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A Tensor Generalized Weighted Linear Predictor for
FDA-MIMO Radar Parameter Estimation
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Abstract—Radar parameter estimation in terms of its range,
angle and velocity plays a crucial role in many applications.
Multiple-input multiple-output (MIMO) radar with frequency
diverse array (FDA) is capable of resolving targets in one direc-
tional beam with different ranges and velocities (Doppler shifts).
Prevalent methods obtain target parameters in a sequential
manner to get rid of exhausted multi-dimensional search, but
they suffer from accumulated estimation errors. To tackle this
issue, a tensor generalized weighted linear predictor (TGWLP) is
devised for FDA-MIMO radar parameter estimation, where the
parameters are estimated in a parallel manner. Tensor modeling
of multidimensional FDA-MIMO radar signal is developed, so
that the joint parameter estimation is casted into multiple-pulse-
group version of three-dimensional (3D) HR problem associated
to the mixed Swerling model. Pulse-group diversity is exploited to
obtain precise velocity estimation. In the presence of targets with
some identical parameters, the final estimations of unambiguous
slant range, conic angle, and radial velocity of a moving target can
be easily obtained after the parallel frequency estimations. Be-
sides, all the parameter pairing is automatically achieved, which
is free of the extra burden from pairing process. Furthermore, the
identifiability of the proposed joint estimator is analyzed. Finally,
theoretical analysis and simulations are included to demonstrate
that the proposed approach can achieve improved performance
compared to the existing methods.

Index Terms—Joint range-angle-velocity estimation, frequency
diverse array, subspace based generalized weighted linear pre-
dictor, harmonic retrieval.

I. INTRODUCTION

PARAMETER estimation in terms of its range, angle
and radial velocity is one of significant radar tasks [1],

[2]. The pertinent radar techniques have attracted increasing
attention due to its robustness to adverse weather and night
operation for autonomous sensing systems [3], [4]. Since
conventional phased-array (PA) beampattern is only angle
dependent, it is difficult for PA to resolve targets at different
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distances by employing a single beampattern. By contrast,
frequency diverse array (FDA) enjoys its range-angle-time-
dependent beampattern, and serves to suppress jamming and
boost joint range-angle detection [5]. FDA employs a small
frequency increment across array elements and has a range-
angle-time-dependent beampattern with coherent waveform
[6]. Different from PA and frequency scanning arrays, FDA
provides continuous beam scanning without phase shifters
or vector modulators [7] and enjoys controllable degree-of-
freedom (DOFs) in space, time, frequency and modulation do-
mains. By virtue of its advantages, FDA has wide applications,
such as high-resolution imaging [8], multipath mitigation [1],
target tracking and localization [9].

Due to the fact that PA is fixed beam steering with a
single direction for all ranges, the range estimation from
PA beamforming output suffers from the inherent ambiguity
problem. The staggered pulse repetition frequency (PRF) is
able to mitigate the range ambiguity, but it may bring difficulty
to the coherent processing in Doppler domain [10]. The
multiple fixed PRF technique favors coherent processing but
it is hard to get rid of ghost targets generated in association
process [11]. Multiple-input multiple-output (MIMO) radar
is a flexible technique, which enjoys higher DOFs in both
temporal and spatial domains. Although distributed MIMO
radar has been suggested for unambiguous localization, phase
synchronization is a real challenge [12]. For colocated MIMO
radar, range-angle estimation has been achieved by a transmit
subaperture optimization, where the range ambiguity could
be overcome [13]. The theoretical performance analysis for
FDA-MIMO radar has been made in [14], where MUSIC-
based range-angle estimator has been proposed. It has been
revealed that a high pulse repetition frequency (PRF) can
be used to alleviate the Doppler ambiguity but would incur
difficulty in mitigating the range ambiguity especially for the
airborne radar systems [15]. A minimum variance distortion-
less response (MVDR) based range-angle estimation method
has been proposed in [16], which solves the range ambiguity
problem caused by the single high PRF. This indicates that the
FDA framework is able to simultaneously alleviate the Doppler
and range ambiguities with only a single PRF. In addition,
the velocity can be determined while the range ambiguous
clutter is mitigated, but multi-dimensional search is necessary
for the three-dimensional (3D) localization [17]. To reduce
the high complexity induced by multi-dimensional search, an
unstructured model based method is proposed in [18] where
3D localization is decomposed into three sequential search
problems. These estimation methods share the similar way that
the estimated value of current parameter will be used for next
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parameter estimation. However, the sequential estimation may
lead to the estimation errors which may accumulate in the
whole process.

This problem can be alleviated by exploring the multi-
dimensional structure of the array measurement. Unlike the
traditional matrix signal processing approaches, tensor signal
processing could enhance array radar performance by ex-
ploiting multi-dimensional association information [19], [20],
[21]. Parallel factor (PARAFAC) based parameter estima-
tion is prevalent, which benefits from iterative techniques,
for example, alternating least squares. According to [19],
PARAFAC based methods might not guarantee convergence
to the global optimum and require some initialization tech-
nique. Tucker3 model based parameter estimation has recently
attracted much attention [22], which can improve multi-
dimensional subspace-based parameter estimation by using
the higher-order singular value decomposition (HOSVD) [20]
and low-rank approximations. Pertinent applications of multi-
dimensional harmonic retrieval (HR) [23] to MIMO radar
has been considered in [24] where two-dimensional angle
estimation is achieved via the PARAFAC algorithm. Another
potential approach to the multi-dimensional HR problem is
subspace based parameter estimation scheme. Tensor ESPRIT
(TE) [25], Unitary Tensor ESPRIT (UTE) [19] and Improved
multi-dimensional folding (IMDF) [26], [27] can handle multi-
dimensional parameter estimation in the presence of identical
parameter, but they may not be able to achieve optimal
estimation performance. Tensor principal-singular-vector uti-
lization for modal analysis (PUMA) [22] can achieve attractive
performance, which benefits from the rank-1 property of the
noisy data matrix and linear predictor (LP) with weighted
least squares (WLS) techniques. Note that the PUMA based
algorithm may not work well when there are identical param-
eters in one or more dimensions [27]. It is shown that the
high resolution of targets with some identical parameters is a
challenging problem especially in the presence of deceptive
jamming [28], [29], [30].

To alleviate the accumulation error, joint parameter esti-
mation for FDA-MIMO radar is first casted into a multi-
dimensional HR problem. The tensor modeling of FDA-
MIMO radar signal is featured with a mixed Swerling target
model for radar cross section (RCS). In the mixed Swerling
case, the RCS of the target should be constant within each
pulse group but varying among different pulse groups. Pulse-
group diversity is exploited to obtain precise velocity estima-
tion. Unambiguous range estimation can be obtained by range
dependence compensation. Furthermore, a tensor generalized
weighted linear predictor (TGWLP) is proposed to improve the
parameter estimator for targets with some identical parameters.
In TGWLP, a complex weighting scheme is devised for the
estimation of array steering tensor and a subspace based
generalized weighted linear predictor (GWLP) is developed
to improve the frequency estimation. The final estimates of
unambiguous slant range, conic angle, and radial velocity of
a moving target can be easily obtained in a parallel manner.
Besides, all the parameter pairings are automatically achieved,
which is free of the extra burden from pairing process. The
identifiability of the proposed method for joint parameter

estimation is analyzed, which is one significant indicator to
determine the maximum number of resolvable target signal
components. Our analysis is based on the multiple-pulse-group
version of 3D HR problem associated to the mixed Swerling
model, rather than typical 3D HR problem associated to the
Swerling I model. According to the analysis, the identifiability
bound should increase as the number of pulse groups increases
until it reaches a threshold.

