+ncnd−
∑

X(cd )
i j

[
X(cd )
i j Z(cd )

l j

]
. Here the variational inference is adopted to

find the optimal parameters (µ̂д , σ̂д), which can be implemented by minimizing the Kullback-Leibler

(KL) divergence between the true distribution (Be(G(cd )
l i |āд , ¯bд)) and the variational distribution (

N(G(cd )
l i |µд ,σд)) as follows.

arg min

µд,σд
KL[0,1]

(
N(G(cd )

l i |µд ,σд)| |Be(G
(cd )
l i |āд , ¯bд)

)
≜ min

µд,σд

∫
1

0

N(G(cd )
l i |µд ,σд) log

N(G(cd )
l i |µд ,σд)

Be(G(cd )
l i |āд , ¯bд)

dG(cd )
l i

which is equal to maximizing an Evidence Lower BOund (L):

arg max

µд,σд
L(G(cd )

l i ) = max

µд,σд
EN[logN(G(cd )

l i |µд ,σд)] − EBe [logBe(G(cd )
l i |āд , ¯bд)]. (21)

In this case, the optimal variational parameters can be obgtained by iteratively updating µд and σд
with the aid of stochastic gradient ascent technique. In each iteration, we calculate the gradient of
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L over µд and σд via

∂L

∂µд
= −

µд

σ 2

д
+ µд(

Γ(āд + ¯bд)

Γ(āд)Γ(¯bд)
G(cd )
l i

āд−1

(1 − G(cd )
l i )

¯bд−1

)

∂L

∂σд
= [µд(

Γ(āд + ¯bд)

Γ(āд)Γ(¯bд)
G(cd )
l i

āд−1

(1 − G(cd )
l i )

¯bд−1

) − σд]
−1

(22)

Then these variables can be updated as follows.

µ
(τ+1)
д = µ

(τ )
д + ρ

(τ )∂L/∂µ
(τ )
д

σ
(τ+1)
д = σ

(τ )
д + ρ(τ )∂L/∂σ

(τ )
д

(23)

where τ is the iteration index and ρ(τ ) indicates the learning rate in τ -th iteration. Then the optimal

variables (µ̂д and σ̂д) will be obtained when the iterative processing converges. Consequently, the

conditional distribution over the l-th dim attention of user G(cd )
l i can be re-wirtten as

p(G(cd )
l i |rest) ∝

∏
R(cd )
i j ,0

N(R(cd )
i j |U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd )) × Be(G(cd )
l i |āд , ¯bд)

∝
∏

R(cd )
i j ,0

N(R(cd )
i j |U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd )) × N(G(cd )
l i |µ̂д , σ̂д)

∝ N(G(cd )
l i |µ∗д ,σ

∗
д )

(24)

where

σ ∗
д =

1

σ (cd )

∑
R(cd )
i j ,0

(
U(cd )
l i Z(cd )

l j V(cd )
l j

)
2

+ σ̂д

µ∗д = [σ ∗
д ]

−1

[ µ̂д
σ̂д
+

1

σ (cd )

∑
R(cd )
i j ,0

(R(cd )
i j − bui − bvj )U

(cd )
l i Z(cd )

l j V(cd )
l j

] (25)

Similar to local latent factors, we can easily speed up the sampler by sampling these conditional

distributions for different users in parallel. Sampling the attraction of item Z(cd )
can be done by an

analogous sampler, which are omitted here due to page limitation.

4.4 Updating Global User/Item Bias
The conditional distribution over the global user bias bu is a Gaussian distribution by giving other

variables

p(bui |rest) = p(bui |R,X,U,V,G,Z, bv,σ (cd ),σu )

∝
∏
cd

m∏
j=1

[N(R(cd )
i j |U(cd )

i
⊤

H(cd )
i j V(cd )

j + bui + bvj ,σ (cd ))]
X(cd )
i j × N(bui |0,σu )

∝ N(µ∗u ,σ
∗
u )

(26)

with

σ ∗
u =

1

σu
+

∑
cd

I(cd )i [
1

σ (cd )

m∑
j=1

X(cd )
i j ]

µ∗u =
1

σ ∗
u

∑
cd

I(cd )i [σ (cd )
m∑
j=1

X(cd )
i j (e(cd )i j + bvj )]

(27)

ACM Transactions on Information Systems, Vol. *, No. *, Article *. Publication date: August 2018.



*:16 H. Liu et al.

where I(cd )i indicates whether user i belongs to subgroup (cd). The updating process for global item
bias bv is analogous to bu.

4.5 Inferring Variance
To generate a full Bayesian approach, four variances {Λ(cd ),σ (cd ),σu ,σv } (about local latent factor,
rating in submatrix, global user/item bias respectively) follow the Inverse Gamma distribution. They
can be generated by the following conditional probability:

p(Λ(cd )
l |rest) ∝ IG(Λ(cd )

l |η∗a ,η
∗
b )

p(σ (cd ) |rest) ∝ IG(σ (cd ) |ζ ∗a , ζ
∗
b )

p(σu |rest) ∝ IG(σu |u
∗
a ,u

∗
b )

p(σv |rest) ∝ IG(σv |v
∗
a ,v

∗
b )

(28)

with

η∗a = ηa +
nc + nd

2

, η∗b = ηb +
[∑
i ∈c

I(c)i (U(cd )
l i )

2

+
∑
j ∈d

I(d )j (V(cd )
l j )

2]
/2,

ζ ∗a = ζa +
n(cd )

2

, ζ ∗b = ζb +
[ ∑
<i, j>∈(cd )

I(cd )i j (e(cd )i j )
2]
/2,

u∗a = ua +
n

2

, u∗b = ub +

∑n
i=1

bui 2

2

,

v∗a = va +
m

2

, v∗b = vb +

∑m
j=1

bvj 2

2

.

where nc is the number of users in cluster c , nd is the number of items in cluster d and n(cd )
is the number of observed ratings in submatrix R(cd )

. I(c)i and I(d )j are indicator function, I(c)i = 1

means user i belongs to user cluster c and I(c)i = 0 otherwise. The overall Gibbs sampling learning

algorithm for ALoMA model is summarized in Algorithm 2.

After obtaining the above variables, the unknown rating can be predicted via

p(R̂(cd )
i j ) ∼

1

T − S

T∑
t=S

N(µ(t ),
(
σ (cd ))(t )), (29)

where µ(t ) =
(
(U(cd )

i )
(t ))⊤

(H(cd )
i j )

(t )
(V(cd )

j )
(t )
+ bu(t )i + bv(t )j . t is the iteration index and T is the total

number of iterations. In experiments, the top S (e.g., S = 100) iterations are taken as bun-in period.

