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Highlights

• A framework of jointly multiple graph learning and feature selection is
proposed.

• An effective algorithm is proposed for optimizing the objective function.

• The experimental results show that our algorithm outperforms the state-
of-the-art methods.
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Abstract

Unsupervised feature selection methods try to select features which can well preserve

the intrinsic structure of data. To represent such structure, conventional methods con-

struct various graphs from data. In most cases, those different graphs often contain

some consensus and complementary information. To make full use of such informa-

tion, we construct multiple base graphs and learn an adaptive consensus graph from

these base graphs for feature selection. In our method, we integrate the multiple graph

learning and the feature selection into a unified framework, which can jointly charac-

terize the structure of the data and select the features to preserve such structure. The

underlying optimization problem is hard to solve, and we solve it via a block coor-

dinate descent schema, whose convergence is guaranteed. The extensive experiments

well demonstrate the effectiveness of our proposed framework.

Keywords: Feature selection, Multiple graph learning, Consensus learning

1. Introduction

Feature selection is a fundamental problem in machine learning and has attracted

considerable attention in the past decades [1, 2, 3, 4, 5]. In many real-world appli-

cations, the data contain a large number of features, which may cause the curse of
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dimensionality. Moreover, some features are often contaminated by noises, which may5

deteriorate the performance of machine learning methods. To address these problems,

feature selection is applied to select a small number of informative and non-redundant

features for the machine learning methods. Since feature selection usually leads to

better learning performance, it has been successfully applied in many real applications

such as text categorization [6, 7], image processing [8], and bioinformatics [9]. Accord-10

ing to the availability of the labels, these methods can be categorized into supervised

[10, 11], semi-supervised [12] and unsupervised algorithms [13, 5]. Due to the ab-

sence of the label information, the unsupervised feature selection is a more challenging

problem.

Since the label information is absent in unsupervised learning, feature selection15

method can only make use of the information of data itself, or equivalently speaking,

the intrinsic structure of data [14, 15, 16, 17, 18]. Conventional methods often construct

a graph from the data to represent such structure. According to the way of constructing

the graph, the existing methods can be roughly categorized into two classes: 1) using

a pre-defined graph, which often pre-defines a graph and selects features to preserve20

such graph structure [19, 20, 21]; 2) leaning an adaptive graph, which learns an

adaptive graph simultaneously in the process of feature selection [17, 5, 22].

Note that both the two classes only use one single graph (either a pre-defined graph

or an adaptive graph) to represent the structure of data. However, in real applications,

the structure may be too complex to be captured by one single graph. Given a data25

set, various graphs can be constructed based on different distance metrics, such as Eu-

clidean distance and cosine similarity. In most cases, these different graphs contain

some consensus and complementary information. Those conventional methods which

only use one single graph may ignore such useful information. Moreover, some data

are naturally performed in multiple graph structures. For example, relationships of re-30

search papers contain several graphs such as co-author graph and citation graph. When

handling these data, the aforementioned methods may fail to fully utilize the given

graphs.

To address these problems, in this paper, we characterize the intrinsic structure

with adaptive multiple graph learning. Multiple graph learning tries to learn a con-35
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sensus graph from multiple base graphs. For example, Nie et al. [23] proposed a

parameter-free multiple graph learning method which learned the weight of each graph

automatically; Zhan et al. [24] learned a consensus graph with minimizing disagree-

ment between different views and constraining the rank of the Laplacian matrix. In our

framework, firstly, if the data contains multiple graphs, we directly use them as base40

graphs; if otherwise, we construct some pre-defined graphs from data. Then we learn

the consensus graph from these base graphs simultaneously in the process of feature

selection. On the one hand, we use the result of feature selection to guide the mul-

tiple graph learning, and on the other hand, we apply the learned graph to select the

informative features. When learning the consensus graph, since the scale of the graphs45

may vary dramatically, we first normalize all base graph adjacency matrices as transi-

tion matrices and learn a consensus transition matrix from them. Since the transition

matrix has a clear probabilistic interpretation, we use the Kullback-Leibler divergence

for consensus measuring. When selecting the features, we impose a weight on each

feature and try to transform the weighted data into a subspace which can well preserve50

the intrinsic structure represented by the consensus graph. This procedure repeats until

convergence.

To integrate the multiple graph learning and feature selection into a unified frame-

work as introduced before, we carefully design a non-convex objective function. To

optimize it, we propose a block coordinate descent algorithm and prove its conver-55

gence. We conduct extensive experiments on benchmark data sets by comparing our

algorithm with several state-of-the-art unsupervised feature selection methods, and the

experimental results show that ours outperforms these state-of-the-art methods.

