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 

Abstract—For heterogeneous datasets containing numerical 

and symbolic feature values, feature selection based on fuzzy 

neighborhood multigranulation rough sets (FNMRS) is a very 

significant step to preprocess data and improve its classification 

performance. This paper presents an FNMRS-based feature 

selection approach in neighborhood decision systems. First, some 

concepts of fuzzy neighborhood rough sets and neighborhood 

multigranulation rough sets are given, and then the FNMRS 

model is investigated to construct uncertainty measures. Second, 

the optimistic and pessimistic FNMRS models are built by using 

fuzzy neighborhood multigranulation lower and upper 

approximations from algebra view, and some fuzzy neighborhood 

entropy-based uncertainty measures are developed in information 

view. Inspired by both algebra and information views based on 

the FNMRS model, the fuzzy neighborhood pessimistic 

multigranulation entropy is proposed. Third, the Fisher score 

model is utilized to delete irrelevant features to decrease the 

complexity of high-dimensional datasets, and then a forward 

feature selection algorithm is provided to promote the 

performance of heterogeneous data classification. Experimental 

results on twelve datasets show that the presented model is 

effective for selecting important features with higher stability of 

classification in neighborhood decision systems. 

Index Terms—Fuzzy neighborhood rough sets, neighborhood 

multigranulation rough sets, feature selection, neighborhood 

entropy, uncertainty measure. 

I. INTRODUCTION 

ECENTLY, feature selection is a widely used technique as 

the step of data preprocessing in the fields of granular 

computing and artificial intelligence [1]-[4], and the process of 

handling complex data can hoist the performance and reduce 

the complexity of computation in some cases [5]-[7].  
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A. Related Works 

Rough sets and fuzzy sets as two powerful tools of feature 

selection have been reported more and more frequently on the 

uncertainty for data classification [8]; however, rough set 

models [9] can only handle symbolic datasets [10]. The 

continuous numerical datasets need to be divided into several 

intervals by different discretization methods, which results in 

loss of information [11]. Therefore, researchers have presented 

a variety of rough set models to solve this issue, where the most 

popular models are neighborhood rough sets (NRS) and fuzzy 

rough sets (FRS) [12]-[15]. Hu et al. [16] devised the 

NRS-based feature selection model to deal with mixed datasets. 

However, there still exist some limitations on the NRS model. 

For instance, it is difficult to characterize the fuzziness of 

objects under the fuzzy background [10],[17]. Dubois and 

Prade [18] studied rough fuzzy sets and FRS. Jensen and Shen 

[19] presented an FRS-based attribute reduction method to 

reduce data redundancy. However, the nearest samples are 

always used in FRS to calculate fuzzy upper and lower 

approximations of the decision, which leads to more risk-taking 

by datasets with noise. It becomes the main drawback of FRS. 

At present, the technologies and growth have been made on 

feature selection based on rough sets for data classification [20]; 

however, most models are based on a single binary relation [7], 

which may limit applications and lead to an increase in 

complexity [21]. To overcome this drawback, multigranulation 

rough sets (MRS) have become a booming direction for feature 

selection. Qian et al. [21] investigated a pessimistic MRS 

decision model for attribute reduction. Yao and She [22] 

constructed a multigranulation space. However, the MRS 

models are not suitable for handling continuous numerical data 

toward real-world applications and cannot describe mixed data 

from neighborhood systems with numerical and symbolic 

values [23]. Thus, it is necessary to introduce the NRS into 

MRS. Lin et al. [24] introduced the MRS model based on the 

neighborhood relation to achieve attribute reduction. Sun et al. 

[7] presented the attribute reduction model with measures 

based on neighborhood multigranulation rough sets (NMRS). 

Since there exist still noises, uncertainty, and fuzziness in 

information systems, the research on fuzzy multigranulation 

rough sets (FMRS) is very meaningful [25]. Zhang et al. [26] 

provided the multiple hesitant fuzzy tolerance relations in the 
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multigranulation framework. However, there are few reports of 

the combination of NMRS and FMRS. 

Over the last decades, uncertainty measures have rapid 

development for feature selection from algebra and information 

views [5],[7],[27]. Fan et al. [28] employed the max-decision 

NRS model to enlarge the positive region and dependency 

degree for reduction. Wang et al. [29] constructed the distance 

measure-based FRS model for fuzzy dependency and attribute 

significance to decision systems. Hu et al. [23] developed the 

matrix-based feature selection method to achieve the 

uncertainty of boundary regions in the NMRS model. All in all, 

the above references just discussed feature selection from the 

algebra view. Unfortunately, the significance of features based 

on algebra view can only state the influence of features 

included in feature subset [23],[28],[29]. Information entropy 

[30] and some deformations are widely utilized in feature 

selection. Zhang et al. [1] presented FRS-based information 

entropy to select features in fuzzy information systems. Xu et al. 

[14] studied the fuzzy neighborhood conditional entropy to 

evaluate feature significance in the FNRS. Zeng et al. [31] 

proposed optimistic and pessimistic multigranulation entropy 

for feature selection. So sadly, information view-based feature 

significance merely interprets the consequences on features 

from uncertainty classification [1],[14],[31],[32]. It would be a 

great topic to combine the two views for feature selection and 

promote the measure quality of uncertainty for neighborhood 

decision systems. Wang et al. [32] researched rough reduction 

and relative reduction from algebra and information views. Sun 

et al. [27] proposed the neighborhood entropy-based attribute 

reduction method combining algebra with information views. 

Sun et al. [7] constructed the NMRS-based attribute reduction 

method to deal with mixed and incomplete datasets in terms of 

algebra and information views. However, this study has rarely 

been reported from the perspective of the FMRS. 

B. Our Work 

In the FRS method, the most basic unit is the fuzzy 

information granules, and the degrees of membership of 

samples are calculated by using Min-Max operations [33]-[35]. 