4.6 Computational Complexity Analysis
The overall iterative process will be performed until it converges. To efficiently implement the

learning process, the main part can be done in parallel.

In each iteration, updating global bias bui and bvj costs O(
∑
d (r

(cd ))2n
(cd )
i ) and O(

∑
c (r

(cd ))2n
(cd )
j ),

where n(cd )i is the number of items rated by the i-th user in (cd)-th submatrix, and r (cd ) is the rank
of the (cd)-th submatrix which contains nc users and nd items. The running time for updating user

cluster assignment ci in (14) and (15) is O
( ∑

d (r
(cd ))2(n

(cd )
i + ncnd )

)
.
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ALGORITHM 2: Sampling Process for ALoMA

Input: Rating matrix R with n users andm items, parameter γc and γd in CRP, parameters {η, ζ ,u,v} in
Inverse Gamma distribution, parameters {aд ,bд ,az ,bz } for Beta distribution, ARD variance threshold ϵλ
while sampler not converged do

for each user i do
Sample user bias bui by (26) and user assignment ci by (14) or (15);

end for
for each item j do

Sample item bias bvj and item assignment dj by (16) or (17);

end for
for each subgroup (cd) do

for each user i in subgroup (cd) do
Sample the attention of user G(cd )

l i by (20) for each dimension;

Sample latent user factor U(cd )
i by (18);

end for
for each item j in subgroup (cd) do

Sample the attraction of item Z(cd )
l j for each dimension;

Sample latent item factor V(cd )
j ;

end for
end for
for all variances do

Sample variances σ (cd ),Λ(cd ),σu and σv by (28);

end for
Reduce certain dimension if corresponding ARD variance is less than the predefined threshold ϵλ

end while
Output: stable value of U(cd ),V(cd )

, G(cd ),Z(cd )
for each subgroup, bu and bv.

The computational complexity for updating U(cd )
i in (18) and G(cd )

i in (20) are O
(
(r (cd ))3n

(cd )
i +

(r (cd ))3
)
and O

(
r (cd )(n

(cd )
i + ncnd )

)
respectively. Then the worst computational complexity for up-

dating variables related to one user is

CUI = max

{i,(cd )}

(
(r (cd ))3(n

(cd )
i +1)+r (cd )(n

(cd )
i +ncnd )

)
+max

i

(∑
d

(r (cd ))2(n
(cd )
i +ncnd )+

∑
d

(r (cd ))2n
(cd )
i

)
(30)

Similarity, the worst complexity for updating the variables related to one item is

CIJ = max

{j,(cd )}

(
(r (cd ))3(n

(cd )
j +1)+r (cd )(n

(cd )
j +ncnd )

)
+max

j

(∑
c
(r (cd ))2(n

(cd )
j +ncnd )+

∑
c
(r (cd ))2n

(cd )
j

)
(31)

Consequently, the overall cost of inferring process with T iterations is O
(
T (nCUI +mCIJ)

)
.

Obviously, variables related to each user or item can be updated in parallel on multicores since the

samplers related to users and items are independent with each other, and the total computational

complexity is linearly scalable to the number of users and items, thus, it is practical for handling

large-scale dataset.

5 EXPERIMENTS
In this section, we evaluate the proposed ALoMA on six datasets by comparing with the state-of-

the-art methods in both rating prediction and ranking estimation tasks.
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5.1 Datasets
In experiments, six widely used datasets, Epinions, Douban, Dianping, Yelp, Movielens with 10M

ratings, and Netflix with 100M ratings are used to validate the recommendation performance. ML
10M and Netflix come from movie domain, Epinions belongs to online products domain, Dianping
includes various products (e.g., movies, books and music), and Yelp and Dianping are related to local
business domain. The ratings are ordinal values on the scale 1 to 5, more information is summarized

in Table 2 and described as follows.

Table 2. Summary of experimental datasets
Epinions Douban Dianping Yelp Movielens (10M) Netflix

♯ users (n) 49,290 129,490 147,918 9,489,338 71,567 480,189

♯ items (m) 139,738 58,541 11,123 156,638 10,681 17,770

♯ ratings (nR ) 664,824 16,830,839 2,149,675 4,731,265 10,000,054 100,000,000

RDensity 0.010% 0.222% 0.13% 0.00032% 1.31% 1.17%

n 5 288 44 30 936 5,627

m 14 130 23 0.5 143 208

n: the average number of users interested in each item

m: the average number of items rated by each user

RDensity: the percentage of non-zero entries in rating matrix

Epinions1: This dataset was collected in a 5-week crawl (November/December 2003) from the

Epinions.com website and published in [26]. In Epinions, users can write reviews and give ratings

to various products and also establish social relations with others.

Douban2: This dataset was crawled by [22] from Douban which provides user ratings, reviews

and recommendation services for movies, books and music. Users can assign 5-scale integer ratings

(from 1 to 5) to various products. It also provides Facebook-like social networking services, which

allows users to find their friends through their email accounts.

Dianping3: Li[20] crawled it from the real social network-based recommender system Dianping,

which is a leading local business search and review platform in China. The dataset contains business

items in Shanghai, a social network of users, and the ratings from April 2003 to November 2013.

Yelp4: This dataset was provided by the tenth round of the Yelp Dataset Challenge. Yelp is a local

business recommendation platform, where users can obtain reviews and recommendations of best

restaurants, shopping, nightlife, food, entertainment, things to do, services and more.

Movielens (10M)5: This dataset was collected by GroupLens Research and made available rating

data sets from the MovieLens web site, which is a web-based recommender system and virtual

community that recommends movies for its users to watch, based on their film preferences using

collaborative filtering of members’ movie ratings and movie reviews.

Netflix6: This dataset was provided from Netflix Prize competition, which was held by Netflix,

an online DVD-rental and video streaming service.

Among them, Netflix 100M and Yelp are two largest datasets in terms of rating size and user/item

size. The number of users and items in Yelp are 9,489,338 and 156,638 respectively. Netflix 100M has

the largest number of ratings (100,000,000). Moreover, in Yelp and Netflix, each item (i.e., business

on Yelp and movie on Netflix) is marked by one or more categores, and all items belong to 1240

1
http://www.trustlet.org/downloaded_epinions.html

2
https://www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban

3
https://i.cs.hku.hk/ hli2/data.html

4
https://www.yelp.com/dataset/challenge

5
https://grouplens.org/datasets/movielens/

6
https://www.netflixprize.com
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categories in Yelp and 18 categories in Netflix. For each dataset, we adopt 5-fold cross-validation

for training and testing. Specifically, each data set is randomly split into five equal-sized subsets,

four subsets are used as the training set and the left as testing set in each round. Five rounds are

conducted to ensure all subsets are tested, and the average test performance is recorded as the final

results.