The paper is organized as follows. Section 2 describes some related work. Section 3

presents in detail the main algorithm of our method. Section 4 shows the experimental60

results, and Section 5 concludes the paper.

2. Related Work

To handle high dimensional data, many feature learning methods are proposed. One

kind of feature learning method is feature extraction [25, 26]. Feature extraction learns
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a projection to map the data from high dimensional feature space to a low dimensional65

space. For example, in [27], a multilinear principal component analysis was proposed

to project the original image data to a low dimensional space; a sparse discriminan-

t projection method was provided in [28]; most recently, Lai et al. [29] proposed a

joint learning framework which could simultaneously extract features and learn the

subspace. Although feature extraction has been demonstrated promising performance,70

feature selection, which is another kind of feature learning method, has better inter-

pretability because it keeps the semantic meaning of the features [11]. Moreover, the

cost of feature collection for learning can be reduced by feature selection because that

we only need to collect the selected features in feature selection method rather than use

all the features for projection as feature extraction does [11].75

In feature selection, unsupervised feature selection is a more challenging problem

due to the absence of labels, and thus has attracted considerable attention. Unsuper-

vised feature selection methods try to select features which can well preserve the in-

trinsic structure of data. For example, Zhu et al. [30] selected features which can

reconstruct the original data well; Wang et al. [31] proposed unsupervised feature se-80

lection method to preserve the pseudo-labels generated by matrix factorization; Zhou

et al. [32] selected the features to preserve the balance structure of data. Besides these

structures, another kind of popular representation of such intrinsic structure is graph.

Therefore, many methods construct the graph from data and select features to preserve

the graph structure. As introduced before, the graph based feature selection methods85

can be roughly categorized into two classes: 1) using a pre-defined graph; 2) learning

an adaptive graph.

In the first class, the feature selection methods often construct a pre-defined graph

such as heat kernel graph and cosine graph, and then select features which can preserve

such graph structure well. For example, Zhao et al. [33] constructed heat kernel graph90

for feature selection; Yang et al. [19] applied local total scatter and between-class

scatter matrix to select features; Zhao et al. [20] used the pairwise similarity graph

for feature selection; Zhu et al. [21] proposed a co-regularized method using the heat

kernel to construct the similarity matrix; Du et al. [34] constructed a k-nn graph for

each feature and ranked the features by the linear reconstruction weights.95
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In the second class, the methods construct an adaptive graph in the procedure of

feature selection, i.e., the structure of graph changes with selected features. For ex-

ample, Du et al. [35] learned an adaptive graph for feature selection by preserving the

global and local structure; Nie et al. [17] adaptively learned the local structure from

the results of feature selection; Zhang et al. [36] constructed a hypergraph from all100

features to characterize the high-order similarities of data and selected features by the

hypergraph clustering, and then they further proposed an adaptive hypergraph learn-

ing method to jointly learn the hypergraph and select features [37]. Fan et al. [18]

proposed an unsupervised discriminant feature selection method which constructed the

graph with pseudo-labels obtained by the results of subspace clustering; Zhu et al. [38]105

applied subspace clustering to learn the similarity matrix to guide the feature selection;

Luo et al. [5] constructed the adaptive graph with structure regularization; Zheng et

al. [22] learned a low rank structure for feature selection; Li et al. [39] proposed a

generalized uncorrelated regression with adaptive graph for feature selection.

Both the classes of methods only use a single graph for feature selection, which may110

ignore the abundant information in the data. Therefore, we propose a feature selection

method with adaptive multiple graph learning. Note that, our method is significantly

different from the existing multiple graph feature selection method [40]. Firstly, that

is a two-step method, i.e., it first linearly combines multiple graphs to obtain a new

Laplacian matrix and then applies it to select features. Therefore, the two tasks (graph115

combining and feature selection) cannot be boosted by each other like our method.

Secondly, in that method, the weight of each graph is set manually as hyper-parameters,

which makes it difficult to handle data which contains more than two graphs. In our

method, the weights and the consensus graph are both learned automatically in the

process of feature selection.120

It is worthy to mention another related fields called multi-view feature selection.

These methods [41, 42, 43, 44] select features from multiple views by integrating the

information in each view. For example, Wang et al. [41] proposed a multi-view feature

selection to integrate the features in all views and learn the weight for each feature via

a joint structured sparsity-inducing norm; Liu et al. [42] presented a k-means based125

robust multi-view feature selection method. Since in each view we can construct a
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graph, some graph based multi-view feature selection methods are similar to the multi-

ple graph feature selection. For example, Wang et al. [43] linearly combined all Lapla-

cian matrices of multiple views and selected features with the consensus Laplacian

matrix. Different from this method which linearly combines all graphs, our method130

learns a non-parametric consensus graph in such a way that we can effectively enlarge

the region from which an optimal graph can be chosen for feature selection [45, 46],

i.e., we have a great chance to learn a better consensus graph.