Nevertheless, when information systems are noisy, there are 

some risks in the calculation of fuzzy approximation, which 

may affect the computation of membership degree and result in 

an increasing classification error rate [10],[36],[37]. Wang et al. 

[10] constructed the feature selection method in fuzzy 

neighborhood rough sets (FNRS). Yue et al. [36] developed the 

fuzzy neighborhood covering data classification. However, the 

parameters exerted the great influence on the classification 

performance of their proposed algorithms. Inspired by their 

contributions, to overcome the disadvantages and explain the 

sample decisions based on fuzzy information granules in FRS, 

the FNRS model is further investigated in this paper. 

Furthermore, from what we can tell, few reports for feature 

selection are in the news to integrate FNRS with NMRS in 

neighborhood decision systems. Inspired by this fact, it would 

be better to study fuzzy neighborhood multigranulation rough 

sets (FNMRS) and design the FNMRS-based feature selection 

model with heterogeneous datasets. Unfortunately, few 

innovations for feature selection have been offered from both 

algebra and information views for FNMRS in neighborhood 

decision systems. Therefore, motivated by this observation, it is 

necessary to study uncertainty measures based on FNMRS 

from these two views, and then a forward search algorithm for 

feature selection can be designed for heterogeneous datasets in 

neighborhood decision systems. In general, the summing up of 

our main contributions is as follows. 

(1) The notions of the FNRS and optimistic and pessimistic 

NMRS models are given in neighborhood decision systems. 

(2) To deal with heterogeneous datasets, FNRS is combined 

with MRS to construct FNMRS in neighborhood systems. Then 

the definitions of the optimistic and pessimistic FNMRS 

methods are provided in neighborhood decision systems. 

(3) To better discuss the measures on the basis of algebra and 

information views for feature selection in the FNMRS model, 

some uncertainty measures based on fuzzy neighborhood 

entropy are investigated in detail. By using fuzzy neighborhood 

pessimistic multigranulation entropy, a novel feature subset 

selection algorithm is presented. 

The remainder is organized as follows: Section II reviews the 

concepts of FNRS and NMRS. Section III constructs the 

FNMRS model and presents some fuzzy neighborhood 

entropy-based measures. The heuristic feature subset selection 

method is developed in Section IV. Section V provides the 

experimental analysis on twelve datasets. In Section VI, this 

paper ends with the conclusion and our future work. 

II. PRELIMINARIES 

A. Fuzzy Neighborhood Rough Sets 

Let NDS = <U, AT, D, V, f, ∆, δ> be a neighborhood decision 

system. U = {x1, x2, ⋯, xm} is the set of samples. AT and D are 

the sets of conditional attributes and decision classes. V 

= a AT aV  . f: U × {AT D} →V is the map function, and f(a, x) 

is the attribute value of x on attribute a. ∆ is a function of the 

distance. 0 1   is a parameter of the neighborhood radius. 

The decision system is simplified to NDS = <U, AT, D, f>. 

Definition 1 ([10],[12]): Given NDS = <U, AT, D, f>, BAT 

induces the fuzzy binary relation RB on the universe U, any x, 

yU, and then RB is the fuzzy similarity relation when it satisfies 

the following reflexive and symmetric properties, respectively: 

(1) RB(x, x) = 1, where any xU; 

(2) RB(x, y) = RB(y, x), where any x, yU. 

Definition 2: Given NDS = <U, AT, D, f>, any a AT , the 

fuzzy neighborhood radius parameter is α ( 0 1  ) that 

describes the similarity of samples; then, for any x, yU, the 

fuzzy neighborhood similarity relation between two samples x 

and y in regard to a is denoted by 

0 ( , ) ( , )

1 ( , ) ( , ) ( , ) ( , )
a

f a x f a y
R

f a x f a y f a x f a y





  
 

   

，

，
.        (1) 

The matrix of fuzzy neighborhood similarity is [x]a(y) = Ra(x, y), 

and then [ ] ( ) min ([ ] ( ))B a B ax y x y

  with any B AT
 
[14]. 

Definition 3: Given NDS = <U, AT, D, f>, BAT, for any x, 

y  U, the parameterized fuzzy neighborhood information 
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granule of x in regard to B is denoted by 

0, ( , ) 1
( ) [ ] ( )= .

( , ), ( , ) 1

B

B B

B B

R x y
x x y

R x y R x y







 
 

 
         (2) 

Property 1: Given NDS = <U, AT, D, f>, ,P Q AT , for any x 

U, the following properties are obtained: 

(1) For any p P , P p P pR R . 

(2) If P Q , then Q PR R . 

(3) If P Q , then ( ) ( )Q Px x  . 

Proof. We provide a detailed proof of this property, which can be 

found in our supplementary file. 

Definition 4: Given NDS = <U, AT, D, f>, U = {x1, x2, ⋯, xm}, 

A = {A1, A2, ⋯, At}, A AT and U/D = {D1, D2, ⋯, Dl}; then, the 

fuzzy decisions of samples exported by D is denoted by 

1 2{ , , , }T T T

lFD FD FD FD ,                          (3) 

where 1 2{ ( ), ( ), , ( )}j j j j mFD FD x FD x FD x  is a fuzzy rough set 

of the decision equivalence class of samples, and j = 1, 2, ⋯, l. 

When k = 1, 2, ⋯, m, ( )j kFD x  is the membership degree of xkU 

on FDj and expressed [14] as 

[ ] ( )
( ) ,

[ ] ( )

k A j

j k

k A

x y D
FD x

x y
                            (4)  

where [ ] ( )k Ax y  is the fuzzy neighborhood similarity degree, 

yU, DjU/D and j = 1, 2, ⋯, l. 