5.2 Methodology
5.2.1 Baselines. We compare the performance of ALoMAwith three categories of recommenda-

tion methods including Global LRMA models, Local LRMA models and Global-local LRMA models.

The detailed settings about baselines are summarized as follows:

• Global LRMA: PMF [30] is a classical Global probabilistic matrix factorization-based collab-

orative filtering method, BPMF [30] is a global LRMA with a fully Bayesian probabilistic

matrix factorization. MRMA [18] is a global method with mixture-rank LRMA model. MF-

MNAR [15] is an extended PMF model by considering missing value mechanisms. GPMF [28]

incorporates a consumption-rating model into PMF via modeling the attention of users and

the attraction of items.

• Local LRMA: DFC [23], LLORMA [17] andWEMAREC [11] are ensemble two-phase Local low-

rank matrix approximation methods, which vary in matrix partition method. bACCAMS [4]

is a unified Bayesian local matrix approximation method.

• Global-local LRMA: SMA [19] finds out local entry sets globally that are harder to predict

than average, and adopt standard LRMA on subset except hard-predicted entries. MPMA [9]

exploits global information to unify global and local latent user/item factors by a Gaussian
mixture model. GLOMA [10] combines a previous-trained standard MA model with local

information for further prediction.

5.2.2 Metrics. In order to validate the prediction quality, two well-known evaluation metrics,

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), are adopted in experiments,

which are defined as:

RMSE =
√

1

|Ωt |

∑
(i, j )∈Ωt

(Ri j − R̂i j )2 MAE =
1

|Ωt |

∑
(i, j )∈Ωt

|Ri j − R̂i j |

where Ωt is the set of testing entries. Ri j is the true rating value that the i-th user gave to the j-th

item in testing set. R̂i j is the predicted value from different methods. The smaller RMSE and MAE

values indicate better recommendation results.

Apart from measuring rating prediction performance, several ranking metrics are adopted to

measure the item ranking accuracy of different algorithms. We use Recall (Re@K(i) for top K on

user i) and Precision (Pre@K(i) for top K on user i) as

Re@K(i) =
|R(i) ∩T (i)|

|T (i)|
Pre@K(i) =

|R(i) ∩T (i)|

K

where R(i) = {j ∈ Ω(i)|R ≥ 4} denotes the set of recommended items to user i . Ω(i) denotes the set
of items that user i has rated in testing set. T (i) = {j ∈ Ω(i)|R̂i j ≥ 4} denotes the set of favorite items

of user i . The larger Recall and Precision value, the better the ranking.

Meanwhile, the normalized discounted cumulative gain (NDCG) is adopted in our experiments,

which is defined as:

NDCG@K(i) =
DCG@K(i)

IDCG@K(i)

where DCG is defined as:

DCG@K(i) =
∑

j ∈Ω(i)

2
Ri j − 1

log
2
(j + 1)
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and IDCG is the DCG value with perfect ranking. The larger NDCG value indicates better ranking

performance.

5.2.3 Parameter setting. The optimal experimental settings for each method are determined

either by experiments or suggested by the authors. For ALoMA, the initial rank is set as 300 for

all datasets. The parameters (γc ,γd ) for automatically detecting the number of user/item clusters

are {γc = 4,γd = 6} for Epinions, {γc = 9,γd = 4} for Douban, {γc = 8,γd = 4} for Dianping,
{γc = 9,γd = 7} for Yelp, {γc = 8,γd = 5} for Movielens (10M) and {γc = 8,γd = 5} for Netflix,
respectively. The hyperparameters are set with ηa = 3,ηb = 0.5, ζa = 5, ζb = 0.4,ua = va = 5,ub =
vb = 0.3,aд = az = 0.5,bд = bz = 1 for six datasets. The predefined threshold for controlling the

variance in ARD is set as ϵλ = 0.005. The samples from the burn-in period (top 100 iterations) are

discarded.

5.3 Results and Discussion
In this subsection, we investigate the proposed model ALoMA from five facets. Firstly, a series of

experiments are conducted to demonstrate the effect of optimal rank in each submatrix. Secondly,

ALoMA is compared with three kinds of matrix approximation-based recommendation methods

(Global LRMA, Local LRMA and Global-local LRMA) from three views including All Users, Near-
cold-start Users and Long-tail Items in terms of rating prediction and ranking estimation. Thirdly, we

demonstrate the performance of ALoMA when dealing with sparsity problem. Next, we show that

the recommendation results provided by ALoMAmake sense with the aid of auxiliary information.

Finally, the running times of ALoMA with different training data size are demonstrated to show

its scalability.

Table 3. The number of submatrices and the minimal/maximal rank values determined by ALoMA on
different datasets.

Datasets Epinions Douban Dianping Yelp Movielens (10M) Netflix

♯ Submatrices 24 36 32 63 40 40

Submatrix-specifit optimal rank

minima 11 11 12 11 15 10

maxima 136 193 171 199 287 189

5.3.1 Effect of Optimal Submatrix-specific Rank Detection. ALoMA has the ability to adaptively

identify submatrices and determine the optimal rank for each submatrix. Thus, the first experiment

is conducted to investigate ALoMA on selecting the optimal rank for each submatrix. Table 3

lists the number of submatrices adaptively obtained by ALoMA in different datasets, which are

obtained by 4 × 6, 9 × 4, 8 × 4, 9 × 7, 8 × 5 and 8 × 5 (kn × km , here kn is the number of user clusters

and km is the number of item clusters) user-item co-clustering on six datasets Epinions, Douban,
Dianping, Yelp,Movielens (10M) and Netflix respectively. It is interesting to observe that the number

of user or item clusters is different on six datasets, which is reasonable because that the items’

types and users’ interests are totally different in different datasets.

Unlike the existing methods which set the same rank on all submatrices, ALoMA determine the

submatrix-specific optimal rank via automatic relevance determination technique with a threshold

(0.0001 in all experiments). Thus each submatrix can be modeled in an optimal latent space. Table 3

also lists the minimal and maximal optimal rank value determined byALoMA on different datasets.

It can be seen that the rank values have a big variance. Moreover, Fig. 3 demonstrates the optimal

rank in each submatrix determined by ALoMA, and the corresponding submatrices’ densities are

plotted in line chart for different datasets. Obviously, the rank values are almost proportional to

the submatrices’ density. This result confirms that submatrix with few ratings should be of low

rank, otherwise be of high rank, which is consistent with the conclusion given by [18].
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Fig. 3. Demonstrating the optimal rank in each submatrix determined byALoMA for (a) Epinions, (b) Douban,
(c) Dianping, (d) Yelp, (e) Movielens (10M) and (f) Netflix.