3. Feature Selection with Multiple Graphs

In this section, we introduce our feature selection method with adaptive multiple135

graph learning. Firstly, we introduce some notations in this paper. We use a bold

uppercase character to denote a matrix and a bold lowercase character to denote a

vector. For an arbitrary matrix M ∈ Rr×s, Mi. denotes its i-th row, M.i denotes its

i-th column, and Mij denotes its (i, j)-th element.

3.1. Framework140

In our method, we seamlessly integrate the multiple graph learning and feature s-

election into a unified framework, for the reason that, we hope the two tasks can be

boosted by each other. On the one hand, a clearer intrinsic graph structure can guide us

to select more informative features; and on the other hand, the more informative fea-

tures can be helpful to construct a better graph structure. In more details, we construct145

multiple graphs from data and learn a consensus graph from these multiple graphs;

meanwhile, we use a feature weight vector to impose the weight on each feature and

project the weighted data matrix into a low dimensional space to preserve the structure

of the consensus graph. We jointly learn the consensus graph and select features until

it converges. Figure 1 shows the framework of our method.150

3.2. Multiple Graph Learning

Let X = [x1, · · · ,xn] ∈ Rd×n denotes a data set matrix containing n instances

with d features, whose columns correspond to instances and rows to features. The

task of feature selection is to select the most informative features from the original d
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Feature weight
 vector v

Projection 
matrix W

Projected data 
matrix WTVX

Data matrix X

Multiple Graphs 

A(1),…,A(m)

Samples

featu
res

Consensus 
Graph A

Multiple graph learning

Feature selection

Figure 1: The framework of our method. We use the data matrix X and the multiple
base graphs A(1), · · · ,A(m) as input. Our framework is an iteration schema. We first
use weight vector v to select features with the consensus graph A and then apply the
selected features to learn the consensus graph A with the base graphs A(1), · · · ,A(m).
This process repeats until convergence.
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features. In unsupervised feature selection, since the labels are absent, we should find155

the features which can preserve the intrinsic structure well. To this end, we make use of

multiple graph adjacency matrices of data A(1), · · · ,A(m) ∈ Rn×n, where A(k)
ij ≥ 0

denotes the (i, j)-th element in A(k). A(k)
ij > 0 means the the i-th instance and the

j-th instance are connected by an edge in the k-th graph and A(k)
ij = 0 otherwise.

Note that, in our method we use the graphs which do not contain the self-connections,160

i.e., A(k)
ii = 0. These graphs can be generated in standard ways. For example, we

can use Euclidean distance or cosine similarity to generate distance/similarity matrix

and obtain k-nn graph directly from the distance/similarity matrix, or we can directly

use the input multiple graphs when we handle multiple graph data. In our framework,

we learn the intrinsic structure from these m graph matrices and adopt it to find the165

informative features.

Since the scale of the graphs may vary dramatically, we need to normalize all

graphs. In our method, we normalize all input graph adjacency matrices by A(k) ←
(
D(k)

)−1
A(k) as transition matrices, where D(k) is a diagonal matrix whose i-th di-

agonal element D(k)
ii =

∑
j A

(k)
ij . After the normalization, we have

∑
j A

(k)
ij = 1.170

It is easy to verify that A(k) is a transition matrix, i.e., A(k)
ij indicates the probability

of jumping in one step from the i-th instance to the j-th instance in a Markov ran-

dom walk in the k-th graph. Obviously, the larger A(k)
ij is, the more probably the i-th

instance jumps to the j-th instance, the more probably the i-th instance and the j-th

instance has a connection.175

Since we aim to learn a consensus transition matrix A from A(1), · · · ,A(m), we

should minimize the disagreement among these matrices. Considering that the ele-

ments in each row (i.e. A
(k)
i. ) have a clear probabilistic interpretation, we use the

Kullback-Leibler divergence for consensus measuring. More formally, we minimize
∑
k α

2
k

∑
i KL(A

(k)
i. ,Ai.), where αk is the weight of the k-th graph. Taking the def-

inition of Kullback-Leibler divergence into it, we minimize the following objective
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function:

min
α,A

m∑

k=1

α2
k

n∑

i=1

n∑

j=1

A
(k)
ij log

A
(k)
ij

Aij

s.t.
n∑

j=1

Aij = 1, 0 ≤ Aij ≤ 1, Aii = 0 (1)

m∑

k=1

αk = 1, αk ≥ 0.

where the first constraint makes sure that Ai. is a probability distribution and Aii = 0

makes the vertices not self-connection; and the constraint
∑m
k=1 αk = 1 is to make

sure that all weights sum up to 1. Note that the Kullback-Leibler divergence is asym-

metry and we minimize KL(A
(k)
i. ,Ai.) instead of KL(Ai.,A

(k)
i. ). If we minimize

KL(Ai.,A
(k)
i. ), Aij must be zero as long as one of A(1)

ij , · · · , A
(m)
ij is zero because180

A
(k)
ij appears in denominator. Obviously, it is not what we really want.