The main contributions of this paper are listed as follows:

1) We formulate the tensor model of FDA-MIMO radar
signal, where a more generalized Swerling target model is
established for joint parameter estimation. Thus, we can
not only obtain precise velocity estimation by exploiting
pulse-group diversity, but also obtain unambiguous range
estimation by range dependence compensation.

2) We propose TGWLP to improve the parameter estimates
of targets with some identical parameters. In TGWLP,
the estimate of array steering tensor is first improved
via a complex weighting scheme, and then the parallel
frequency estimation is obtained by a subspace based
GWLP. Finally, the estimates of range, angle and velocity
are efficiently obtained from the estimated frequencies
and all the parameters are automatically paired.

3) We make an analysis of the identifiability of the proposed
method for joint parameter estimation, which is based
on the multiple-pulse-group version of 3D HR problem
associated to the mixed Swerling model, rather than
typical 3D HR problem associated to the Swerling I
model.

The rest of this paper is organized as follows. In Section
II, the signal model of forward-looking FDA-MIMO radar is
formulated. In Section III, the tensor data model for joint
range-angle-velocity estimation is then established after the
preprocessing procedures like range compensation. In Section
IV, the proposed framework of tensor based multi-dimensional
parameter estimation is presented, and the joint range-angle-
velocity estimation via TGWLP without parameter pairing
is illustrated. Besides, the complexity and identifiability of
TGWLP are given and the benchmark to assess unbiased
estimators for the FDA-MIMO radar ia derived. Extensive sim-
ulation results are presented in Section V. Finally, conclusions
are drawn in Section VI.

Notation: Scalars, vectors, matrices and tensors are de-
noted by italic, bold lower-case, bold upper-case and bold
calligraphic symbols, respectively. The angle of a complex
number a is written as ∠ (a). |·| denotes the complex mod-
ulus. diag (y) is a diagonal matrix that holds the entries
of the vector y on its diagonal. (·)T , (·)H , (·)-1, ⊗, �,
◦, .∗ and ./ denotes the transpose operation, the conjugate
transpose operation, inverse operation, the Kronecker product,
the Khatri-Rao product, the Hadamard (elementwise) product
and the elementwise division, respectively. A tensor of size
N1×N2×· · ·×ND is denoted by a calligraphic letter Y , and its
elements are denoted by Yn1,n2,...,nD . The ηth unfolding of the
tensor Y is written as [Y ](η) ∈ CNη×(N1N2···Nη−1Nη+1···ND)

where the order of the columns is chosen according to [31].
The η-mode product of tensor Y and matrix U ∈ CMη×Nη
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Fig. 1. Forward-looking collocated FDA-MIMO radar geometry.

along the ηth dimension is expressed as B = Y×ηU ∈
CN1×N2×···×Nη-1×Mη×Nη+1×···×ND . The symbol tη represents
the concatenation operator where Y = Y1tηY2 is obtained
by stacking Y2 ∈ CN1×N2×···×Nη-1×L2×Nη+1×···×ND to the
end of Y1 ∈ CN1×N2×···×Nη-1×L1×Nη+1×···×ND along the ηth
dimension. d·e stands for integer ceiling, and b·c stands for
integer floor.

II. SIGNAL MODEL OF FDA-MIMO RADAR

Consider a narrowband MIMO radar system with N1

transmit antennas and N2 receive antennas. The interspacing
between transmit antennas is denoted as dT and similarly that
of receive antennas as dR. The first element is chosen as the
reference point. Fig. 1 shows the geometry of the forward-
looking collocated FDA-MIMO radar. The target is assumed
to be located at xoy plane. The range bins stand for the grids
along the slant range. The conic angle θ stands for the angle
between the incident ray and the axis of the antenna array. The
elevation angle ϕ′′ denotes the angle between zox plane and
antenna array. The base angle ϕ′ denotes the angle between
xoy plane and incident ray. We have the following assumptions
regarding an arbitrary target:
A1 The conic range rp is much larger than the apertures of

the FDA-MIMO radar, so a target is modeled as a point-
source in the far-field [6] with the electromagnetic wave
independently propagating in the free space.

A2 The relationship among conic angle {θp}Pp=1, base angle

{ϕ′p}Pp=1 and elevation angle
{
ϕ′′p
}P
p=1

can be written as:
cos (θp) = cos(ϕ′p) cos(ϕ′′p).

A3 N1 transmitted waveforms {sn1
(t)}N1

n1=1 are mutually
orthogonal and the narrowband transmitted signal of the
n1th element can be expressed as:

sn1
(t) =

√
E

N1
φn1

(t)ej2πfT (n1)t, n1 = 1, 2, . . . , N1,

(1)
where fT (n1) denotes the carrier frequency at the n1th
antenna, φn denotes the unity-energy waveform, i.e.,

∫ TP
0

φni (t) conj (φni (t))dt = 1, E is the total transmit-
ted energy and the waveforms satisfy the orthogonality
condition, that is∫ TP

0

φi1(t)conj(φi2(τ − t))ej2π∆f(i1−i2)tdt = 0,

i1, i2 = 1, 2, . . . , N1, i1 6= i2,

(2)

where the notation conj (·) stands for the conjugate
operator, τ is the time shift within the pulse with τ <=
TP /N1, TP denotes the pulse repetition interval (PRI).

A4 The carrier frequency at the n1th antenna satisfies
fT (n1) = fC + (n1 − 1) ∆f , n1 = 1, 2, . . . , N1, where
the frequency increment ∆f is negligible compared with
the carrier frequency fC , i.e., fC � ∆f .

A5 A total of Q probing pulses are regarded as Qg pulse
groups. The RCS is constant within each group, but it
varies from pulse group to pulse group. In this scenario,
the mixture of Swerling I and II target models with
nondispersive propagation medium [24] is considered.

According to [32], the range bin interval (receive array
sampling interval) can be shorter than the range resolution
unit determined by the signal bandwidth B, the conic angle
bin interval (antenna scanning step) can be smaller than the
beamwidth. The total number of range bins is determined by
the product of sampling rate fs and PRI TP .

The range resolution, the Doppler resolution, the maximum
unambiguous Doppler frequency and the maximum unambigu-
ous range can be determined. According to [33], the traditional
range resolution and Doppler resolution are determined by
c/2B and fPRFQg/Q, respectively, with fPRF being PRF
and fC � B � fPRF . The maximum unambiguous Doppler
frequency is fPRF . The maximum unambiguous range rpmax
equals c/2fPRF . In the following, we consider colocated
FDA-MIMO radar transmitting only one PRF to solve the
multi-dimensional parameter estimation problem in the pres-
ence of multiple moving targets with range ambiguity.

A. Received Signal Model

Without loss of generality, multi-target case of joint range-
angle-velocity estimation for FDA radar is considered, which
can be regarded as a more generalized version of the array
signal model in [16] and [18]. For an arbitrary target, the signal
received by the n2th element can be written as:

xn2 =

P∑
p=1

N1∑
n1=1

√
E

N1
ξpφn1 (t− τn1,n2,p)

× ej2π(fT (n1)+fD(p,n1))(t−τn1,n2,p)

=

P∑
p=1

N1∑
n1=1

√
E

N1
ξpφn1

(t− τn1,n2,p)

× ej2πfD(p)(t−τn1,n2,p)ej2πfT (n1)(t−τn1,n2,p)

(3)

where ξp denotes RCS of the pth target, τn1,n2,p = [2rp −
dT (n1−1) cos(θp)−dR(n2−1) cos(θp)]/c denotes the trans-
mit plus receive time delays, fD(p, n1) denotes the Doppler
frequency, i.e., fD (p, n1) = 2vp/λn1 , vp is the radial ve-
locity of the pth target, λn1

= c/fT (n1) is the wavelength
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corresponding to the n1th transmit antenna and λ0 = c/fC
is the reference wavelength. Actually, the Doppler frequency
corresponding to the pth target can be approximately expressed
as fD(p) = 2vp/λ0 since the frequency increment is negligible
compared with the carrier frequency.