Table 4. Comparing recommendation performance of ALoMA and BPMF with different ranks in terms of
MAE and RMSE on six datasets.

Datasets Metrics BPMF-10 BPMF-20 BPMF-50 BPMF-100 BPMF-200 BPMF-300 ALoMA

Epinions MAE 1.1068 1.1042 1.1121 1.1146 1.1137 1.1250 1.0124
RMSE 1.3491 1.3471 1.3533 1.3562 1.3521 1.3674 1.2613

Douban MAE 0.6153 0.6121 0.6196 0.6208 0.6211 0.6331 0.5645
RMSE 0.7562 0.7543 0.7615 0.7621 0.7623 0.7746 0.7123

Dianping MAE 0.8431 0.8452 0.8491 0.8450 0.8459 0.8486 0.7346
RMSE 1.0378 1.0389 1.0436 1.0390 1.0396 1.0421 0.9213

Yelp MAE 0.6682 0.6676 0.6681 0.6715 0.6746 0.6686 0.6214
RMSE 0.8461 0.8431 0.8461 0.8496 0.8512 0.8474 0.8137

Movielens (10M) MAE 0.6341 0.6322 0.6346 0.6362 0.6352 0.6338 0.5842
RMSE 0.8248 0.8217 0.8245 0.8252 0.8248 0.8234 0.7547

Netflix MAE 0.6236 0.6222 0.6231 0.6251 0.6246 0.6243 0.6241
RMSE 0.8443 0.8435 0.8441 0.8463 0.8453 0.8448 0.7873
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Fig. 4. Demonstrating the RMSE of each submatrix obtained by ALoMA and BPMF with fixed rank on
Epinions and Movielens (10M) dataset.

Additionally, we compare the recommendation accuracy of ALoMA against BPMF with different

fixed ranks {10, 20, 50, 100, 200, 300} on the whole rating matrix. As shown in Table 4, when the rank

increases from 10 to 300, the performance of BPMF is unstable (in terms of RMSE). TakingMovielens
(10M) dataset as an example, BPMF with rank 50 achieves better performance than rank 100 but

worse than rank 300. The reason is that matrix approximation with fixed rank cannot model all users

and items well, so that some users and items are either under-fitted or over-fitted. Nevertheless,
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BPMF with all ranks are inferior to ALoMA, because each user or item can be modeled in an

optimal low-rank subspace, which can alleviate overfitting or underfitting problem to some extent.

In order to demonstrate the recommendation performance of each submatrix with optimal

rank, we investigate the recommendation error (RMSE) on each submatrix applied via BPMF with

different ranks on two datasets ({10, 20, 50, 100, 200} for Epinions and {20, 50, 100, 200, 300} for

Movielens (10M)), as shown in Fig. 4. It can be seen that BPMF with different ranks are definitely

inferior to ALoMA on each submatrix. This result further confirms that it is proper to determine

the optimal rank for each submatrix rather than using the Global LRMA method with fixed rank

on the whole matrix.

5.3.2 Comparison of Recommendation Performance. The second experiment is designed to

evaluate ALoMA by comparing with twelve baselines. In addition to the ALoMA, we also study a

simplified version of ALoMA (denoted as ALoMA-s), which only considers adaptive submatrix

generation with CRP and adaptive latent factors determination with ARD. Three different views
are adopted to evaluate the recommendation performance of the proposed method and the existing

methods. Among them, All Users view indicates that all ratings are used as the testing set. Near-
cold-start Users view means that the users who rate less than five items will be involved in the

testing set. Long-tail Items view only considers the items which are in long tail, i.e., the items with

total 20% ratings [2].

Table 5 shows the recommendation performance on testing All Users. The first, second and

third best results are marked in bold, with star supscript and underlined respectively. As expected,

ALoMA-s significantly improves the recommendation performance by comparing with all baselines.

This result indicates that adaptive determining local structure and submatrix-specific rank benefits

finding the optimal user/item latent factors. Meanwhile, ALoMA outperforms ALoMA-s because
the former model sufficiently incorporates the missing mechanism and global information. In

the baselines, the Global LRMA methods with non-random missing data (MF-MNAR, GPMF)

outperform the methods with random missing data assumption except for MRMA. MRMA achieves

the second best performance from All Users view on six datasets, the main reason is that MRMA

adopts LRMA with multiple ranks. Moreover, Local LRMA methods (DFC, LLORMA, bACCAMS,

WEMAREC) obtain competitive performance than Global LRMA in most case. It indicates that Local

LRMA can capture the local structure of the large-scale rating matrix. Global-local LRMA (SMA,

MPMA, GLOMA) is superior to Global LRMA and Local LRMA, which demonstrates considering

both local and global information is more efficient.

The main reason that ALoMA achieves the best performance is that ALoMA considers both

global and local rating information. Even though SMA, MPMA and GLOMA also take advantage of

both global and local information, they set the same rank for all submtrices, which results in worse

performance than ALoMA. For the recently published MRMA, it approximates the rating matrix

with a mixture of global LRMA with different ranks, but the predefined rank set may not proper

for the real data. Fortunately, the proposed ALoMA and ALoMA-s have ability to adaptively

determine the optimal rank for each submatrix, that is why ALoMA and ALoMA-s outperform
MRMA. Compared with ALoMA-s, ALoMA is superior to it since ALoMA considers not only

adaptive submatrix generation and adaptive latent factors determination, but also non random

missing mechanisms and global information.

Recommendation for Near-cold-start Users is a challenging problem. However, such kind of users

are ubiquitous due to the sparsity of rating data. For example, the average number of Near-cold-start
Users (with less than five ratings) in Epinions, Douban, Dianping, Yelp, Movielens (10M) and Netflix
are 34310, 18943, 18194, 7439651, 1902, 2201 respectively, and they are about 69.6%, 14.6%, 12.3%,

78.4%, 2.7%, 0.46% of all users in the corresponding datasets. Since Movielens (10M) and Netflix are
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Table 5. Comparing different recommendation methods on testing All Users for rating prediction task.
Datasets Epinions Douban Dianping Yelp Movielens (10M) Netflix
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PMF 1.1206 1.3654 0.6230 0.7699 0.8641 1.0631 0.6684 0.8557 0.6431 0.8247 0.6385 0.8516