3.3. Feature Selection

To select the features, we define a d-dimension vector v = [v1, v2, · · · , vd] to

indicate the weights of features, i.e., the larger vi is, the more important the i-th feature

is. Then we define a diagonal weight matrix V whose i-th diagonal element Vii =
√
vi.185

Here, the square root is for convenience of computation. To impose the weight on the

instances, we can get the weighted data matrix as VX.

Since A is learned from m graphs and indicates the intrinsic structure of the data,

we wish the selected features can preserve such structure. Here we use a transformation

matrix W ∈ Rd×c to project all weighted instances VX from original space into a new

space by solving the following problem:

min
W,V

n∑

i=1

n∑

j=1

∥∥WTVxi −WTVxj
∥∥2
2
Aij + λ1‖W‖2F ,

s.t. WTVXXTVW = I, (2)

d∑

i=1

vi = 1, vi ≥ 0.

9

                  



where λ1 is a balancing parameter for the `2 regularized term. The first term is to p-

reserve the intrinsic structure in the projected space. In more detail, for each weighted

instance Vxi, one of the other weighted instance Vxj is considered as the neighbor-190

hood of Vxi with probability Aij . It can be found that by minimizing Eq.(2), a large

Aij will lead to a small ‖WTVxi−WTVxj‖22 which means the embedded values of

Vxi and Vxj (i.e. WTVxi and WTVxj) should be close. The first constraint can

remove the redundant features and avoid the trivial solution, and the second constraint

makes the weights in the range [0, 1].195

3.4. Final Objective Function

To integrate the multiple graph learning and feature selection into a unified frame-

work, we combine Eq.(1) and Eq.(2) to obtain the following objective function:

min
W,A,V,α

n∑

i=1

n∑

j=1

∥∥WTVxi −WTVxj
∥∥2
2
Aij + λ1‖W‖2F

+λ2

m∑

k=1

α2
k

n∑

i=1

n∑

j=1

A
(k)
ij log

A
(k)
ij

Aij
, (3)

s.t. WTVXXTVW = I,

d∑

i=1

vi = 1, vi ≥ 0,

m∑

k=1

αk = 1, αk ≥ 0,

n∑

j=1

Aij = 1, 0 ≤ Aij ≤ 1, Aii = 0.

where λ2 is another balancing parameter.

In this framework, the learned graph matrix A is a non-parametric consensus graph

instead of explicitly combining graphs and optimizing structured (e.g. linear) composi-

tions of the graph matrices. Therefore, the learned graph can be as flexible as possible200

to fit the complex data. Moreover, multiple graph learning and feature selection can be

iteratively boosted by each other.
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3.5. Optimization

Firstly, since the variable W and V are entangled, we use a variable transformation

which replaces VW by Φ to simplify the optimization. By using this transformation,

we rewrite the objective function as:

min
Φ,A,v,α

n∑

i=1

n∑

j=1

∥∥∥ΦTxi −ΦTxj

∥∥∥
2

2
Aij + λ1tr(ΦT diag(v)−1Φ)

+λ2

m∑

k=1

α2
k

n∑

i=1

n∑

j=1

A
(k)
ij log

A
(k)
ij

Aij
, (4)

s.t. ΦTXXTΦ = I,

d∑

i=1

vi = 1, vi ≥ 0,

m∑

k=1

αk = 1, αk ≥ 0,

n∑

j=1

Aij = 1, 0 ≤ Aij ≤ 1, Aii = 0.

where diag(v) means a diagonal matrix whose diagonal vector is v.

Since Eq.(4) involves four groups of variables, we optimize it in a block coordinate205

descent schema. In more detail, we optimize one group of variables while fixing the

other variables. This procedure repeats until convergence.

3.5.1. Optimizing Φ by Fixing v, A and α

When other variables are fixed, Eq.(4) is rewritten as follows:

min
Φ

tr(ΦTXLXTΦT ) + λ1tr(ΦT diag(v)−1Φ),

s.t. ΦTXXTΦ = I. (5)

where L = D − (A + AT )/2 and D is a diagonal matrix whose diagonal element

Dii =
∑
j(Aij +Aji)/2.210

When optimizing Φ, Eq.(5) can be solved by generalized eigenvalue decomposi-

tion. However, the time complexity of generalized eigenvalue decomposition isO(d3+
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nd2) and is very time consuming because in feature selection tasks the number of fea-

tures d is often large.