Definition 5: Given NDS = <U, AT, D, f>, BAT, any XU, 

αB(x) is the parameterized fuzzy neighborhood information 

granule for x U ; then the fuzzy neighborhood lower and upper 

approximations of X in relation to B are denoted, respectively, by 

( ) { | ( ) }B BFN X x U x X    ,                          (5) 

( ) { | ( ) }B BFN X x U x X    .                       (6) 

Definition 6: Suppose that any DjU/D = {D1, D2, ⋯, Dl}, the 

fuzzy neighborhood positive region and its dependency degree of 

D with regard to B are denoted, respectively, as 

1

( ) ( )
l

B B j
j

POS D FN D 



 ,                             (7) 

( )
( )

B

B

POS D
d D

U



  .                               (8) 

B. Neighborhood Multigranulation Rough Sets 

Definition 7 ([27]): Given NDS = <U, AT, D, f>, BAT and 

x, yU, then the neighborhood relation and neighborhood class 

are denoted, respectively, by 

( ) {( , ) | ( , ) }BNR B x y U U x y      ,            (9) 

( ) { | ( , ) }B Bn x y U x y     ,                   (10) 

where 2

1

( , ) ( ( , ) ( , ))

B

B k k

k

x y f a x f a y


    is the Euclidean distance 

function, ka B , and represents the cardinality. 

Definition 8: Given NDS = <U, AT, D, f>, XU, A AT and 

A = {A1, A2, ⋯, At}; then, the optimistic neighborhood 

multigranulation lower and upper approximations of X in relation 

to Ai are denoted, respectively, by 

1 2
( ) { | ( ) ( )

( ) },

i
i

t

O

A A A
A A

A

apr X x U n x X n x X

n x X

 





    

  …
     (11) 

( )= ~( (~ ))
i i

i i

O O

A A
A A A A

apr X apr X
 

，                     (12) 

where ( )
iAn x

 represents the neighborhood class of x 

on iA A  and i = 1, 2, ⋯, t. Then, in neighborhood decision 

systems,
 
( ( ), ( ))

i i
i i

O O

A A
A A A A

apr X apr X
 

is named as an optimistic 

NMRS model. 

Definition 9: Assume that U/D = {D1, D2, ⋯, Dl}, the 

optimistic positive region and its dependency degree of D in 

relation to A in the optimistic NMRS model are denoted, 

respectively, by 

1
1

( ) { ( )}
i

l t
O O

A A j
i

j

POS D apr D




 ,                         (13) 

 
| ( ) |

( )
| |

i

O

AO

A

POS D
d D

U
 ,                                (14) 

where iA A , i = 1, 2, ⋯, t, DjU/D and j = 1, 2, ⋯, l. 

Definition 10: Given NDS = <U, AT, D, f>, any X U, A AT 

and A = {A1, A2, ⋯, At}; then, the pessimistic neighborhood 

multigranulation lower and upper approximations of X with 

respect to Ai are denoted, respectively, by 

1 2
( ) { | ( ) ( )

( ) },

i
i

t

P

A A A
A A

A

apr X x U n x X n x X

n x X

 





    

  …
         (15) 

( )= ~( (~ )).
i i

i i

P P

A A
A A A A

apr X apr X
 

                       (16) 

Thus, in neighborhood decision systems,
 

( ( ),
i

i

P

A
A A

apr X


( ))
i

i

P

A
A A

apr X


 is named as a pessimistic NMRS 

model. 

Definition 11: Assume that U/D = {D1, D2, ⋯, Dl}, the 

pessimistic positive region and its dependency degree of D with 

respect to A in the pessimistic NMRS model are denoted, 

respectively, by 

1
1

( ) { ( )},
i

l t
P P

A A j
i

j

POS D apr D




                            (17) 

 
| ( ) |

( ) ,
| |

P

P A

A

POS D
d D

U
                                  (18) 

where iA A , i = 1, 2, ⋯, t, DjU/D and j = 1, 2, ⋯, l. 

III. UNCERTAINTY MEASURES OF THE FNMRS MODEL BASED 

ON FUZZY NEIGHBORHOOD ENTROPY 

A. The FNMRS Model 

Definition 12: Given NDS = <U, AT, D, f>, any XU, A = 

{A1, A2, ⋯, At} and A  AT; then, the fuzzy neighborhood 

optimistic multigranulation lower and upper approximations of 

X in relation to Ai are denoted, respectively, by 
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1 2

, ( ) { | ( ) ( )

( ) },

i
i

t

O

A A A
A A

A

apr X x U x X x X

x X

  





    

  …
       (19) 

, ,( )= ( (~ )),
i i

i i

O O

A A
A A A A

apr X apr X 

 
                (20) 

where ( )
iA x  is the parameterized fuzzy neighborhood 

granule of x  U, iA A  and i = 1, 2, ⋯, t. Then, in 

neighborhood decision systems,
 

, ,( ( ), ( ))
i i

i i

O O

A A
A A A A

apr X apr X 

 

 
is named as an optimistic FNMRS model. 

Definition 13: Given NDS = <U, AT, D, f>, any X U, A = {A1, 

A2, ⋯, At}, A AT and U/D = {D1, D2, ⋯, Dl}; then, the fuzzy 

neighborhood optimistic positive region and its dependency 

degree of D in relation to A in the optimistic FNMRS model are 

denoted, respectively, by 

, ,

1 1

( ) { ( )},
i

l t
O O

A A j
j i

POS D apr D 

 

                         (21) 

,

,
( )

( ) ,

O

AO

A

POS D
d D

U



                               (22) 

where iA A , i = 1, 2, ⋯, t, DjU/D and j = 1, 2, ⋯, l. 

Definition 14: Given NDS = <U, AT, D, f>, any XU, A = 

{A1, A2, ⋯, At} and A  AT; then, the fuzzy neighborhood 

pessimistic multigranulation lower and upper approximations 

of X in relation to Ai are denoted, respectively, by 

1 2

, ( ) { | ( ) ( )

( ) },

i
i

t

P

A A A
A A

A

apr X x U x X x X

x X

  





    

  …
      (23) 

, ,( )= ( (~ )),
i i

i i

P P

A A
A A A A

apr X apr X 

 
                  (24) 

where xU, Ai A and i = 1, 2, ⋯, t.  