BPMF 1.1042 1.3471 0.6121 0.7543 0.8431 1.0378 0.6676 0.8431 0.6322 0.8217 0.6222 0.8435

MRMA 1.0241 1.2791 0.5723 0.7264 0.7415 0.9291 0.6297 0.8214 0.5937 0.7647 0.5863 0.7996

MF-MNAR 1.0743 1.3153 0.6073 0.7504 0.7921 0.9851 0.6631 0.8402 0.6123 0.7912 0.6141 0.8193

GPMF 1.0672 1.3116 0.6051 0.7481 0.7833 0.9769 0.6615 0.8389 0.6089 0.7983 0.6115 0.8162

DFC 1.0852 1.3239 0.6024 0.7472 0.7663 0.9462 0.6842 0.8731 0.6257 0.8064 0.6389 0.8451

LLORMA 1.0531 1.3033 0.5937 0.7396 0.7562 0.9351 0.6673 0.8453 0.6085 0.7862 0.6258 0.8296

bACCAMS 1.0432 1.2928 0.5841 0.7302 0.7435 0.9316 0.6649 0.8421 0.6242 0.8033 0.6301 0.8331

WEMAREC 1.0398 1.2872 0.5894 0.7356 0.7522 0.9328 0.6468 0.8356 0.6032 0.7772 0.6043 0.8143

SMA 1.0252 1.2799 0.5852 0.7331 0.7421 0.9302 0.6349 0.8278 0.5988 0.7695 0.5989 0.8058

MPMA 1.0211 1.2775 0.5831 0.7315 0.7443 0.9328 0.6322 0.8257 0.5971 0.7683 0.5953 0.8021

GLOMA 1.0181 1.2742 0.5826 0.7301 0.7406 0.9279 0.6315 0.8242 0.5964 0.7672 0.5931 0.8001

ALoMA-s 1.0154* 1.2693* 0.5684* 0.7213* 0.7372* 0.9258* 0.6254* 0.8182* 0.5885* 0.7594* 0.5796* 0.7944*

ALoMA 1.0124 1.2613 0.5645 0.7123 0.7346 0.9213 0.6214 0.8137 0.5842 0.7547 0.5758 0.7873

Table 6. Comparing different recommendation methods on testing Near-cold-start Users for rating prediction
task.

Datasets Epinions Douban Dianping Yelp Movielens (10M) Netflix
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PMF 1.3508 1.4477 0.8433 1.0239 1.1024 1.3742 0.8752 1.0722 0.8933 1.0946 0.9411 1.1941

BPMF 1.3412 1.4398 0.8246 1.0125 1.0942 1.3681 0.8623 1.0652 0.8852 1.0883 0.9341 1.1872

MRMA 1.2731 1.3915 0.7332 0.9126 1.0589 1.2974 0.8211 1.0124 0.8042 0.9911 0.8381 1.0973

MF-MNAR 1.2997 1.4113 0.7341 0.9132 1.0775 1.3161 0.8510 1.0519 0.8331 1.0292 0.8671 1.1225

GPMF 1.2963 1.4095 0.7429 0.9269 1.0652 1.3040 0.8301 1.0212 0.8124 0.9972 0.8462 1.1051

DFC 1.3225 1.4212 0.7561 0.9392 1.0952 1.3692 0.8531 1.0564 0.8412 1.0351 0.8952 1.1523

LLORMA 1.3041 1.4152 0.7492 0.9341 1.0912 1.3673 0.8421 1.0455 0.8212 1.0131 0.8712 1.1241

bACCAMS 1.2982 1.4105 0.7382 0.9162 1.0875 1.3231 0.8336 1.0287 0.8132 1.0064 0.8512 1.1183

WEMAREC 1.2769 1.3952 0.7456 0.9283 1.0603 1.3015 0.8233 1.0154 0.8096 1.0015 0.8461 1.1114

SMA 1.2757 1.3944 0.7441 0.9265 1.0644 1.3046 0.8224 1.0147 0.8088 0.9996 0.8415 1.1031

MPMA 1.2745 1.3936 0.7421 0.9241 1.0592 1.3004 0.8214 1.0129 0.8063 0.9976 0.8403 1.1022

GLOMA 1.2711 1.3901 0.7412 0.9228 1.0572 1.2989 0.8231 1.0151 0.8057 0.9967 0.8396 1.0992

ALoMA-s 1.2677* 1.2855* 0.7311* 0.9113* 1.0551* 1.2948* 0.8199* 1.0109* 0.8015* 0.9874* 0.8366* 1.0958*

ALoMA 1.2641 1.3821 0.7279 0.9104 1.0513 1.2926 0.8184 1.0105 0.7984 0.9824 0.8342 1.0914

Table 7. Comparing different recommendation methods on testing Long-tail Items for rating prediction task.
Datasets Epinions Douban Dianping Yelp Movielens (10M) Netflix
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

PMF 1.3295 1.5297 0.9367 1.0822 1.2133 1.4531 0.9734 1.1855 0.9346 1.1422 1.0531 1.2988

BPMF 1.3157 1.5154 0.9255 1.0767 1.2031 1.4453 0.9671 1.1785 0.9378 1.1387 1.0453 1.2894

MRMA 1.2795 1.4673 0.8513 0.9984 1.0814 1.3166 0.8998 1.1194 0.8328 1.0465 0.9603 1.1806

MF-MNAR 1.3071 1.4942 0.9041 1.0521 1.1523 1.3981 0.9345 1.1562 0.8823 1.0921 0.9983 1.2216

GPMF 1.2956 1.4823 0.9022 1.0503 1.1512 1.3969 0.9294 1.1515 0.8783 1.0885 0.9821 1.2141

DFC 1.3211 1.5206 0.9123 1.0682 1.1823 1.4267 0.9511 1.1682 0.9088 1.1124 1.0321 1.2766

LLORMA 1.3042 1.4921 0.8872 1.0215 1.1024 1.3383 0.9411 1.1612 0.8612 1.0722 0.9871 1.2185

bACCAMS 1.2991 1.4856 0.8713 1.0124 1.0942 1.3315 0.9241 1.1496 0.8576 1.0688 0.9781 1.2035

WEMAREC 1.2913 1.4796 0.8675 1.0067 1.0913 1.3296 0.9155 1.1353 0.8473 1.0577 0.9721 1.1982

SMA 1.2894 1.4769 0.8631 1.0054 1.0884 1.3234 0.9084 1.1316 0.8415 1.0532 0.9687 1.1915

MPMA 1.2861 1.4732 0.8594 1.0014 1.0862 1.3216 0.9064 1.1284 0.8407 1.0516 0.9652 1.1874

GLOMA 1.2781 1.4658 0.8562 0.9998 1.0846 1.3196 0.9013 1.1238 0.8396 1.0501 0.9614 1.1819

ALoMA-s 1.2755* 1.4640* 0.8488* 0.9953* 1.0793* 1.3146* 0.8967* 1.1164* 0.8285* 1.0437* 0.9583* 1.1786*