To address this problem, we use a two-step optimization inspired from [47, 35].215

Define a matrix Y ∈ Rn×c whose columns are eigenvectors of L, i.e., LY.i = γiY.i

where γi is one of the eigenvalues of L. If we can find Φ′ ∈ Rd×c such that XTΦ′ =

Y, then each column of Φ′ is an eigenvector of the generalized eigenvalue decompo-

sition problem according to [47, 35].

Therefore, we can solve Φ in Eq.(5) by the two-step optimization: firstly, we solve

the eigenvalue decomposition problem LY = ΓY to get Y; and secondly, we find Φ

by optimizing the following problem:

min
Φ

∥∥Y −XTΦ
∥∥2
F

+ λ1tr(ΦT diag(v)−1Φ). (6)

Set the derivative of Eq.(6) w.r.t. Φ to zero, we can get its closed form solution:

Φ = (XXT + λ1diag(v)−1)−1XY (7)

Note that (XXT + λ1diag(v)−1) is a d-by-d matrix and computing its inverse costs

O(d3) time. For the data whose d � n, we can transform it by the Woodbury matrix

identity as follows:

Φ = (XXT + λ1diag(v)−1)−1XY (8)

= λ−11

(
diag(v)− λ−11 diag(v)X

(
I + λ−11 XT diag(v)X

)−1
XT diag(v)

)
XY.

Obviously, the time complexity is reduced to O(n2d+ ndc+ n3).220

According to [35], optimizing Φ by the two-step method can monotonically de-

crease the objective function.
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3.5.2. Optimizing v by Fixing Φ, A and α

When optimizing v, we need to minimize the following formula:

min
v

tr(ΦT diag(v)−1Φ), (9)

s.t.

d∑

i=1

vi = 1, vi ≥ 0.

According to Cauchy-Schwarz Inequality, we have

tr(ΦT diag(v)−1Φ) =
∑

i

∑
j Φ2

ij

vi
(10)

=
∑

i

∑
j Φ2

ij

vi
·
∑

i

vi

≥


∑

i

√∑

j

Φ2
ij




2

.

The equality in Eq.(10) holds when vi ∝
√∑

j Φ2
ij . So the closed-form solution of

Eq.(9) is

vi =

√∑
j Φ2

ij

∑
i

√∑
j Φ2

ij

. (11)

3.5.3. Optimizing A by Fixing Φ, v and α

When Φ, v and α are fixed, Eq.(3) can be rewritten as:

min
A

n∑

i=1

n∑

j=1

BijAij − λ2
n∑

i=1

n∑

j=1

Cij log(Aij)

s.t.
n∑

j=1

Aij = 1, 0 ≤ Aij ≤ 1, Aii = 0 (12)

where Bij =
∥∥∥ΦTxi −ΦTxj

∥∥∥
2

2
and Cij =

∑m
k=1 α

2
kA

(k)
ij . Obviously Cii = 0 and225

Bii = 0.

Since each row of Eq.(12) is decoupled, we focus on the i-th row. Note that if Ai.
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satisfies
∑n
j=1Aij = 1 and Aij ≥ 0, then Ai. must also satisfy Aij ≤ 1. So we

can drop the constraint Aij ≤ 1 safely. Moreover, since Bii = 0, Cii = 0 and the

constraint makes Aii = 0, we only need to consider Aij for i 6= j. Introducing the

Lagrange multipliers, we obtain the Lagrange function:

L =
∑

j 6=i
BijAij − λ2

∑

j 6=i
Cij log(Aij) + θ


∑

j 6=i
Aij − 1


−

∑

j 6=i
µjAij (13)

where θ and µ are Lagrange multipliers.

Setting the partial derivative of L w.r.t. Aij to zero, we get:

∂L
∂Aij

= Bij − λ2
Cij
Aij

+ θ − µj = 0. (14)

Since Eq.(12) is convex and has a lower bound, a solution which satisfies the Karush-

Kuhn-Tucker (KKT) conditions is the global optima of this subproblem. Considering

its KKT conditions, we obtain:





Bij − λ2 Cij

Aij
+ θ − µj = 0,

∑
j 6=iAij = 1,

Aij ≥ 0,

µjAij = 0,

µj ≥ 0.