The measurement data are down converted, matched filtered
and stored in the receive array. The matched filters yield out-
puts correspond to isolated propagation paths from transmitters
to receivers. After matched filtering by φn1(t)ej2π∆ft [16], the
n1th output of the n2th received antenna can be expressed as:

xn2,n1
≈

P∑
p=1

√
E

N1
ξpe

j2πfD(p)(t−2rp/c )e−j4π
fT (n1)

c rp

× ej2π fT (n1)

c [dT (n1−1) cos(θp)+(n2−1)2πdR cos(θp)]

≈
P∑
p=1

√
E

N1
ξpe

j2πfD(p)(t−2rp/c )e−j4πfCrp/c

× ej(n1−1)2π[fCdT cos(θp)−2∆frp]/c ej(n2−1)2πdR cos(θp)/λ0

(4)
The approximation in (4) is obtained since the frequency
increment is relatively negligible [34].

It is well known that the RCS is constant during the CPI in
Swerling I target model, while it varies from pulse to pulse in
Swerling II target model. The common idea is shared that the
Swerling models are employed to approximate and simplify
the RCS variation during a processing time. In order to unify
the two Swerling cases, the RCS is assumed to be constant
during each small part of the whole processing time but it
varies from part to part. In this sense, the whole processing
time is equivalent to the combination of many short CPIs in
practice. Therefore, our assumption is based on the coexisting
of Swerling I and II cases which can be easily proved. In the
mixed Swerling case, the RCS is constant within each pulse
group, but it varies among different pulse groups. Let q =
1, 2, . . . , Qg and n3 = 1, 2, . . . , N3 (N3 = Q/Qg) denote the
indices of the pulse groups and the pulses within each group,
respectively. We define t = (q − 1)N3TP + (n3 − 1)TP and
(4) can be further expressed as:

xn2,n1,n3,q =

P∑
p=1

√
E

N1
ξp (q) ej(n3−1)2πfD(p)TP

× ej(n1−1)2π[fCdT cos(θp)−2∆frp]/cej(n2−1)2πdR cos(θp)/λ0

(5)
The term ej2πfD(p)[(q−1)N3TP−2rp/c]e−j4πfCrp/c in (5) is
absorbed into ξp (q) which varies among different pulse groups
and herein we do not include the term for the sake of
simplicity.

B. Received Data in Vector Form

According to (5), the virtual data snapshot can be expressed
in vector form:

x̃(n3, q) =

P∑
p=1

√
E

N1
ξp(q)cp(n3)(a(rp, θp)⊗ b(θp))

+ z(n3, q)

(6)

where ξp(q) accounts for the RCS in mixed Swerling case,
cp(n3) = ej(n3−1)2πfD(p)TP accounts for the Doppler effect
within the each pulse group, z(n3, q) denotes the noise term,
A(r,θ) = [a(r1, θ1),a(r2, θ2), . . . ,a(rP , θP )] ∈ CN1×P is
transmit steering matrix, B(θ) = [b(θ1), b(θ2), . . . , b(θP )] ∈
CN2×P is receive steering matrix, b(θ) and a(r, θ) are the
receive and transmit steering vectors, respectively, defined as:

b (θp) =
[
1, ej2π

dR
λ0

cos(θp), . . . , ej2π
dR
λ0

(N2−1) cos(θp)
]T

(7)

a (rp, θp) = r (rp) . ∗ d (θp) (8)

where r(rp) = [1, e−j4π∆frp/c, . . . , e−j4π∆f(N1−1)rp/c]
T

is the transmit range steering vector and d(θp) =

[1, ej2πdT cos(θp)/λ0 , . . . , ej2πdT (N1−1) cos(θp)/λ0 ]
T

is the trans-
mit angular steering vector. For the frequency increment is
zero, the array model in (6) can be simplified to the conven-
tional MIMO radar with fixed carrier frequency [24]. Since
the transmit steering vector in (8) is not only angle-dependent
but also range-dependent, the FDA-MIMO radar could utilize
the joint transmit and receive degrees of freedom to determine
the range and angle parameters.

III. DATA MODEL FOR JOINT RANGE-ANGLE-VELOCITY
ESTIMATION

A. Range Dependence Compensation

FDA-MIMO radar benefits from transmit steering vector
and provides resolvability in range. For the high PRF radar,
the true range of the pth target in presence of range ambiguity
is written as:

rp = rp0 + (kp − 1) rpmax, kp = 1, 2, . . . ,K (9)

where rp0 is the principal range of the target which is also
the ambiguous range according to [16], kp is the index of
range ambiguity of the target, K denotes the number of
ambiguous ranges, rpmax = c/(2fPRF ) denotes the maximum
unambiguous range.

Traditionally, the range estimate falls within some adjacent
range resolution cell and the range estimation accuracy is
limited by the signal bandwidth. However, range estimation ac-
curacy can be further improved by range dependence compen-
sation on the received data. The compensation is implemented
range by range, followed by the principal range difference
estimation. Note that the priori range estimate

^

r approximately
equals the principal range. The principal range difference is
defined as:

∆rp = rp0 −
^

r p (10)

where
^

r p is the priori range estimate, which is also the priori
ambiguous range estimate and can be calculated with the range
bin number and bin size, the principal range difference ∆rp
is relatively small and falls within a single range resolution
cell, which can be regarded as a random variable uniformly
distributed between [−c/4B, c/4B]. Thus, the range compen-
sating vector can be expressed as:

h1N2
= h

(^
r p
)
⊗ 1N2

(11)
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where h
(^
r p
)

=
[
1, ej2π

2∆f
c

^
r p , . . . , ej2π

2∆f
c (N1−1)

^
r p
]T
,1N2

denotes the vector with all elements being equal to one. After
compensation, the received data in (6) can be expressed as
(12) where r̃p = ∆rp + (kp − 1)rpmax. It can be concluded
that range estimation is equivalent to estimating kp and
∆rp. Since the principal range difference ∆rp is relatively
small and falls within a single range resolution cell, the
compensated range frequency of the target in FDA-MIMO
radar can be viewed as a shift of the range frequency of
traditional MIMO by a factor corresponding to the index
of range ambiguity. The index of range ambiguity can be
estimated accurately by MVDR based approach when the
frequency increment is carefully selected [16]. With the index
determined, estimation accuracy of the range and the other
parameters can be further improved via tensor modeling.

B. Data Tensor Model for Joint Range-Angle-Velocity Estima-
tion

In [16] and [18], data matrices are single-target oriented and
multiple dimensional parameters are sequentially estimated.
By contrast, parallel parameter estimation based on multiple-
target oriented data tensor model in mixed Swerling case
is studied in this paper. Before that, we build a compact
multi-target oriented data model. According to (12), the total
received data after the compensation can be written in the
following four-order tensor form:

Y = X̃ + Z̃ (13)

where the noise free tensor X̃ ∈ CN1×N2×N3×Qg has entries
of the form:

X̃n,m,l,q =

P∑
p=1

ξp (q) ej(n1−1)ω1,pej(n2−1)ω2,pej(n3−1)ω3,p

(14)
where ω1,p = 2π [dT fC cos (θp)− 2r̃p∆f ]/c relies on both
range and angle, ω2,p = 2πdRfC cos (θp)/c and ω3,p =
4πvpTP /λ0 are dependent on angle and velocity, respectively,
the observed tensor Y and the noise tensor Z̃ are of size
N1×N2×N3×Qg . Z̃ represents the additive noise component
inherent in the measurement process, which can be modeled
as a zero-mean random process that is uncorrelated in all
dimensions.