ALoMA 1.2726 1.4631 0.8451 0.9923 1.0763 1.3121 0.8932 1.1124 0.8235 1.0406 0.9535 1.1738

preprocessed by the publisher, the rating density is much larger than the other four datasets. As

shown in Table 6, the proposed ALoMA and ALoMA-s consistently and significantly outperform

the baselines. All Global LRMA methods with non-random missing data (MF-MNAR, GPMF) are

superior to PMF and BPMF in Near-cold-start Users view, which indicates that non-random missing

data are helpful to provide accurate recommendation on Near-cold-start Users. Notably, ALoMA
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Fig. 5. The relative improvements of ALoMA vs. six baselines on six datasets in terms of (a) MAE/All Users,
(b) MAE/Near-cold-start Users, (c) MAE/Long-tail Items, (d) RMSE/All Users, (e)RMSE/Near-cold-start Users
and (f) RMSE/Long-tail Items.

outperforms all of baselines since ALoMA simultaneoulsy considers the local structures, global

information and missing mechanisms.

In real applications, such as e-commercial platform, only a small part of items are popular, while

a large fraction of items have few ratings, which is called as long-tail phenomenon [2]. Although

the amount of users relating to each individual tail item is small in absolute numbers, they cover a

substantial fraction of all users. Additionally, one user’s rarer purchases in e-commerce are also

more informative of their tastes than their purchases of popular items. Hence, making use of the

tail items is important to predict the user preference in modern recommendation systems. In other

words, it will be valuable if the recommendation systems could recommend the Long-tail Items to
the proper users.

In order to investigate how the proposed ALoMA model handles the Long-tail Items, all items

are ranked according to their rating frequency in an ascending order, and then the top 20% items are

selected as the Long-tail Items. Table 7 shows recommendation performance of ALoMA,ALoMA-s
and twelve baselines on the Long-tail Items in six datasets. It is exciting that the proposed model

ALoMA is the best one and ALoMA-s is the second best one in all cases. This experimental result

demonstrates that appropriate data assumption including global/local structure and missing mech-

anisms, are beneficial to mine the latent user/item factors, accurately approximate the incomplete

rating matrix, and improve the recommendation quality no matter the items have sufficient ratings

or not.

For demonstrating the efficiency of the proposed ALoMA method intuitively, we calculate and

record improvements between ALoMA and six baselines (the first two better baselines from each

category). Fig. 5 gives the relative improvements that ALoMA achieves related to six baselines on

six datasets. Although the percentage of relative improvements are small, small improvements can

lead to significant differences of recommendations in practice [16]. More specifically, we conduct
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Table 8. Comparing different recommendation methods on testing All Users for ranking estimation task in
Yelp dataset.

Datasets Yelp
Metrics Re@5 Re@10 Pre@5 Pre@10 NDCG@5 NDCG@10

PMF 0.4522 0.4749 0.5621 0.6122 0.6877 0.7123

BPMF 0.4653 0.4861 0.5684 0.6185 0.6893 0.7162

MRMA 0.5085 0.5425 0.6013 0.6402 0.7025 0.7406

MF-MNAR 0.4796 0.5185 0.5785 0.7264 0.6923 0.7306

GPMF 0.4837 0.5214 0.5799 0.7283 0.6937 0.7324

DFC 0.4633 0.5073 0.5711 0.6203 0.6895 0.7173

LLORMA 0.4728 0.5104 0.5731 0.6217 0.6905 0.7283

bACCAMS 0.4882 0.5221 0.5846 0.6235 0.6913 0.7295

WEMAREC 0.4912 0.5269 0.5913 0.6302 0.6932 0.7311

SMA 0.4934 0.5298 0.5942 0.6336 0.6948 0.7326

MPMA 0.5039 0.5381 0.5966 0.6357 0.6972 0.7358

GLOMA 0.5066 0.5403 0.5983 0.6374 0.7002 0.7385

ALoMA-s 0.5112* 0.5458* 0.6025* 0.6413* 0.7039* 0.7415*

ALoMA 0.5133 0.5473 0.6044 0.6421 0.7063 0.7438

Table 9. Comparing different recommendation methods on testing All Users for ranking estimation task in
Movielens (10M) dataset.

Datasets Movielens (10M)
Metrics Re@5 Re@10 Pre@5 Pre@10 NDCG@5 NDCG@10

PMF 0.4732 0.4823 0.5652 0.5693 0.6723 0.7352

BPMF 0.4853 0.4894 0.5707 0.5715 0.6845 0.7467

MRMA 0.7085 0.7178 0.7302 0.7506 0.7219 0.7743

MF-MNAR 0.5341 0.5433 0.6631 0.6725 0.6953 0.7538

GPMF 0.5496 0.5589 0.6731 0.6796 0.7012 0.7593

DFC 0.5011 0.5128 0.6233 0.6321 0.6871 0.7493

LLORMA 0.6734 0.6821 0.7231 0.7345 0.7066 0.7632

bACCAMS 0.6839 0.6974 0.7241 0.7375 0.7094 0.7678

WEMAREC 0.6922 0.7005 0.7256 0.7423 0.7176 0.7703

SMA 0.7023 0.7123 0.7294 0.7497 0.7134 0.7679

MPMA 0.7032 0.7153 0.7298 0.7502 0.7214 0.7712

GLOMA 0.7052 0.7164 0.7316 0.7514 0.7231 0.7742

ALoMA-s 0.7103* 0.7246* 0.7315* 0.7511* 0.7306* 0.7762*

ALoMA 0.7133 0.7273 0.7345 0.7531 0.7321 0.7796

paired t-test (confidence 0.95) between ALoMA and each baseline with five-fold cross-validation

results. The p-values in all cases are less than 10
−5
, which indicates that our improvements are

statistically significant at the 5% level. Therefore, based on these observations, we can say ALoMA
consistently outperforms the state-of-the-art recommendation methods and significantly improves

the recommendation performance.

Except for the evaluation on testing rating prediction, we investigate the performance of ranking

prediction. Table 8, 9, 10 and 11 list the Recall, Precision, and NDCG of ALoMA and ALoMA-s
by comparing twelve baselines on ranking estimation for two representative datasets Yelp and

Movielens (10M) in two views (All Users and Near-cold-start Users). In both cases, ALoMA performs

better than others. Notably, in terms of NDCG, all methods perform better in the case of All Users
than in Near-cold-start Users on both datasets. The main reasons are two-fold. On one hand, it is

more difficult for algorithms to correctly rank a big set than a small one under the NDCG metric.