Then, in neighborhood decision systems,
 

,( ( ),
i

i

P

A
A A

apr X

  
, ( ))

i
i

P

A
A A

apr X



 

is named as a pessimistic FNMRS model. 

Definition 15: Given NDS = <U, AT, D, f>, any X U, A = {A1, 

A2, ⋯, At}, A AT and U/D = {D1, D2, ⋯, Dl}; then, the fuzzy 

neighborhood pessimistic positive region and its dependency 

degree of D in relation to A in the pessimistic FNMRS model are 

denoted, respectively, by 

, ,

1 1

( ) { ( )},
i

l t
P P

A A j
j i

POS D apr D 

 

                       (25) 

,

,
( )

( ) ,

P

AP

A

POS D
d D

U



                              (26) 

where iA A , i = 1, 2, ⋯, t, DjU/D and j = 1, 2, ⋯, l. 

Proposition 1: Given NDS = <U, AT, D, f> with any XU, 

R S AT  , the following properties hold: 

(1) , ,( ) ( )O O

R SPOS X POS X   and , ,( ) ( )O O

R Sd X d X  . 

(2) , ,( ) ( )P P

S RPOS X POS X   and , ,( ) ( )P P

S Rd X d X  . 

Proof. We provide a detailed proof of this proposition, which can 

be found in our supplementary file. 

B. Fuzzy Neighborhood Entropy-Based Uncertainty Measures 

To efficiently analyze decision-making from the viewpoint 

of multigranulation, Sun et al. [7] and You et al. [38] adapted 

the conservative decision strategy [21]. Motivated by this fact, 

to further develop the pessimistic FNMRS model, some 

uncertainty measures based on fuzzy neighborhood pessimistic 

multigranulation entropy are provided, and the corresponding 

properties are constructed in the FNMRS model. 

Definition 16: Given NDS = <U, AT, D, f>, BAT, U = {x1, x2, 

⋯, xm}, for any xkU, k = 1, 2, ⋯, m, and ( )B kn x  is the 

neighborhood class of xk with regard to B; then the neighborhood 

entropy of B is denoted by 

2

1

( ) ( )
( ) log

| | | |

m
B k B k

k

n x n x
NE B

U U

 



  .              

 

      (27) 

Definition 17: Given NDS = <U, AT, D, f>, BAT and U/D 

= {D1, D2, ⋯, Dl}; the neighborhood joint entropy of B and D is 

denoted by 

2

1 1

( ) ( )
( , ) log ,

| | | |

m l
B k j B k j

k j

n x D n x D
NE B D

U U

 

 

            (28) 

where xkU, k = 1, 2, ⋯, m, DjU/D and j = 1, 2, ⋯, l. 

Definition 18 ([14]): Assume that there are two fuzzy sets M 

and N on the universe U; M N  is the size of samples whose 

membership degree on M is less than or equal to that of N. 

Definition 19: Given NDS = <U, AT, D, f>, AAT and U = 

{x1, x2, ⋯, xm}; then the fuzzy neighborhood entropy of A is 

denoted by 

2

1

( ) ( )
( ) log

| | | |

m
A k A k

k

x x
FNE A

U U


 



  ,      

 

           (29) 

where αA(xk) is the parameterized fuzzy neighborhood granule, 

xkU and k = 1, 2, ⋯, m. 

Definition 20: Given NDS = <U, AT, D, f>, AAT and U/D = 

{D1, D2, ⋯, Dl}; the fuzzy neighborhood joint entropy of A and D 

is denoted by 

2

1 1

( ) ( )
( , ) log ,

| | | |

m l
A k j A k j

k j

x FD x FD
FNE A D

U U


 

 

 
  

 (30) 

where xkU, k = 1, 2, ⋯, m, FDj is a fuzzy rough set of the 

decision equivalence class of samples, j = 1, 2, ⋯, l, and 

| ( ) |A k jx FD is the size of samples whose membership degree 

of ( )A kx  is less than or equal to that of FDj. 

Proposition 2: Given NDS = <U, AT, D, f> with 

any R S AT  , ( ) ( )FNE R D FNE S D , ,  holds. 

Proof. We provide a detailed proof of this proposition, which 

can be found in our supplementary file. 

Definition 21: Given NDS = <U, AT, D, f>, AAT,
 
A = {A1, 

A2, ⋯, At}, iA A , U = {x1, x2, ⋯, xm} and U/D = {D1, D2, ⋯, 

Dl}; the fuzzy neighborhood pessimistic multigranulation 

entropy (FNPME) of D and Ai is denoted by 

,

1

2

1 1

( , ) (1 ( ))

( ) ( )
log ,

| | | |

i

i ik

t
P

i A

i

l m
A j A k j

j k

FNPME A

x x

D d D

FD FD

U U





 



 

   



    (31) 
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where 
, ( )

i

P

Ad D
 is the fuzzy neighborhood pessimistic 

dependency degree of D in relation to Ai, i = 1, 2, ⋯, t, ( )
iA kx

 
is the parameterized fuzzy neighborhood granule, xkU with k 

= 1, 2, ⋯, m, ( )A jkx FD  is the nonzero number of samples 

with membership degree of ( )
iA kx  , which is less than or equal 

to that of FDj, and j = 1, 2, ⋯, l. 

Property 2: Given NDS = <U, AT, D, f> with any AAT,
 
Ai 

 A = {A1, A2, ⋯, At}, and U = {x1, x2, ⋯, xm}; then, one has 

 ,

1

( , ) (1 ( )) ( , ) 0
i

t
P

i A i

i

FNPME A D d D FNE A D

 


    . 

Proof. We provide a detailed proof of this property, which can 

be found in our supplementary file. 