The decomposition in (14) is also known as a multi-
dimensional HR problem, where the data representation for un-
ambiguous estimation allows more efficiency in the extraction

of joint range-angle-velocity information. The measurement
data is modeled as a superposition of undamped exponentials
sampled on a 3D grid at Qg pulse-groups of intervals. The
data is sampled on a four-dimensional lattice, so the 3D
parameter estimation is casted into a multiple-pulse-group
version of the 3D HR problem [24]. Note that conventional
methods suffer from the accumulated estimation errors due to
the sequential frequency estimation from the matrix or vector.
To overcome this problem, our method focus on the parallel
frequency estimation from the data tensor in (13). With the
estimated frequencies {ω̂η,p} in IV-B, the angle and velocity
are computed according to (14) as:

θ̂p = acos(
ω̂2,pc

2πdRfC
) (15)

v̂p =
ω̂3,pλ0

4πTP
(16)

With k̂p obtained in the similar way to [16], the principal range
difference is then estimated as follows:

∆r̂p =
dT fC cos(θ̂p)

2∆f
− ω1,pc

4π∆f
− (k̂p − 1)rmax (17)

The whole algorithm of the multi-dimensional parameter esti-
mation is summarized at the end of IV-B.

IV. TENSOR GENERALIZED WEIGHTED LINEAR
PREDICTOR BASED ESTIMATOR

In this section, a tensor generalized weighted linear pre-
dictor (TGWLP) based estimator is proposed. The main pro-
cedure and derivation of TGWLP based estimator are given
in section IV-A, where the complexity is also anylized. The
performance degradation problem in the presence of identical
or close frequencies are alleviated by the complex weighting
optimization, which is illustrated in section IV-B. Then, the
indicator to determine the maximum number of resolvable
components for the proposed method is given in IV-C. Finally,
the benchmark to assess the unbiased parameter estimators for
FDA-MIMO radar is studied in IV-D.

A. Tensor based Multi-dimensional Parameter Estimation

According to the structure of the data (14), a generalized
noise-free data tensor X ∈ CN1×N2×···×ND×Qg with Qg pulse
groups can be expressed as:

X = ID+1
P ×1G

(1)×2G
(2) · · · ×DG(D)×D+1G

(D+1) (18)

y (n3, q) = x̃ (n3, q) . ∗ h1
N2

=

[
P∑
p=1

√
E

N1
ξp(q)cp(n3)(a(rp, θp)⊗ b(θp)) + z(n3, q)

]
. ∗ h1

N2

=

P∑
p=1

√
E

N1
ξp (q) cp (n3)

(
r (rp) . ∗ d (θp) . ∗ h

(^
r p
))
⊗ b (θp) + z (n3, q) . ∗ h1

N2

=

P∑
p=1

√
E

N1
ξp (q) cp (n3) (r (r̃p) . ∗ d (θp))⊗ b (θp) + z (n3, q) . ∗ h1

N2

(12)
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where ID+1
P ∈ CP×P×···×P denotes a (D + 1)-dimensional

tensor whose (p, p, · · · , p) entry equals 1 and zero otherwise.

G(η) =
[
g

(η)
1 g

(η)
2 · · · g

(η)
P

]
, (19)

g(η)
p =

[
1 ejωη,p · · · ej(Nη−1)ωη,p

]T
,

η = 1, 2, . . . , D,
(20)

g(D+1)
p =

[
ξp (1) ξp (2) · · · ξp (Qg)

]
. (21)

On the other hand, the HOSVD of the noise-corrupted X can
be written as the following product:

Y = S×1U
(1)×2U

(2) · · · ×DU (D)×D+1U
(D) (22)

where S ∈ CN1×N2×···×ND×Qg is the core ordered tensor
satisfying the property of all-orthogonality, U (η) is the unitary
matrix containing the ηth mode singular vectors [31].

Since Y is of rank P , it can be estimated by using the
truncated HOSVD [31]:

Y = Ss×1U
(1)
s ×2U

(2)
s × · · ·×DU (D)

s ×D+1U
(D+1)
s (23)

where Ss has only the first Mη elements of Ss in the
ηth dimension and Us

(η) contains the first Mη dominant
singular vectors of Us(η) with Mη = min

{
P,Nη, N̄Qg/Nη

}
,

MD+1 = min
{
P, N̄

}
and N̄ =

∏D
η=1Nη . The tensor-based

signal subspace of Y can be expressed as [19]:

Us = Ss×1U
(1)
s ×2U

(2)
s ×· · ·×DU (D)

s ∈ CN1×N2×···×ND×P

(24)
According to [26], when P ≤ min{Qg, N̄}, [Us]T(D+1) has
P columns that together span the same column space of
[Y ]T(D+1). The column space is also spanned by [Gs]T(D+1)

where the array steering tensor Gs ∈ CN1×N2×···×ND×P is
expressed as:

Gs = ID+1
P ×1G

(1)×2G
(2) · · · ×DG(D)

= Gs1tD+1Gs2tD+1 · · · tD+1GsP
(25)

where the tensor Gs in (25) has been expressed as concatenated
subtensors {Gsp}Pp=1 and each of the concatenated subtensors
is featured with only single tone. The subtensor Gsp in (25)
is further expressed as:

Gsp ≈ εpg(1)
p ◦ g(2)

p ◦ · · · ◦ g(D)
p , p = 1, 2, ..., P (26)

with {εp} being unknown complex scalars. The model in (26)
aims to express how the concatenated subtensor is decomposed
into D-dimensional component of the single tone. Thus, the
linear prediction property of each dimensional component can
be exploited afterwards. Note that it is different from the
parameter estimation based on the typical PARAFAC model
where the iterative techniques require many iterations and
tolerable initialization [19]. The proposed estimator based on
HOSVD can alleviate the problem. There exists the linear
prediction property of g(η)

p , so a system of linear equations
of {ρη,p} can be obtained as:

g(η)
nη ≈ ρη,pg

(η)
nη−1, ρη,p = ejωη,p (27)

where g
(η)
nη denotes the nηth element of g

(η)
p , nη =

2, 3, . . . , Nη . Under sufficiently small noise conditions, there
exists a P × P nonsingular matrix T such that

[Us](D+1) ≈ T [Gs](D+1) (28)

According to [35], the HOSVD-based methods can obtain
the improved estimation of true signal subspace via the high
dimensional space projection. It is very possible to lead to
smaller effective noise conditions, which makes (28) hold.
With the estimated T in subsection IV-B, the estimation of
Gs can be obtained as:

Ĝs ≈ Us×D+1T
T (29)

Applying another truncated HOSVD to the subtensor Gsp and
yields

Gsp ≈ γp×1α
(1)
p ×2α

(2)
p × · · ·×Dα(D)

p (30)

where
[Gsp](η) ≈ α

(η)
p γη,pβ

(η)
p (31)

is the rank-1 SVD truncation with |γp|2 = γ2
η,p for any η

[23]. Comparing (26) and (30), it is seen that the noise-free
α

(η)
p spans the same subspace as g(η)

p , meaning that α(η)
p ≈

εη,pg
(η)
p where εη,p is a complex scalar. There exists the linear

prediction property of α(η)
p which is similar to that of g(η)

p in
(26), so a system of subspace based linear equations of {ρη,p}
can be obtained as:

α(η)
nη ≈ ρη,pα

(η)
nη−1, ρη,p = ejωη,p (32)

where α(η)
nη denotes the nηth element of α(η)

p , with the linear
prediction error being

δ
(η)
ñη

= α(η)
p,nη − ρ̃η,pα

(η)
nη−1, ñη = 1, 2, . . . , Nη − 1 (33)

where δ
(η)
ñη

denotes the ñηth element of complex Gaussian
noise vector δ(η) with zero mean and variance σ2

η , and ρ̃η,p is
a variable corresponds to ρη,p which is to be determined.