On the other hand, Near-cold-start Users usually occupy much less observed ratings in testing set
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Table 10. Comparing different recommendation methods on testing Near-cold-start Users for ranking estima-
tion task in Yelp dataset.

Datasets Yelp
Metrics Re@5 Re@10 Pre@5 Pre@10 NDCG@5 NDCG@10

PMF 0.2212 0.2441 0.2581 0.2611 0.6552 0.6771

BPMF 0.2305 0.2437 0.2624 0.2655 0.6593 0.6814

MRMA 0.2815 0.2963 0.2917 0.3056 0.6803 0.7059

MF-MNAR 0.2479 0.2573 0.2711 0.2756 0.6657 0.6872

GPMF 0.2498 0.2621 0.2756 0.2794 0.6684 0.6896

DFC 0.2521 0.2689 0.2671 0.2803 0.6613 0.6892

LLORMA 0.2655 0.2813 0.2793 0.2914 0.6689 0.6926

bACCAMS 0.2689 0.2847 0.2823 0.2944 0.6703 0.6948

WEMAREC 0.2711 0.2864 0.2857 0.2972 0.6715 0.6969

SMA 0.2748 0.2895 0.2866 0.2989 0.6754 0.7003

MPMA 0.2764 0.2912 0.2884 0.3012 0.6784 0.7021

GLOMA 0.2795 0.2944 0.2904 0.3039 0.6812 0.7074

ALoMA-s 0.2822* 0.2982* 0.2928* 0.3069* 0.6839* 0.7088*

ALoMA 0.2836 0.2994 0.2941 0.3098 0.6845 0.7103

Table 11. Comparing different recommendation methods on testing Near-cold-start Users for ranking estima-
tion task in Movielens (10M) dataset.

Datasets Movielens (10M)
Metrics Re@5 Re@10 Pre@5 Pre@10 NDCG@5 NDCG@10

PMF 0.3132 0.3223 0.4732 0.4789 0.6323 0.6952

BPMF 0.3298 0.3285 0.4796 0.4854 0.6358 0.6994

MRMA 0.4812 0.4801 0.5396 0.5402 0.6594 0.7303

MF-MNAR 0.3684 0.3622 0.4974 0.4996 0.6456 0.7163

GPMF 0.3721 0.3673 0.5034 0.5051 0.6483 0.7192

DFC 0.3588 0.3532 0.4988 0.5006 0.6432 0.7124

LLORMA 0.4593 0.4567 0.5152 0.5189 0.6488 0.7201

bACCAMS 0.4656 0.4613 0.5216 0.5230 0.6503 0.7225

WEMAREC 0.4703 0.4675 0.5267 0.5281 0.6524 0.7258

SMA 0.4757 0.4736 0.5302 0.5311 0.6558 0.7271

MPMA 0.4782 0.4762 0.5352 0.5359 0.6572 0.7295

GLOMA 0.4801 0.4789 0.5374 0.5385 0.6598 0.7311

ALoMA-s 0.4819* 0.4813* 0.5403* 0.5421* 0.6618* 0.7329*

ALoMA 0.4833 0.4821 0.5421 0.5431 0.6631 0.7343

and thereby the item sets to be ranked are very small. Those experiments demonstrate thatALoMA
can not only provide accurate rating prediction but also correctly achieve item ranking for each

user. Similar results are obtained for other four datasets.

5.3.3 Effect of Item Rating Frequency. Sparsity is a challenge problem in recommendation system

(e.g., the density of rating matrix in Epinions, Douban, Dianping, Yelp, Movielens (10M) and Netflix
are only 0.01%, 0.222%, 0.13%, 0.00032%, 1.31% and 1.17% respectively). In order to investigate how

the proposed ALoMA deals with such challenging data, we statistics the performance on items

with different rating frequencies (i.e., the number of item’s ratings). In experiments, the rating

frequency is split into seven groups: 0-5, 6-10, 11-20, 21-50, 51-100, 101-200 and >200. The rating

frequency distributions on different datasets are shown in Fig. 6. It can be seen that each dataset

has its own characteristics on different item groups. For Epinions, Douban and Yelp, the number of

items decreases with the increasing of rating frequency, which confirms that the rating matrix is

sparse because most items only have few ratings. For Dianping, Movielens (10M) and Netflix, the
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number of items increases with the increasing of rating frequency, thus, they are relatively denser

than other three datasets.
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Fig. 6. The item rating frequency distribution in (a) Epinions, (b) Douban, (c) Dianping, (d) Yelp, (e) Movielens
(10M) and (f) Netflix.
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Fig. 7. Comparisons of six baselines and the proposed ALoMA on all items with difference rating degrees for
(a) Epinions, (b) Douban, (c) Dianping, (d) Yelp, (e) Movielens (10M) and (f) Netflix.

The recommendation performance on each rating frequency group of six datasets are shown in

Fig. 7 (in terms of RMSE). All methods have the similar trends with respect to different item rating

frequency, i.e., RMSE becomes better and better with the increasing of item rating frequency, which

indicates that item rating frequency plays an important role in recommendation performance. From

Fig. 6, it can be seen that items in each dataset have a significantly varying number of ratings. In
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Fig. 8. The category distribution in five example submatrices obtained by ALoMA on Yelp and Movielens
(10M).

this case, it is necessary to treat users/items differently. As expected, the proposed ALoMA outputs

the highest quality for all rating frequency groups on six datasets. This result further demonstrates

that ALoMA has the ability to effectively handle the recommendation data with complex structure.

5.3.4 Explainable Submatrix. One of the main contributions of ALoMA is to determine user-

item co-clusters (i.e., submatrices) by sufficiently exploiting both rating and missing indicator

information. In each submatrix, we expect that the users have the similar taste and the items has

the similar characteristics. To confirm this, taking Yelp and Movielens (10M) datasets as examples,

we investigate the corresponding semantical information of each submatrix. In Yelp and Movielens
(10M), each item (i.e., business on Yelp and movie on Movielens) is marked by one or more category

labels, and all items belong to 1240 and 18 categories on Yelp and Movielens (10M) respectively. By
counting the frequency that each category appears related to items, we selected top 20 popular

categories in Yelp and all categories in Movielens (10M). The category information is listed in

Table 12.