(15)

For all j such that Cij 6= 0, according to the KKT conditions, we get Aij =
λ2Cij

Bij+θ−µj

and Aij 6= 0, so µj = 0. Thus Aij =
λ2Cij

Bij+θ
. For all j such that Cij = 0, we get

Bij + θ − µj = 0 and thus µj = Bij + θ ≥ 0.230

Now we first find the smallest element inBij asBip, and then discuss in two cases:

1) In the case that Cip 6= 0, we calculate θ by solving
∑
j:Cij 6=0

λ2Cij

Bij+θ
= 1

in the range (−Bip,+∞). We define a function f(θ) =
∑
j:Cij 6=0

λ2Cij

Bij+θ
and have

limθ→−B+
ip
f(θ) → +∞ and limθ→+∞ f(θ) = 0. Moreover, f(θ) is a monotone

decreasing function in the range (−Bip,+∞). So the equation f(θ) = 1 has and on-235

ly has one solution in the range (−Bip,+∞). After obtaining the solution θ, we set
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Aij =
λ2Cij

Bij+θ
and µj = 0 for the j such that Cij 6= 0. For all other j, we set Aij = 0

and µj = Bij + θ. It is easy to verify that Bij − λ2 Cij

Aij
+ θ − µj = 0,

∑
j 6=iAij = 1

and µjAij = 0 in the KKT condition are satisfied. Since θ ≥ −Bip and Bip is the

smallest element in Bij , for any µj 6= 0, we have µj = Bij + θ ≥ Bij − Bip ≥ 0.240

Similarly, for any Aij 6= 0, we have Aij =
λ2Cij

Bij+θ
≥ 0. Therefore, all KKT conditions

are satisfied.

2) In the case that Cip = 0, we first calculate f(−Bip). If f(−Bip) ≥ 1, we have

the same result that f(θ) = 1 has and only has one solution in the range (−Bip,+∞).

So we compute θ,Aij and µj in the same way as in the first case and all KKT conditions245

are satisfied. If f(−Bip) < 1, we set θ = −Bip and for all j such that Cij = 0, we

set µj = Bij + θ = Bij − Bip. For other j, we set Aij =
λ2Cij

Bij−Bip
and µj = 0.

At last, Aip = 1 −∑j:Cij 6=0Aij = 1 −∑j:Cij 6=0
λ2Cij

Bij−Bip
and all other Aij = 0.

Since f(−Bip) < 1, Aip = 1 − f(−Bip) > 0 and µip = Bip−Bip = 0. So all KKT

conditions are also satisfied.250

To sum up, Aij calculated by the aforementioned method satisfies all the KKT

conditions in Eq.(15) and thus such Aij is the global optima of this subproblem.

3.5.4. Optimizing α by Fixing Φ, v and A

When Φ, v and A are fixed, we rewrite Eq.(3) as follows:

min
α

m∑

k=1

α2
kck,

s.t.

m∑

k=1

αk = 1, αk ≥ 0. (16)

where ck =
∑n
i=1

∑n
j=1A

(k)
ij log

A
(k)
ij

Aij
.

According to Cauchy-Schwarz Inequality, the global optima of Eq.(16) is

αk =
c−1k∑
i c
−1
i

. (17)

According to Eq.(17), αk is inversely proportional to ck, i.e., the smaller ck is, the larger255

αk is. Note that, ck =
∑n
i=1

∑n
j=1A

(k)
ij log

A
(k)
ij

Aij
indicates the difference between the
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k-th graph and the consensus graph, thus the small ck, which lead to a large αk, means

the k-th graph A(k) is close to the consensus graph, i.e., the k-th graph has a high

quality. Therefore, in our method, the learned αk can indeed represent the weight of

the k-th graph.260

To sum up, we alternatively optimize Φ, V, A and α until it converges. Algo-

rithm 1 summarizes the whole process. After obtaining V, we select the l features

corresponding to the largest l vi’s.

Algorithm 1 Feature selection with adaptive multiple graph learning

Input: Data matrix X, m graph adjacency matrices A(1), · · · ,A(m), parameters λ1,
λ2.

Output: Feature weights v.
1: Normalize A(k) (k = 1, · · · ,m) to make each row of it sums up to 1.
2: Initialize A =

∑m
i=1 A(k)/m, and αk = 1/m.

3: while not converge do
4: Compute Φ by Eq.(8).
5: Compute v by Eq.(11).
6: Compute A by solving Eq.(15).
7: Compute α by Eq.(17).
8: end while

3.6. Convergence Analysis

According to [35], updating Φ makes the objective function decreasing monotonous-265

ly. Computing v, A and α always find the global solution of each subproblem. So the

objective function decreases in each iteration. Moreover, the objective function has a

lower bound. Thus our method always converges. In fact, this algorithm converges

very fast (within no more than five iterations in practice).

3.7. Time and Space Complexity270

Since we need to savemn×n graph matrices A(1), · · · ,A(k) and the original data

matrix X, the space complexity is O(mn2 + nd). Furthermore, if the graph matrix is

sparse, i.e., the average number of edges connected to a vertex is κ and κ � n, the

space complexity can be reduced to O(mκn+ nd).