A GWLP frequency estimator based on the principal left
singular vector is further developed to solve the linear pre-
diction problem in (32). The multi-dimensional HR problem
is decomposed into the multiple separate solutions of one-
dimensional subspace based linear predictions, where the
frequencies in all dimensions can be obtained by utilizing the
linear prediction property and the weighted least squares. The
corresponding estimated frequency, denoted by {ω̂η,p}, can be
obtained as [36]:

ω̂η,p=∠
(

(J1,ηα
(η)
p )

H
W (η) (ωη,p)J2,ηα

(η)
p

)
(34)

where J1,ηα
(η)
p and J2,ηα

(η)
p are equal-sized selected sub-

vectors corresponding to the signal subspace, ∠ represents
the phase angle operator and the optimum weighting ma-
trix W (η) (ωη,p) is characterized by the unknown frequency,
which has a closed form with the (km, kn)th entries being[
W (η)(ωη,p)

]
km,kn

=
Nη min(km, kn)− kmkn

Nη
ej(km−kn)ωη,p

(35)
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where km = 1, 2, . . . , Nη − 1, kn = 1, 2, . . . , Nη − 1. As
the frequency is unknown, an initial frequency estimation of
{ω̂η,p} is obtained by using weighted linear predictor (WLP)
[37], that is,

ω̂η,p = ∠

Nη−1∑
km=1

6

N2
η − 1

α
(η)
km

[
W (η)(ωη,p)

]
km,km

α
(η)
km+1


(36)

Thus, the iterative relaxation procedure of frequency estima-
tion is summarized in Table I. Note that the iterations are set
as no more than 2, according to [36], because of no significant
improvement for more iterations.

TABLE I
SUBSPACE BASED GENERALIZED WEIGHTED LINEAR PREDICTOR

1)Obtain initial frequency estimation of ω̂η,p from each α(η)
p according to (36).

2)Use ω̂η,p to construct optimum weighting matrix W (η) (ωη,p) from (35).
3)Update the estimation of ω̂η,p using W (η) (ωη,p) in 2) according to (34).
4)Repeat Steps 2) and 3) until parameter convergence.

In order to achieve a higher estimation accuracy, Y in Ta-
ble II can be replaced by the forward-backward (FB) averaging
version Y(FB), which is obtained as:

Y(FB) = YtD+1Y∗ ×ΠN1
×ΠN2

× · · · ×ΠQg (37)

where ΠNη symbolizes the Nη × Nη matrix with ones in
its anti-diagonal and zeros elsewhere. Correspondingly, the
algorithm is named as TGWLP-FB.

The major computational complexity of the TGWLP algo-
rithm is studied as follows. Firstly, the HOSVD of Y involves
(D+1) SVDs, which is of O(κP (D+1)Qg

∏D
η=1Nη), where

κ is a constant depending on the design of the algorithm [38].
This step is most computationally demanding but only needs to
compute once. Then, the complexity for the truncated HOSVD
of P subtensors Gsp ∈ CN1×N2×···×ND , p = 1, 2, · · · , P ,
is O(κP

∏D
η=1Nη) because contains only one frequency.

Finally, the GWLP iterations require only multiplication and
addition and their computational complexities are not included.
Combining the results, the overall computational requirement
is O(κP (D+ 1)Qg

∏D
η=1Nη) +O(κP

∏D
η=1Nη). The main

complexity of TGWLP-FB remains unchanged while Qg will
be replaced by 2Qg , though the tensor size is larger.

B. Complex Weighting based Nonsingular Matrix Estimation
False targets generated by deceptive jammers have sim-

ilar characteristics with the true target in multiple aspects,
including space, time, frequency and Doppler [30], which
makes parameter estimation of jammer a significant task in
the radar. This calls for the approach to handle identical
frequency scenarios. However, the estimation performance
degrades in the presence of identical or close frequencies,
since the eigenvectors are not linearly independent any more.
To address this issue, an optimized complex weighting scheme
is proposed, which is similar to [27].

Firstly, subtensors Us1 and Ũs2 (η) , η = 1, 2, . . . , D, are
constructed as:
Us1 = Us×1J1,1×2J1,2 × · · ·×DJ1,D

= Ss×1J1,1U
(1)
s ×2J1,2U

(2)
s × · · ·×DJ1,DU

(D)
s

(38)

Ũs2 (η) = Ss×1J1,1U
(1)
s · · · ×η−1J1,η−1U

(η−1)
s

×ηJ2,ηU
(η)
s ×η+1J1,η+1U

(η+1)
s · · · ×DJ1,DU

(D)
s

(39)

where
J1,η =

[
INη−1 0(Nη−1)×1

]
(40)

and
J2,η =

[
0(Nη−1)×1 INη−1

]
(41)

are selection matrices. In the absence of noise, we have:

Us1×D+1

(
Ψ(η)

)T
= Ũs2 (η) (42)

where Ψ(η) = T (η)Φ(η)
(
T (η)

)−1
with T (η) being a nonsin-

gular matrix and Φ(η) is a diagonal matrix which contains the
frequency information:

Φ(η) = diag
([
ejωη,1 ejωη,2 · · · ejωη,P

])
(43)

In fact, when there exist identical frequencies in one or
more dimension, the eigenvectors of Φ(η) are not linearly
independent anymore [34], which leads to the unreliable
estimation of Gs and the degraded performance of frequency
estimation. To solve this problem, a complex weighting based
nonsingular matrix estimation method is utilized. Equal-sized
subtensors Ũs2 (η) are used to construct:

Us2 =

D∑
η=1

ϑηŨs2 (η) (44)

where {ϑη}Dη=1 are a set of complex weighting factors. Anal-
ogous to (38),

Us1×D+1(Ψs)
T

= Us2 (45)

where
Ψs = TΦsT

−1 (46)

where T denotes the nonsingular matrix to be determined and

Φs = diag
([
ψ1 ψ2 · · · ψD

])
(47)

where ψη =
∑P
p=1 ϑηe

jωη,p . In our study, an approximate
minimization of the mean square frequency error [27] is
employed. The suboptimum selection can be obtained via the
optimization as follows:

ϑ̂ = arg max
ϑ

P−1∑
pi=1

P∑
pj=pi+1

∥∥∥(ρTpi − ρTpj)ϑ∥∥∥2

2

= arg max
ϑ
ϑHΩHΩϑ

s.t.‖ϑ‖2 = 1

(48)

where

Ω = [ρ1,2,ρ1,3, · · · ,ρ1,F ,ρ2,3, · · · ,ρP−1,P ]
T

ρpi,pj = ρTpi − ρ
T
pj

ρp =
[
ejω1,p , ejω2,p , · · · , ejωD,p

]T (49)

It is evident that the solution of (48) can be given by the
eigenvector corresponding to the largest eigenvalue of ΩHΩ.
Since Ω is constructed by the unknown frequencies, iterative
estimations of {ωη,p} and ϑ are required. The initial each
element of complex weighting factors ϑ satisfies that |ϑη| =
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1/
√
D and the phase of ϑη is uniformly distributed within

[−π, π]. The complete procedure of parameter estimation is
summarized in Table II.

TABLE II
TENSOR GENERALIZED WEIGHTED LINEAR PREDICTOR BASED METHOD

1) Compute HOSVD of Y to obtain Us in (24), and generate initial ϑ
For iter1=1,2,. . . ,ι do.
2) Construct Us1 and Us2 according to (38), (39) and (44), then compute

Ψs =
(

[Us1]TD+1

)† (
[Us2]

T
D+1

)
from (45).