Table 12. Top 20 popular categories in Yelp and all in Movielens (10M).
Datasets Item Categories

Yelp

Restaurants Shopping Food Beauty&Spas Home Services
Health&Medical Nightlife Bars Automotive Local Services
EP&Services Active Life Fashion Sandwiches Fast Food
American Pizza Coffee&Tea Hair Salons Hotels&Travel

Movielens (10M)

Action Adventure Animation Children Comedy
Crime Documentary Drama Fantasy Film-Noir
Horror Musical Mystery Romance Sci-Fi
Thriller War Western

For the p-th submatrix output by ALoMA, let m(p)
be the number of items and r

(p)
j indicate

the number of rates on the j-th item (1 ≤ j ≤ m(p)
), where the number of items belonging to the

q-th category is denoted as m
(p)
q and

∑nl
q=1

m
(p)
q = m(p)

. In this case, {m
(p)
q /m(p)}

nl
q=1

indicates the

category distribution in the p-th submatrix, where nl is the number of categories. The distribution

of item categories in five submatrices on Yelp and Movielens (10M) are shown in Fig. 8. Obviously,

each submatrix has its most related category, such as ’Fashion’, ’Pizza’, ’Local Services’, ’Shopping’,
and ’Home Services’ for submatrix8, submatrix18, submatrix25, submatrix33, submatrix48 on Yelp,
and ’Comedy’, ’Documentary’, ’Film-Noir’, ’Horror’ and ’Children’ respectively for submatrix1,

submatrix5, submatrix11, submatrix13, submatrix21 on Movielens (10M). Meanwhile, the top ten

items (with largest r
(p)
j ) of these five submatrices are listed in Table 13 and Table 14. As expected,
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Table 13. Top ten items (Business) and their corresponding related categories in five example submatrices
obtained by ALoMA from Yelp dataset.

Subgroup ID Items (Business) Category

Subgroup8

1○Clothes Minded 2○The Vault 3○Marshalls

Fashion4○The Dredgers Union 5○Old Navy 6○Family Dollar

7○Walmart 8○A Second Look 9○Denim Kings & Nails

10○Broad Lingerie · · ·

Subgroup18

1○Nello’s Pizza Mesa 2○Pizza Hut 3○Pizzeria Amici

Pizza4○Doughboys Pizza 5○7 Star Thai Cuisine 6○Tavern on Park Restaurant

7○La Stellina 8○Casanova Brothers Pizza 9○China House

10○Italian Oven · · ·

Subgroup25

1○Royal Mail 2○Yorktown Shoe Repair 3○ L & M Monogramming

Local Services4○Fixt Wireless Repair 5○Croach 6○The Postal Route

7○Saabr Sharpening Service 8○Public Storage 9○TigerDirect

10○Flair Cleaner · · ·

Subgroup33

1○House 15143 2○Mdi Rock 3○REI

Shopping4○Cloverdale Mall 5○ Freda’s 6○Seefu Hair Yorkville

7○Plato’s Closet Scarborough 8○Walmart Supercenter 9○Tan Phat Market

10○ Noffi Jewelry · · ·

Subgroup48

1○Canyon Creek Village & Mirror 2○DrainWorks 3○Dhi Title

Home Service4○House 15143 & Heating 5○Home EVER Inc. 6○Sos Exterminating

7○Lifetime Water Systems 8○Favorite Maids 9○Now Plumbing

10○Regus · · ·

Table 14. Top ten items (Movies) and their corresponding related categories in five example submatrices
obtained by ALoMA from Movielens (10M) dataset.

Subgroup ID Items (Movie) Category

Subgroup1

1○Toy Story 2○Fargo & Spa 3○Pulp Fiction

Comedy4○Forrest Gump 5○Back to the Future 6○Batman Forever

7○Babe 8○Pretty Woman 9○Men in Black & Nails

10○Ghost · · ·

Subgroup5

1○Hoop Dreams 2○Roger & Me 3○Super Size Me

Documentary4○Crumb 5○Spellbound 6○When We Were Kings

7○Buena Vista Social Club 8○Trekkies 9○Stop Making Sense

10○Looking for Richard · · ·

Subgroup11

1○Blade Runner 2○Sin City 3○Dark City

Film-Noir4○Third Man 5○Strangers on a Train 6○Sunset Blvd

7○Big Sleep 8○Mulholland Drive 9○Notorious

10○Blood Simple · · ·

Subgroup13

1○Alien 2○Aliens 3○Silence of the Lambs

Horror4○Scream 5○Seven 6○The Vampire Chronicles

7○Jurassic Park 2 8○Rocky Horror Picture Show 9○Mummy

10○Alien3 · · ·

Subgroup21

1○Lion King 2○Toy Story 3○E.T. the Extra-Terrestrial

Children4○Beauty and the Beast 5○Who Framed Roger Rabbit? 6○Shrek

7○Wizard of Oz 8○Monsters 9○Jumanji

10○Home Alone · · ·

the items in each submatrix obviously have similar semantic characteristics and are related to the

corresponding category. This result can further be used to interpret the recommendation results.

5.3.5 Scalability Analysis. We investigate the scalability of the ALoMA model. Note that our

method is implemented in C++ at the hosts with Inter(R) Xeon(R) 2.0GHz CPU E7-4820 v2 having 64

processors, where each processor has two cores and the memory is 64GB. The operating system is

Red Hat Enterprise Linux OS release 6.5. Meanwhile, the Inter(R) parallel studio XE 2017 composer

edition for cpp is used to compile implemented code.

Specifically, we randomly select a subset of ratings as training set according to a fixed ratio

(from 0.1 to 0.9 with step 0.1) and fix the testing set. For each ratio, ten subsets are extracted as

training data and the averaged results (running time and RMSE) are recorded in Fig. 9. Obviously,

the recommendation performance becomes better and better with the increasing of training data
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Fig. 9. Effect of training data size on ALoMA in terms of running time (seconds) and RMSE for (a) Epinions,
(b) Douban, (c) Dianping, (d) Yelp, (e) Movielens (10M) and (f) Netflix.

size. Meanwhile, the training computational complexity (i.e., running time) is linearly scalable to

the training data size.

6 CONCLUSIONS
In this paper, we propose a full Bayesian graphical model (ALoMA) to adaptively identify sub-

matrices, determine the optimal rank for each submatrix, learn the submatrix-specific user/item

latent factors and estimate the importance of latent feature with missing mechanisms. The gener-

alization error bounds of ALoMA and its approximation guarantee are theoretically given. The

experimental results on six real-world datasets have shown that ALoMA can effectively improve

the recommendation accuracy in both rating prediction and ranking estimation tasks and friendly

provide interpretable results.

In ALoMA, most variables are assumed following Gaussian distribution. However, this assump-

tion may be violated in real applications, thus, it will be interesting to employ sparsity-favoring

distributions such as spike-and-slab Laplace distribution for sparse recommendation data. Mean-

while, only rating information is considered here, which is more likely to suffer from cold-start

problem. Thus, it is interesting to integrate the available and precious resources (such as social

network, item contents, and user reviews) to design more effective and explainable recommendation

method.
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