In each iteration of Algorithm 1, we analyze the time complexity now. When opti-275

mizing Φ, as introduced before, the time complexity isO(n2d+ndc+n3). Optimizing
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Table 1: Description of the data sets.

#instances #features #classes
Coil20 1440 1024 20
Jaffe 213 676 10
Lung 203 3312 5
ORL 400 1024 40

Orlraws10P 100 10340 10
PIE 1428 1024 68

TOX-171 171 5748 4
YaleB 2414 1024 38

V or computing Eq.(11) costs O(cd) time. When optimizing A, we first compute B

in O(cn2d) time and C in O(nκ) time. Since we need to solve n subproblems, here

we focus on the i-th one. We need to solve a univariate equation
∑
j:Cij 6=0

λ2Cij

Bij+θ
= 1.

This equation has only one solution and we can solve it by standard root finding al-280

gorithm. We suppose that solving this equation costs O(t) time. Then we need to

computeAi.. Since we suppose that the average number of edges connected to a vertex

is κ, i.e., there are κ non-zero values in the i-th row of A, we compute Ai. in O(t+ κ)

time. Therefore, we can compute A in O(cn2d+ (t+ κ)n) time. Optimizing α costs

O(nmκ) time since we need to compute m ck’s. To sum up, the time complexity is285

O(cn2d+ cnd+ n3 +mκn+ tn), thus the time complexity is linear with the number

of features d. When handling the data set which n� d, we can compute Φ directly by

Eq.(7) instead of Eq.(8), thus time complexity is square with the number of instances

n and cubic with d.

4. Experiments290

In this section, we compare our method with several state-of-the-art unsupervised

feature selection methods on benchmark data sets.

4.1. Data Sets

We collect 8 data sets, including Coil20[48], Jaffe [49], Lung[50], ORL[51], Orlraws10P[51],

PIE[52], TOX-171[48], and YaleB[53]. The important statistics of these data sets are295

summarized in Table 1.
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4.2. Experimental Setup

In our method, we construct 5 k-nn graphs with k = 10: one binary graph using

Euclidean distance, i.e., the weight of an edge is fixed to 1; 3 heat kernel graphs with

the edge weight Aij = e−
‖xi−xj‖22

2∗t∗d0 where d0 is the average Euclidean distance of all300

instances and t = {0.1, 1, 10}; and one cosine graph with the edge weight Aij =

cos(xi,xj). We use these graphs because all of them are very widely-used graphs in

machine learning tasks. We compare our method with the following feature selection

methods:

• AllFea. We use all features for clustering.305

• SingleGraph. We use each of the five graphs introduced before as input in our

method. Since it uses one single graph, the third term of Eq.(3) vanishes and

Eq.(3) degenerates to the following form:

min
W,V

n∑

i=1

n∑

j=1

∥∥WTVxi −WTVxj
∥∥2
2
A

(k)
ij + λ1‖W‖2F

s.t. WTVXXTVW = I,

d∑

i=1

vi = 1, vi ≥ 0. (18)

We solve this problem by the similar block coordinate descent method.

• FSASL [35]. It learns the adaptive global and local structure in the process of

feature selection.

• SOGFS [17]. It learns a graph with optimal structure for unsupervised feature

selection.310

• MGFS [40]. It is a two-step multiple graph feature selection method, i.e., it first

combines multiple graphs to obtain a consensus graph and then uses it to select

features.

• AMFS [43]. It is a multi-view feature selection method and can be easily adapted

to handle multiple graph setting by generating a graph for each view.315
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• RIPCA [54]. It is a rotational invariant projection method which uses `2,1-norm

to perform robust feature extraction.

• LRPFS [22]. It is a feature selection method which tries to preserve the low rank

structure in the process of feature selection.

• URAFS [39]. This unsupervised feature selection method applies the general-320

ized uncorrelated regression to learn an adaptive graph for feature selection.

With the selected features, we evaluate the performance in terms of k-means clustering

by Accuracy (ACC) and Normalized Mutual Information (NMI). We run experiments

10 times and report the averaged results over different number of selected features (in

the range {10, 20, · · · , 200}). We tune the parameters of our method λ1 and λ2 in325

the range [10−3, 103] by the grid search. For other compared methods, we tune the

parameters as suggested in their papers. For all methods on all data sets, the number of

clusters is set to the true number of classes.