3) Perform eigenvalue decomposition on Ψs to obtain Ts of (46)
and solve Gs according to (28) as [Gs]TD+1 = [Us]TD+1 Ts.
4) For each p, extract subtensor Gsp from Ĝs (25)
and perform truncated HOSVD to obtain α(η)

p from (30).
5) For each α(η)

p , compute the GWLP solution of {ω̂η,p} based on Table I.
6) Determine θ̂p, v̂p ∆r̂p, based on (15)-(17). Note that all the parameters are
paired up.
7) Construct Ω according to (49) and compute dominate eigenvector of ΩHΩ
to get update ϑ.
End for

C. Identifiability

One significant indicator for joint parameter estimation
methods is to determine the maximum number of resolvable
components for a given sample size in the noiseless case,
which is also referred to as the identifiability bound herein.
The conventional identifiability bound provides a sufficient
identification condition for multidimensional frequency esti-
mation. In this section, the identifiability of the proposed
TGWLP method for joint range-angle-velocity estimation of
FDA-MIMO radar is analyzed.

The single-pulse-group measurement data during the qth
pulse-group interval in (14) can be simply modeled as a
constant modulus 3D HR problem:

X̃n,m,l =

P∑
p=1

ξ′pe
j(n1−1)ω1,pej(n2−1)ω2,pej(n3−1)ω3,p (50)

which can be regarded as a typical 3D HR problem associated
to the Swerling I target model. For the constant modulus 3D
HR problem, it was proven in [39], that, if

P ≤
⌈
N1

2

⌉
×
⌈
N2

2

⌉
×
⌈
N3

2

⌉
(51)

then the decomposition is almost surely unique, provided that
the 3P frequencies (ω1,p, ω2,p, ω3,p), p = 1, 2, ..., P , are
drawn from a jointly continuous distribution. Later on, this
bound was relaxed in [19], where it was proven that, if

P ≤ max
N ′η+N ′′η=Nη+1

1≤N ′η≤Nη
1≤η≤3

min

{
2

3∏
η=1

N ′η,

3∏
η=1

N ′′η

}
(52)

where N ′η+N ′′η = Nη+1, then the decomposition is almost
surely unique, given that the frequencies (ω1,p, ω2,p, ω3,p), p =
1, 2, ..., P , are drawn from a jointly continuous distribution.

Since the multiple-pulse-group measurement data in (14) is
modeled as a superposition of undamped exponentials sampled
on a 3D grid at Qg pulse-groups of intervals, the data is
sampled on a four-dimensional lattice. In our work, the 3D

parameter estimation is casted into a multiple-pulse-group
version of the 3D HR problem [24], which is associated
to the mixed Swerling target model. It is assumed that the
observed tensor is modified via FB averaging in (37) and
spatial smoothing [19] as:

Ysmooth ∈ CN
′

1×N ′2×···×N ′3×Qg ′ (53)

where Qg ′ = 2Qg
3∑
η=1

N ′′η . It was proven in [27], that, if

P ≤ max
N ′η+N ′′η=Nη+1

1≤N ′η≤Nη
1≤η≤3

min

{
3∏
η=1

(N ′η − 1) , 2Qg

3∏
η=1

N ′′η

}

(54)
then the decomposition in (14) is almost surely unique, given
that the 3P frequencies {ωη,p}3η=1, and PQg coefficients
{ξp (q)}Qgq=1, p = 1, 2, ..., P , are assumed to be drawn from
jointly continuous distributions with respect to the Lebesgue
measure in O3P×1 and CPQg×1, respectively. O denotes as
the set (−π, π] . That is, the range, angle and velocity can
be unambiguously estimated if the following conditions are
satisfied: {

|4∆rp∆f − cos (θp) c| ≤ c
4 |vp| ≤ λ0fPRF

(55)

Furthermore, when Qg ≤ 1
2

∏3
η=1 (Nη − 1), the identifia-

bility bound is no greater than
⌊

2QgN̄

(1+ 3
√

2Qg)
3

⌋
; when Qg ≥

1
2

∏3
η=1 (Nη − 1), the identifiability bound becomes a con-

stant
∏3
η=1 (Nη − 1) which is approximate to the data sample

size of single pulse group, and there is no data smoothing in
this case from the perspective of maximizing identifiability
since N ′′η = 1 and N ′η = Nη , for any η.

D. Performance Analysis

For fair comparison with the proposed method, the bench-
mark to assess the unbiased parameter estimators for FDA-
MIMO radar is studied in terms of the Cramér-Rao bound
(CRB). Consider the interference-free case, the CRBs for
ranges, angle, and velocity can be expressed as:

Dv =
1

2QSNR

12

N1N2N3 (N2
3 − 1)κ2

v

(56)

Dθ =
1

2QSNR

12

N1N2N3 (N2
2 − 1)κ2

R

(57)

Dr =
1

2QSNR

12(N2
2 − 1)κ2

R + (N2
1 − 1)κ2

T

N1N2N3(N2
1 − 1)(N2

2 − 1)κ2
rκ

2
R

(58)

Dθr =
1

2QSNR

12κT
N1N2N3 (N2

2 − 1)κ2
Rκr

(59)

Dvr = Dvθ = 0 (60)

The derivation of (56)-(60) is given in detail in Appendix,
where the parameter estimation precision and the coupling
between two parameters are given. Considering the colocated
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MIMO radar with identical transmit and receive array ele-
ments, i.e., N1 = N2 and dR = dT = d. We obtain

Dv =
1

8QSNR

3λ2
0

π2N2
1N3 (N2

3 − 1)T 2
P

(61)

Dθ =
1

2QSNR

3λ2
0

π2N2
1N3 (N2

1 − 1) d2sin2 (θ)
(62)

Dr =
1

4QSNR

3c2

π2N2
1N3 (N2

1 − 1) ∆f2
(63)

Dθr =
1

4QSNR

3λ0c

π2N2
1N3 (N2

1 − 1) d sin (θ) ∆f
(64)

Herein, the estimation precisions of radial velocity, the conic
angle and slant range depend on the PRI, the array aperture
and the frequency increment, respectively. It is observed that
the estimation precisions of the velocity, the range, and the
angle can be improved by increasing the number of snap-
shots, the frequency increment and the effective array aperture
perpendicular to the direction of θ − 90◦, respectively. It is
indicated from (64) that the coupling between range and angle
parameters is dependent on the effective array aperture as
well as the frequency increment. With the increment of the
absolute value of θ − 90◦, the loss of the effective array
aperture aggravates the coupling of range and angle, which
leads to the angle estimation precision loss. Similarly, the
smaller frequency increment also aggravates the coupling as
well as degrades the range estimation precision.

V. SIMULATION RESULTS

In this section, the effectiveness of the proposed method is
demonstrated along with the simulation parameters listed in
Table III, where the frequency increment is optimally chosen
according to [16]. Note that the transmit and receive arrays
of FDA-MIMO radar share the ULA with the same elements,
i.e., N1 = N2 . The reflection coefficient of the pth target
obeys the complex Gaussian distribution with zero mean and
variance σ2

p. The number of samples for each transmitted pulse
is 512. Computer simulations to evaluate the performance of
the proposed TGWLP and TGWLP-FB have been carried out
by comparing with the unitary tensor ESPRIT (UTE) [19],
and IMDF [27] schemes as well as CRB. In the following

TABLE III
PARAMETERS OF FDA-MIMO RADAR

Parameters Value
Carrier frequency 5GHz

Frequency increment 301.25kHz
PRF 5kHz

Bandwidth 15MHz
Element number 9
Element spacing 0.03m

Sample number within pulse 6
Range ambiguity number 4

Maximum unambiguous range 30km
Range resolution 10m

The number of pulse groups 10
The number of pulse number within each group 10

experiments, 500 Monte Carlo trials are simulated and the
corresponding root mean square error (RMSE) is defined as:

RMSE =√√√√ 500∑
ς=1

P∑
p=1

{(
θ̂ςp − θςp

)2

+
(
v̂ςp − vςp

)2
+
(
∆r̂ςp −∆rςp

)2}
(65)

where θ̂ςp, vςp and ∆r̂ςp denote the estimations of true angle,
velocity and principal range difference, respectively, in the ςth
trial.