Remark 1: From Definition 21 and Property 2, , ( )P

Ad D  

denotes the fuzzy neighborhood pessimistic dependency degree 

from algebra view, and FNEα(A, D) represents the fuzzy 

neighborhood joint entropy from information view. Thus, 

FNPME is able to measure the uncertainty of neighborhood 

decision systems from both algebra and information views. 

IV.  FEATURE SELECTION METHOD FOR THE FNMRS MODEL 

IN NEIGHBORHOOD DECISION SYSTEMS 

A. FNPME-Based Feature Selection 

Proposition 3: Given NDS = <U, AT, D, f> with any 

R SAT, ( , ) ( , )FNPME R D FNPME S D   holds. 

Proof. We provide a detailed proof of this proposition, which 

can be found in our supplementary file. 

Remark 2: As a significant aspect of uncertainty measure, the 

monotonicity plays an important role in feature selection. 

Proposition 3 indicates that as the feature subset is going to 

increase, FNPME is in a monotonic increasing trend; then the 

degree of decision-making will be higher. Thus, the monotonic 

increase of FNPME leads us to select the greedy algorithm for 

feature selection in neighborhood decision systems. 

Definition 22: Given NDS = <U, AT, D, f>, A′AAT,
 
A = 

{A1, A2, ⋯, At}, if ( ', ) ( , )FNPME A D FNPME A D   and there 

exists ( ', ) ( ' , )iFNPME A D FNPME A A D    for any Ai A′ and i 

= 1, 2, ⋯, t, then A′ is a reduct of A with respect to D. 

Definition 23: Given NDS = <U, AT, D, f>, A′AAT, A = 

{A1, A2, ⋯, At}, Ai A′, and i = 1, 2, ⋯, t, the internal significance 

of attribute subset Ai with respect to D is denoted by 

 
( , ', ) ( ', ) ( ' , )inner

iiSig A A D FNPME A D FNPME A DA    .
  
(32) 

Definition 24: Given NDS = <U, AT, D, f>, A′AAT and A 

= {A1, A2, ⋯, At}, for any Ai A′, i = 1, 2, ⋯, t, if Sig
inner

(Ai, A′, 

D) > 0, then Ai in A′ is necessary; otherwise Ai is unnecessary. If 

each Ai in A′ is necessary, then A′ is independent. 

Definition 25: Given NDS = <U, AT, D, f>, AAT and A = 

{A1, A2, ⋯, At}, for any Ai  AT, i = 1, 2, ⋯, t, if
 
Sig

inner
(Ai, AT, 

D) > 0, then Ai is called a core of Ai with respect to AT. 

Definition 26: Given NDS = <U, AT, D, f>, A′AAT and A 

= {A1, A2, ⋯, At}, Ai A − A′, i = 1, 2, ⋯, t; then, the external 

significance of attribute subset Ai with respect to D is denoted by  

( , ', ) ( ' , ) ( ', )outer

i iSig A A D FNPME A A D FNPME A D   .  (33) 

Remark 3: In NDS = <U, AT, D, f>, A = {A1, A2, ⋯, At}, for 

any 'iA A A AT   , and i = 1, 2, ⋯, t, when calculating 

Sig
inner

(Ai, A′, D), one only obtains ( ' , )iFNPME A A D   each 

time since ( ', )FNPME A D  may be a constant. Therefore, 

similarly one just calculates ( ' , )iFNPME A A D for Sig
outer

 (Ai, 

A′, D), where any 'iA A A  . 

B. Feature Selection Algorithm 

In this section, an FNPME-based feature selection 

(FNPME-FS) method is demonstrated in Algorithm 1.  

For this FNPME-FS method, the worst influence on 

complexity is the calculation of the parameterized fuzzy 

neighborhood granule. The buckets sorting algorithm [39] was 

first introduced to decrease the time complexity of computing 

the parameterized fuzzy neighborhood granule, and then its 

time complexity is reduced to O(mn), where m and n 

respectively express the sizes of objects and features. Thus, the 

computational complexity of the FNPME is approximately 

O(n). Because two loops are in Steps 3 to 8 and Steps 10 to 16 

of FNPME-FS, respectively, its time complexity is O(n
3
m) at 

worst. Assume that the size of the selected feature subset is r, 

when calculating the fuzzy neighborhood granules, one need to 

take the candidate feature subsets into account. Thus, the 

computational complexity of the fuzzy neighborhood granule is 

close to O(rm). In this FNPME-FS algorithm, n – r and m are 

the running times in the inner and outer loops, respectively. 

Thus, the worst complexity of FNPME-FS is closely 

O(rm(n–r)n). Since r  n for the most part, the total 

computational time complexity of implementing FNPME-FS is 

approximate to O(mn). Moreover, this space complexity of 

FNPME-FS is O(mn). 

Algorithm 1. FNPME-FS 

Input: NDS = <U, AT, D, f> with a fuzzy neighborhood radius parameter α. 

Output: An optimal feature subset RED. 

1. Initialize RED = Ø and B = Ø.  

2. Calculate FNPMEα(AT, D). 
3. FOR i = 1 to t do 

4.   Compute Siginner(Ai, AT, D). 

5.   IF Siginner(Ai, AT, D) > 0 

6.     then let RED = RED Ai. 

7.   ENDIF 
8. ENDFOR 
9. Let B = AT – RED. 

10. WHILE FNPMEα(RED, D)  FNPMEα(AT, D) 

11.   FOR j =1 to |B| 

12.     Calculate FNPMEα(RED Aj, D). 

13.     Select Aj that satisfies max{Aj R|FNPMEα(RED Aj, D)}, and if 

multiple feature subsets exhibit the maximum value, this front is selected. 