4.3. Experimental Results

Firstly, we compare our method with SingleGraph method to evaluate whether it330

helps to use multiple graphs. Each SingleGraph method uses one of the 5 k-nn graphs

as input and optimizes Eq.(18). The ACC and NMI results are shown in Figures 2 and

3, respectively. In Figures 2 and 3, Graph 1 represents the binary graph; Graphs 2-4

represent the heat kernel graph with t = 0.1, 1, 10 respectively; and Graph 5 represents

the cosine graph. We can find that, on the most data sets, our method outperforms335

SingleGraph on all 5 graphs. It demonstrates that considering multiple graphs can

indeed improve the performance of the method using only single graph.

Then, we compare our method with the state-of-the-art unsupervised feature se-

lection methods. Figures 4 and 5 show the ACC and NMI results, respectively. The

yellow horizontal line represents the result of AllFea which is the k-means result on all340

features. We can see that, on most data sets, our method can outperform the AllFea at

most time. It demonstrates that our method can not only largely reduce the number of

features used for clustering, but also often improve the clustering performance. It can
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Figure 2: ACC results compared with SingleGraph.
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Figure 3: NMI results compared with SingleGraph.
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Figure 4: ACC results compared with state-of-the-art feature selection methods.
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Figure 5: NMI results compared with state-of-the-art feature selection methods.
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Figure 6: An illustration of the adjacency matrices of learned graphs in different graph
based methods on Orlraws10P data set. (a) shows the learned consensus graph A in
our method. (b)-(f) show the structure of the base graphs. (g)-(k) show the used or
learned graph structure in the compared feature selection methods.
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also be found that our method outperforms the state-of-the-art feature selection meth-

ods on most data sets, which demonstrates the effectiveness of using adaptive multiple345

graph learning in feature selection. Even if compared with MGFS and AMFS which

can also handle multiple graphs, our method still has a better performance. This reveals

the advancement of our mechanism, i.e., learns an adaptive non-parametric consensus

graph jointly with feature selection can improve the performance of feature selection.

To illustrate the effectiveness of our method, we show the adjacency matrices of the350

learned graphs of our method and other compared graph based methods on Orlraws10P

data set in Figure 6. Figure 6(a) shows the values in the learned A; Figure 6(b)-

(f) show the adjacency matrices of base graphs A(1), · · · ,A(5); Figure 6(g)-(k) show

the learned or used graphs in compared graph based feature selection methods. From

Figure 6, we can see that the structure of the learned graph in our method is clearer than355

not only all based graphs but also the graphs learned by the state-of-the-art methods.

Thus, the learned graph can better uncover the cluster structure of data. This may be

the main reason why our method can outperform both the single graph methods and

the state-of-the-art feature selection methods.
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Figure 7: Convergence curves of our method.
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Figure 8: ACC and NMI w.r.t λ1, λ2 on Coil20 and Jaffe data sets.
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We show the algorithm convergence on Coil20, Lung, ORL and YaleB data sets in360

Figure 7, and the results on other data sets are similar. The example results in Figure 7

show that our method converges within a small number of iterations, which empirically

demonstrates our claims in the previous section.

4.4. Parameter Study

We explore the affect of the parameters on clustering performance by tuning pa-365

rameters λ1 and λ2 in [10−3, 103]. Figure 8 shows the results on Coil20 and Jaffe data

sets and the results are similar on other data sets. The results show that the performance

of our method is stable across a wide range of the parameters, thus we can choose the

parameters easily.

5. Conclusion and Future Work370

In this paper, we proposed a feature selection method with adaptive multiple graph

learning. We made use of multiple graphs to learn an adaptive consensus graph to char-

acterize the intrinsic structure of the data. To boost the structure learning and feature

selection, we integrated them into a unified framework. We then presented a block co-

ordinate descent method whose convergence is guaranteed to optimize the introduced375

objective function. Experimental results demonstrated that our method outperformed

not only the ones using a single graph but also the state-of-the-art feature selection

methods.

By integrating multiple graphs for feature selection, the proposed method can make

full use of the complex structure of data. Moreover, it can also easily handle those data380

which are naturally performed in multiple graphs. However, there are some short-

comings of the proposed method, which we will try to address in the future. Firstly,

although the time complexity is linear with d, it is still cubic with the number of in-

stances. Therefore, it may be inappropriate to handle large scale data sets. In the future,

we will consider this scalability issue and further reduce the time and space complexity.385

Secondly, the proposed method uses all graphs for feature selection. Some graphs may

not characterize the structure of data well. If we use these graphs, on the one hand, they
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may deteriorate the performance of feature selection; and on the other hand, they also

bring more burdens for computation. To address this problem, we will consider the

graph selection before feature selection, which can discard the bad graphs in advance.390

Besides, it would be interesting to extend the proposed method to other feature

learning tasks, such as feature extraction and dimension reduction. By considering

multiple graphs of data, in these tasks, we can learn a more informative projection,

which may better preserve the complex structure of data.
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