Prior to the comparative simulations, the performance of the
TGWLP-FB method under different combinations of iteration
number ι and WLP/GWLP is firstly tested and the benchmark
of CRB is also included. The target reflection coefficients are
randomly generated with variances {1, 0.9, 0.95}. The ranges
of the targets are identical. The index of range ambiguity
of the targets is fixed at the same number. The principal
range difference of the targets is a random variable uniformly
distributed between [−5m, 5m], but fixed and identical for
the three targets on each trial. The conic angles of the
targets are [104◦, 98◦, 93◦] and the velocities are chosen as
[35, 42, 53]m/s. The root mean square error (RMSE) perfor-
mance with respect to SNR is shown in Fig. 2. It is shown that
the RMSEs drop sharply when the SNR changes from -25 to
-20 dB. This is because the performance of estimators would
be evidently degraded once SNR exceeds the threathold. The
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Fig. 2. RMSEs versus SNR in identical range case. (a) Range estimation. (b) Angle estimation. (c) Velocity estimation.
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RMSE results reveal not only the optimized performance of
the estimator but also the situation where the estimator breaks
down. With the choice of WLP and random ϑ, the estimator
suffers from the performance degradation. It is observed that
both GWLP and optimized complex weighting factor improve
the proposed estimator performance. With the combination
of GWLP and ι = 2 corresponding to optimized complex
weighting factors, the proposed estimator is able to attain
the CRB. Besides, no obvious improvement on estimation
precision is observed for larger iteration number like ι = 3.
As a result, our proposed method adopts the combination of
GWLP and ι = 2 in the subsequent tests.

Then, the scattering result for TGWLP-FB method is further
given in Fig. 3, where 500 Monte Carlo simulations have been
carried out at SNR = −5dB. It is shown that the estimated
points of the parameters are clustered and their cluster centers
are very close to the true parameters along to each dimension.
Besides, the overwhelming majority of estimated points are
randomly distributed within narrow intervals. For each target,
the three estimated parameters of each target are automatically
paired without extra computation. As is shown in Fig.3, the
range scattering results are bigger than other two results. This
is because the estimation error of the principal range difference
should be numerically larger than that of the angle and velocity
according to (15)-(17). The estimation error of the principal
range difference implicates the estimation error of the angle.

Fig. 3. Scattering result for TGWLP-FB

In the third simulation, the proposed methods are compared
with the UTE, and IMDF schemes in identical range case,
where the simulation settings are identical to those of the
previous simulation. To this end, 500 Monte Carlo simulations
have been carried out. The RMSEs and Average CPU time
of different methods with respect to SNR are shown in Fig.
4. It is seen that the TGWLP-FB method has the best per-
formance and its precision is close to the CRB. As expected,
TGWLP-FB is able attain higher estimation precision than the
standard TGWLP estimator. Furthermore, it is observed that
proposed methods have great range estimation performance
advantage over those of UTE and IMDF at sufficiently high
SNR conditions (SNR ≥ −5dB), which might be owing to
the combination of complex weighting scheme for improved
array steering tensor estimation and subspace based GWLP
for improved frequency estimation. Although IMDF adopts
the complex weighting optimization scheme, its performance
is limited by the matrix pencil based algorithm. Besides,
the average computation times of the UTE, IMDF, TGWLP
and TGWLP-FB algorithms in a single run are measured as
0.029s, 2.181s, 0.012s and 0.025s, respectively, indicating the
computational attractiveness of the TGWLP approach.

In the fourth simulation, the performance versus the number
of array elements N1 at SNR = −5dB is examined and the
complexity of the proposed approach is also evaluated. The
index of range ambiguity of the targets is fixed at 1, and the
principal range difference of the targets is a random variable
uniformly distributed between [−5m, 5m], but different for
the three targets on each trial. All other parameter settings
are identical to those of the previous simulation. The RMSEs
and runtime results are shown in Fig. 5. As is shown in Figs.
5(a), (b) and (c), all the RMSEs of estimators reduce with the
increasing N1. The TGWLP-FB provides the best estimation
performance among the methods compared. Fig. 5(d) shows
that the complexities of TGWLP and TGWLP-FB slightly
increase with larger N1, while the complexity of IMDF rapidly
increases. IMDF suffers from the heavy computational burden
involved in the circular mean process. Although the UTE
scheme is the most computationally attractive for small N1, its
complexity is higher than that of the TGWLP-FB algorithm
for the large array aperture (N1 ≥ 7).

The final simulation is dedicated to the evaluation of the
CRBs in the single target case at SNR = −5dB with all
other parameters set as table III. First, we examine the CRB for
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Fig. 4. RMSEs and average CPU time of different methods with respect to SNR in identical range case. (a) Range estimation. (b) Angle estimation. (c)
Velocity estimation. (d) Average CPU time per run.
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angle versus the number of pulse groups. The signal of target is
located at θ, varying with the angle separation ∆θ= |θ − 90◦|.
As is shown in Fig. 6(a), increasing ∆θ hampers the per-
formance of FDA-MIMO radar with fixed array aperture in
angle estimation. Then the CRB for coupling of range and
angle is considered. As is shown in Fig. 6(b), the root CRB
for coupling between range and angle varies with pulse groups
and ∆θ which is noted to associate with the effective array
aperture. For FDA-MIMO radar with fixed array aperture, the
coupling is aggravated by both of the larger ∆θ and the smaller
pulse groups.
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Fig. 6. CRB versus pulse groups. (a) The angle estimation. (b) The coupling
of range and angle.

VI. CONCLUSION

In this paper, tensor modeling of multidimensional FDA-
MIMO radar signal is developed, so that the joint parameter
estimation is casted into multiple-pulse-group version of 3D
HR problem associated to the mixed Swerling model rather
than the typical 3D HR problem associated to the Swerling
I model. In the mixed Swerling case, the RCS of the target
should be constant within each pulse group but varying among
different pulse groups. Pulse-group diversity is exploited to
obtain precise velocity estimation. Unambiguous range esti-
mation can be obtained by range dependence compensation. In
order to improve the parameter estimation of targets with some
identical parameters, TGWLP is proposed which employs
the combination of complex weighting scheme for improved
array steering tensor estimation and subspace based GWLP
for improved frequency estimation. The final estimation of
unambiguous slant range, conic angle, and radial velocity of
a moving target can be easily obtained with all the parameter

pairing automatically achieved, which is free of the extra
burden from pairing process. Furthermore, the identifiability of
the proposed method for joint parameter estimation is analyzed
and compared with other similar methods. Our analysis is
based on the multiple-pulse-group version of 3D HR problem
associated to the mixed Swerling model, rather than typical 3D
HR problem associated to the Swerling I model. It is shown
that the identifiability bound should increase as the number of
pulse groups increases until it reaches a threshold. Addition-
ally, CRBs for angle, range, and velocity are derived, which
are the common benchmarks to assess the unbiased estimators
for FDA-MIMO radar. Finally, numerical simulations show the
superiority of proposed TGWLP method in terms of accuracy
and computational cost compared to existing methods.