14.   ENDFOR 

15. Let RED = RED Aj and B = B − Aj, and calculate FNPMEα(RED, D). 

16. ENDWHILE 

17. FOR k = 1 to |RED| do  

18.  Select BkRED. 

19.  Calculate FNPMEα(RED−{Bk}, D). 

20.  IF FNPMEα(RED−{Bk}, D) ≥ FNPMEα(RED, D)  

21.   then let RED = RED – {Bk}. 

22.  ENDIF 

23. ENDFOR 

24. RETURE the optimal feature subset RED. 
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V. EXPERIMENTAL ANALYSES 

A. Data Sets and Experimental Design 

To test the feasibility and stability of our developed model, 

our total experiments can be divided into four portions, and 

twelve public datasets including seven low-dimensional UCI 

datasets and five high-dimensional microarray gene expression 

datasets are selected, where seven UCI datasets could be 

downloaded at http://archive.ics.uci.edu/ml/datasets.php, and 

five gene expression datasets could be downloaded at 

http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi. 

Table I lists all datasets. 

TABLE I 
TWELVE DATASETS IN EXPERIMENTS 

No. Datasets Samples Features Classes 

1 Glass 214 10 6 

2 Heart 270 13 2 

3 Ionosphere 351 33 2 
4 Sonar 208 60 2 

5 Wdbc 569 31 2 

6 Wine 178 13 3 
7 Wpbc 198 34 2 

8 Breast 84 9216 5 

9 Colon 62 2000 2 
10 DLBCL 77 5469 2 

11 Leukemia 72 7129 2 

12 Prostate 136 12600 2 

All experiments are executed on MATLAB 2016a under 

Intel (R) i5 CPU @ 3.20 GHz & 4.0 GB RAM; WEKA 3.8 is 

employed to verify classification efficiency under three 

classifiers KNN, CART and C4.5 whose default values of all 

parameters are selected; and ten-fold cross-validation is 

adopted for classification of the selected feature subset in our 

following subsections. The classifier is learned under ten-fold 

cross-validation; then it can be set by the training datasets, and 

the accuracy of classification is obtained on the testing datasets. 

B. Performance on Different Fuzzy Neighborhood Parameters 

The second subsection focuses on classification performance 

of different fuzzy neighborhood parameters and selects an 

appropriate parameter for each dataset. To effectively assess 

the classification effectiveness, the reduction rate [7],[40] is 

employed to appraise the reduction performance of feature 

selection and select the right fuzzy neighborhood parameters. 

As far as five gene expression datasets with high dimensions 

are concerned, in order to efficiently reduce time cost, one 

usually adopts heuristic strategy to independently calculate the 

scores of each gene in metrics of a certain criteria, and then 

Fisher score [27] is used as the extraction strategy of genes for 

preliminarily reducing dimensions because it has many merits: 

less computation, strong operability, high precision, and 

effective decreasing computational complexity. It is employed 

as the common feature correlation criterion to calculate the jth 

Fisher score value [39]. By calculating its Fisher score value for 

each gene, a feature subset will be formed by the first m genes. 

The Fisher score method is demonstrated as Algorithm 2. 

To set an appropriate dimension of each gene expression 

dataset, through employing the Fisher score method, the 

classification accuracy under classifier KNN is acquired under 

seven different dimensions (10, 50, 100, 200, 300, 400, and 

500). Fig. 1 reveals the variation trend of accuracy via the 

selected gene subsets under different dimensions for five gene 

expression datasets. As seen in Fig. 1, as the size of gene subset 

changes, so does the accuracy in most cases. Then, the optimal 

balance of the selected gene subset and the accuracy are found 

to obtain right dimension for the next feature selection of each 

gene expression dataset. Thus, from Fig. 1, the f values of three 

datasets Colon, DLBCL, and Prostate are set as 100 dimensions, 

respectively, the 200 dimensions are appropriate for dataset 

Breast, and the 300 dimensions are for dataset Leukemia. 

Algorithm 2. Fisher score 

Input: The matrix X∈Rm×n of original gene expression dataset with m objects 

and n genes, and the expected size of selected genes is f. 

Output: The selected gene subset S. 

1. FOR each gene 

2.     Calculate the Fisher score value by Eq. (16) in [39].  

3. ENDFOR 
4. Use the radix sorting algorithm in [41] to sort the Fisher score values in 

descending order. 

5. Select the first f genes with larger value and put the gene sequence into the 

set T. 
6. Obtain the gene subset S after dimension reduction by using T. 

7. RETURE the selected gene subset S. 

 
Fig. 1.  Classification accuracy via the size of gene subset on five gene datasets. 

To simulate multigranulation scenarios in selecting proper 

feature subset, the first point to be done is that each dataset will 

start with the first feature and form a feature subset for every 

two features on each low-dimensional UCI datasets and four 

features on each gene expression dataset with high dimensions 

in the following experiments. When the size of feature subset 

cannot be divided exactly, the final remaining features form a 

feature subset. Next, this accuracy of the selected feature subset 

by using FNPME-FS on all datasets is acquired with different 

fuzzy neighborhood parameter (α) values. The curves of the 

classification accuracy via the reduction rate for twelve datasets 

are displayed in Fig. 2 as the value of fuzzy neighborhood 

parameter increases, where the horizontal axis is the value of α, 

and it will be set in steps of 0.05 from 0 to 1; the two vertical 

axes, respectively, delegate the classification accuracy and the 

reduction rate; the classification accuracy of seven UCI 

datasets under two classifiers KNN and CART is illustrated in 

Figs. 2(a)-2(g); and the accuracy for five gene datasets on three 

classifiers KNN, CART and C4.5 is shown in Figs. 2(h)-2(l). 

In what follows, the influence of the parameter α on our 

method will be analyzed in detail. The α can be considered as a 

threshold controlling the feature search. Fig. 2 shows that when 
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the fuzzy neighborhood parameter value becomes large, the 

accuracy and the reduction rate are all changing, namely, the 

reduction rate reduces as the α increases in most cases, and the 

accuracy will appear the different changes. As seen in Fig. 2, the 

different thresholds indeed make a certain impact on the 

classification performance of our algorithm. Fortunately, all test 

datasets can exhibit the high classification accuracy in a wider 

range of α. For seven UCI datasets, the values of α are set to 

0.15-0.55 under the classifier KNN and 0.2-0.45 under the 

classifier CART, respectively. For five gene expression datasets, 

the values of α are set as 0.2-0.6 under the classifier KNN, 

0.1-0.4 under classifier CART, and 0.1-0.65 under classifier 

C4.5, respectively. Thus, these datasets exhibit the relatively 

satisfied accuracy in terms of larger reduction rate (namely fewer 

features selected in feature selection), and achieve a wide area of 

classification accuracy in terms of feasibility and stability for 

their respective value domains of α. Generally speaking, our 

experimental results demonstrate the efficiency of the developed 

model, which can achieve an optimal subset of features for 

complex data classification. Especially, the selected optimal 

value of α is different among twelve datasets. Therefore, one 

indeed needs to train the α before reducing the given datasets in 

the experiments. As described in Fig. 2, the optimal α values 

have been trained and then can be selected from between 0.15 

and 0.55 for the UCI datasets and between 0.1 and 0.65 for the 

gene datasets with a step of 0.05, respectively. In particular, the 

significant standard of selecting parameters is to maximally 

balance classification accuracy and reduction rate; then Tables II 

and III illustrate the optimal fuzzy neighborhood parameters 

selected from Fig. 2 for each dataset. 

    
(a) Glass dataset                                       (b) Heart dataset 

    
(c) Ionosphere dataset                           (d) Sonar dataset 

    
(e) Wdbc dataset                                 (f) Wine dataset 

    
(g) Wpbc dataset                              (h) Breast dataset 

    
(i) Colon dataset                                 (j) DLBCL dataset 

    
(k) Leukemia dataset                            (l) Prostate dataset 

Fig. 2.  Classification accuracy via reduction rate under different fuzzy 

neighborhood parameter values on twelve datasets. 

TABLE II 

SELECTED FUZZY NEIGHBORHOOD PARAMETERS FOR SEVEN UCI DATASETS 

Datasets KNN CART 

Glass 0.35 0.35 

Heart 0.25 0.2 
Ionosphere 0.55 0.45 

Sonar 0.15 0.45 

Wdbc 0.15 0.25 
Wine 0.2 0.25 

Wpbc 0.25 0.25 

TABLE III 

SELECTED FUZZY NEIGHBORHOOD PARAMETERS FOR FIVE GENE DATASETS 

Datasets KNN CART C4.5 

Breast 0.6 0.1 0.65 

Colon 0.45 0.1 0.1 

DLBCL 0.2 0.2 0.2 

Leukemia 0.25 0.25 0.25 

Prostate 0.6 0.4 0.4 

C. Classification Results of the UCI Datasets 

This first portion of the subsection pays attention to the size 

of the selected feature subset by all compared methods and our 

optimal feature subset selected by FNPME-FS on seven UCI 

datasets. FNPME-FS is contrasted with five feature selection 

methods FSNTDJE [40], FNCE [14], IFPR [13], OMGE [31], 

and PMGE [31]. By using the obtained fuzzy neighborhood 

parameters, the features of raw data and the average size of the 

selected feature subset by the above six feature selection 

models employing ten-fold cross-validation on seven UCI 

datasets are displayed in Table IV. Then the optimal feature 

subsets selected by FNPME-FS for all UCI datasets under two 

classifiers KNN and CART are shown in Table V. 
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TABLE IV 

NUMBER OF SELECTED FEATURES WITH SIX FEATURE SELECTION METHODS 

Datasets Raw FSNTDJE FNCE IFPR OMGE PMGE FNPME-FS 

Glass 15 7.5 12.3 10.1 5.1 6.4 5.7 

Heart 10 8.1 7.4 7.7 6.9 6 5.5 

Ionosphere 33 9 16 28 8.2 6.4 11.6 

Sonar 60 14.8 21.7 12.9 7 8 17.5 

Wdbc 31 11.4 4.2 17.4 5 10.7 7 
Wine 13 7.2 5.9 6.6 4.4 4 6 

Wpbc 34 7.6 8.1 10 5.3 4.8 5.7 

Mean 28 9.37 10.8 13.24 5.99 6.61 8.42 

TABLE V 

OPTIMAL FEATURE SUBSET WITH FNPME-FS FOR SEVEN UCI DATASETS 

Datasets KNN CART 

Glass {1 2 7 8 9 10} {1 2 7 8 9 10} 

Heart {1 2 3 4 11 12} {1 10 11 12 13} 

Ionosphere {7 8 9 10 11 12 13 14 29 30 31 32} {5 6 7 8 13 14 15 16 29 30} 
Sonar {1 2 3 4 9 10 17 18 19 20 23 24 37 

38 45 46} 

{1 2 7 8 9 10 15 16 29 30} 

Wdbc {1 2 5 6 27 28} {1 2 3 4 5 6 27 28} 
Wine {1 2 7 8 11 12 13} {1 2 7 8 11 12} 

Wpbc {1 2 13 14 23 24} {1 2 13 14 23 24} 

Table IV exhibits the average size of the selected feature 

subset by the six methods. Compared with OMGE and PMGE, 

our method selects more features for six datasets Glass, 

Ionosphere, Sonar, Wdbc, Wine, and Wpbc. The average size 

of the selected feature subset by FNPME-FS is 5.5 and reaches 

the minimum on dataset Heart. On the whole, the mean size of 

the selected feature subset by using FNPME-FS is the 

minimum against FSNTDJE, FNCE, and IFPR for the seven 

UCI datasets. 