APPENDIX

In this section, we analyze the performance lower bound
of joint parameter estimation for the FDA-MIMO radar by
deriving the CRBs for the velocity, range and angle. The
derivation can regarded as the 3D extension of the CRBs for
the range and angle [14], [16]. The unknown parameter vector
can be written as:

Ψ =
[
αT ,βT

]
=
[
v, r, θ, ξ̄,

^

ξ , σ
]T (66)

where σ denotes the zero-mean complex Gaussian white noise
parameter with spatial covariance RN , and the parameters of

the target are gathered in α =
[
v, r, θ, ξ̄,

^

ξ
]T

, where ξ̄ =

Re {ξ} and
^

ξ = Im {ξ}. Since the parameters of interest and
nuisance are decoupled, the Fisher information matrix (FIM)
[40] for the parameters of interest is

F =
2QE

N1σ2
Re

{(
∂ξu(v, r, θ)

∂α

)H (
∂ξu(v, r, θ)

∂α

)}
(67)

where u (v, r, θ) = c (v)⊗b (θ)⊗a (r̃, θ) is the joint transmit-
receive steering vector of the target after compensation, and
c(v) = [1, ej4πvTp/λ0 , . . . , ej(N3−1)4πvTp/λ0 ]. Define three
auxiliary vectors as:

uv = ∂u/∂v =
∂c (v)

∂v
⊗ b (θ)⊗ a (r − ρ, θ) (68)

2 4 6 8 10 12

Number of elements

10-1

100

101

102

R
a
n
g
e
 R

M
S

E
(m

)

TGWLP-FB

TGWLP

UTE

IMDF

CRB

(a)

2 4 6 8 10 12

Number of elements

10-2

10-1

100

101

A
n
g
le

 R
M

S
E

(d
e
g
re

e
)

TGWLP-FB

TGWLP

UTE

IMDF

CRB

(b)

2 4 6 8 10 12

Number of elements

10-2

10-1

100

101

102

V
e
lo

c
it
y
 R

M
S

E
(m

/s
)

TGWLP-FB

TGWLP

UTE

IMDF

CRB

(c)

2 4 6 8 10 12

Number of elements

10-3

10-2

10-1

100

101

102

A
v
e
ra

g
e
 C

P
U

 T
im

e
(s

) TGWLP-FB

TGWLP

UTE

IMDF

(d)

Fig. 5. RMSEs and average CPU time of different methods with respect to N1 in different range case. (a) Angle estimation. (b) Range estimation. (c) Velocity
estimation. (d) Average CPU time per run.
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uθ = ∂u/∂θ = c (v)⊗ ∂b (θ)

∂θ
⊗ a (r − ρ, θ)

+ c (v)⊗ b (θ)⊗
(
r (r − ρ) . ∗ ∂d (θ)

∂θ

) (69)

ur = ∂u/∂r = c (v)⊗ b (θ)⊗
(
∂r (r − ρ)

∂r
. ∗ d (θ)

)
(70)

where the three auxiliary vectors can be explicitly expressed
as:

∂c (v)

∂v
= jκvEgc (v) , κv = 4πTP /λ0 (71)

∂b (θ)

∂θ
= −jκREbb (θ) , κR = 2πdR sin (θ)/λ0 (72)

∂d (θ)

∂θ
= −jκTEdd (θ) , κT = 2πdT sin (θ)/λ0 (73)

∂r (r)

∂r
= −jκrErr (r) , κr = 4π∆f/c (74)

Er = Ed = diag
(

[0, 1, . . . , N1 − 1]
T
)

(75)

Eb = diag
(

[0, 1, . . . , N2 − 1]
T
)

(76)

Ec = diag
(

[0, 1, . . . , N3 − 1]
T
)

(77)

Using the Schur complement, the FIM can be expressed as:

F =
2QE|ξ|2

N1σ2

[
F11 F12

F21 F22

]−1

=
2QE|ξ|2

N1σ2

[
G ×
× ×

]
(78)

where the four block matrix in (77) can be expressed as

F11 =

 ‖uv‖2 Re {uvuθ} Re {uvur}
Re {uvuθ} ‖uθ‖2 Re {uθur}
Re {uvur} Re {uθur} ‖ur‖2

 (79)

F12 = F T21 =

Re
{
uHv u

}
− Im

{
uHv u

}
Re
{
uHθ u

}
− Im

{
uHθ u

}
Re
{
uHr u

}
− Im

{
uHr u

}
 (80)

F22 =
[
‖u‖2I2

]
(81)

and G can be expressed as (82). Note that

‖u‖2 = N1N2N3 (83)

‖uv‖2 = κ2
vN1N2

N3∑
n3=1

(n3 − 1)
2 (84)

‖uθ‖2 = 2κTκRN3

N2∑
n2=1

(n2 − 1)

N1∑
n1=1

(n1 − 1)

+ κ2
RN1N3

N2∑
n2=1

(n2 − 1)
2

+ κ2
TN2N3

N1∑
n1=1

(n1 − 1)
2

(85)

‖ur‖2 = κ2
rN2N3

N1∑
n1=1

(n1 − 1)
2 (86)

uHv u = −jκvN1N2

N3∑
n3=1

(n3 − 1) (87)

uHr u = jκrN2N3

N1∑
n1=1

(n1 − 1) (88)

uHθ u = j

[
κRN1N3

N2∑
n2=1

(n2 − 1) + κTN2N3

N1∑
n1=1

(n1 − 1)

]
(89)

uHv uθ = −κv
N3∑
n3=1

(n3 − 1)

×

[
κRN1

N2∑
n2=1

(n2 − 1)d+ κTN2

N1∑
n1=1

(n1 − 1)

] (90)

uHv ur = −κvκrN2

N1∑
n1=1

(n1 − 1)

N3∑
n3=1

(n3 − 1) (91)

uHθ ur = κrN3

×

[
κR

N2∑
n2=1

(n2 − 1)

N1∑
n1=1

(n1 − 1) + κTN2

N1∑
n1=1

(n1 − 1)
2

]
(92)

Substituting (83)-(92) into (82) yields

G11 =
N1N2N3

(
N2

3 − 1
)
κ2
v

12
(93)

G22 =
N1N2N3

[(
N2

2 − 1
)
κ2
R +

(
N2

1 − 1
)
κ2
T

]
12

(94)

G33 =
N1N2N3

(
N2

1 − 1
)
κ2
r

12
(95)

G23 = G32 =
N1N2N3

(
N2

1 − 1
)
κTκr

12
(96)

G12 = G21 = G13 = G31 = 0 (97)

det (G) =
κ2
vκ

2
Rκ

2
rN

3
1N

3
2N

3
3

(
N2

1 − 1
) (
N2

2 − 1
) (
N2

3 − 1
)

1728
(98)

G = F11 − F12F
−1
22 F21

=


‖uv‖2 −

|uHv u|2
‖u‖2 Re

{
uHv uθ

}
− Re{uHuvuHθ u}

‖u‖2 Re
{
uHv ur

}
− Re{uHuvuHr u}

‖u‖2

Re
{
uHv uθ

}
− Re{uHuvuHθ u}

‖u‖2 ‖uθ‖2 −
|uHθ u|2
‖u‖2 Re

{
uHθ ur

}
− Re{uHuθuHr u}

‖u‖2

Re
{
uHv ur

}
− Re{uHuvuHr u}

‖u‖2 Re
{
uHθ ur

}
− Re{uHuθuHr u}

‖u‖2 ‖ur‖2 −
|uHr u|2
‖u‖2

 (82)
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The closed-form CRBs for angle, range and velocity are

Dv =
det (M11)

2QSNR det (G)
(99)

Dθ =
det (M22)

2QSNR det (G)
(100)

Dr =
det (M33)

2QSNR det (G)
(101)

Dθr =
det (M23)

2QSNR det (G)
(102)

Dvr = Dvθ = 0 (103)

where det (G) is the determinant of G, Mij denotes the
cofactor of Gi,j which is the element in the ith row and
jth colomn of G, SNR =

(
E|ξ|2/N1σ

2
)

. Therefore, (56)-
(60) can be easily obtained according to (99)-(103). It is also
indicated from (103) that there is no coupling between velocity
and range/angle parameters.
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