This second portion is to reveal the effectiveness of 

classification for FNPME-FS, six feature selection methods 

including the ODP (original data processing), FNCE [14], 

FSNTDJE [40], IFPR [13], OMGE [31], and PMGE [31], are 

applied to the comparison of classification accuracy on the 

optimal subsets of the selected features under two classifiers 

KNN and CART for seven UCI datasets. Then the average 

classification accuracy of the selected feature subsets by seven 

models under classifiers KNN and CART is demonstrated in 

Tables VI and VII, respectively. 

TABLE VI 

CLASSIFICATION ACCURACY WITH SEVEN METHODS ON CLASSIFIER KNN 

Datasets ODP FNCE FSNTDJE IFPR OMGE PMGE FNPME-FS 

Glass 0.9112 0.8627 0.8592 0.8209 0.6822 0.9252 0.9393 

Heart 0.7518 0.7213 0.7741 0.7889 0.8037 0.7851 0.8333 

Ionosphere 0.8245 0.8823 0.8467 0.8020 0.8746 0.8718 0.9031 

Sonar 0.8653 0.8001 0.6975 0.7598 0.8269 0.7932 0.8846 

Wdbc 0.9124 0.9825 0.9466 0.9311 0.9613 0.9525 0.9279 

Wine 0.9195 0.9073 0.9057 0.9429 0.9550 0.9382 0.9719 

Wpbc 0.6969 0.6572 0.7374 0.6840 0.7042 0.6667 0.7222 
Mean 0.8402 0.8305 0.8238 0.8185 0.8297 0.8475 0.8915 

TABLE VII 

CLASSIFICATION ACCURACY WITH SEVEN METHODS ON CLASSIFIER CART 

Datasets ODP FNCE FSNTDJE IFPR OMGE PMGE FNPME-FS 

Glass 0.9672 0.8475 0.8915 0.9074 0.6869 0.9413 0.9813 

Heart 0.7851 0.7679 0.7653 0.6666 0.8333 0.7851 0.7815 
Ionosphere 0.8645 0.8053 0.7620 0.8704 0.8473 0.8917 0.9117 

Sonar 0.7115 0.7616 0.6707 0.6092 0.7740 0.7088 0.7789 

Wdbc 0.8595 0.8807 0.9124 0.8994 0.9490 0.9402 0.9314 
Wine 0.8932 0.8249 0.8027 0.8727 0.8932 0.9157 0.9326 

Wpbc 0.7121 0.6143 0.6869 0.6658 0.7020 0.7171 0.7374 

Mean 0.8276 0.7860 0.7845 0.7845 0.8122 0.8428 0.8649 

As observed from the results of six methods shown in Table 

IV, Tables VI and VII illustrate the differences among the 

seven methods. As we have seen, for almost all datasets, the 

average classification accuracy of FNPME-FS obviously 

outperforms the other methods, except for two datasets Wdbc 

and Wpbc on the KNN classifier and two datasets Heart and 

Wdbc on classifier CART. What is more, the mean 

classification accuracy of FNPME-FS has been perfected and 

achieves the highest value under these two classifiers. As seen 

in Tables IV and VI, the average size of the selected feature 

subset by FNPME-FS is smaller than those of FNCE, 

FSNTDJE, and IFPR under the classifier KNN on the whole. 

Although FNPME-FS cannot select fewer features than OMGE 

and PMGE, the classification accuracy of FNPME-FS is the 

highest on five datasets Glass, Heart, Ionosphere, Sonar, and 

Wine; in particular, the accuracy of FNPME-FS is 

1.41%-25.71% larger than FNCE, FSNTDJE, IFPR, OMGE, 

and PMGE on the Glass dataset; however, 4.4%-7.3% gaps 

clearly exist between FNPME-FS and the other methods in 

metrics of the mean classification accuracy under classifier 

KNN. In the same way, it can be observed from Tables IV and 

VII, the average classification accuracy of FNPME-FS is larger 

than ODP, FNCE, FSNTDJE, IFPR, OMGE, and PMGE on 

almost all datasets under classifier CART, except for two 

datasets Heart and Wdbc. However, FNPME-FS selects fewer 

features than OMGE, although its accuracy is 5.18% and 1.76% 

lower than OMGE on two datasets Heart and Wdbc, 

respectively. Since no method always performs better than the 

others under different classifiers and for learning tasks, the 

FNPME-FS method overall eliminates all the redundant 

features and exhibits better performance than the other 

compared models on UCI datasets. 

This final part is designed to verify the efficiency of 

classification of FNPME-FS for five selected UCI datasets 

from Table I. Five feature selection algorithms compared with 

FNPME-FS include FNCE [14], FNRS [10], FISEN [10],[42], 

OMGE [31], and PMGE [31]. In addition, the ODP method is 

used to compare with the above six methods. The classification 

results for the five UCI datasets are appraised on two classifiers 

KNN and CART. Three evaluation metrics are Accuracy (Acc), 

True Positive Rate (TPR), and False Positive Rate (FPR) [40], 

which are utilized to measure the effectiveness of classification 

of all compared approaches. Notably, the higher the Acc and 

TPR, the lower the FPR, and the better the results [40]. The Acc, 

TPR and FPR on the selected feature subsets by seven methods 

under two classifiers KNN and CART are demonstrated in 

Tables VIII and IX, respectively. 

It can be known from Tables VIII and IX that three metrics 

Acc, TPR and FPR of feature subset selected by FNPME-FS 

outperforms those of FNCE, FNRS, FISEN, OMGE, and 

PMGE on most of all datasets under two classifiers KNN and 

CART. FNPME-FS apparently achieves higher Acc than the 

other five methods, except for two datasets Glass and Wdbc 

under classifier KNN and two datasets Wdbc and Wpbc under 

classifier CART. The TPR and FPR values of FNPME-FS 

reach the optimal results for most of the five datasets. 

According to Table VIII under classifier KNN, although 

FNPME-FS is 1.4% and 5.5% lower than FISEN and FNCE in 

terms of Acc on datasets Glass and Wdbc, respectively, the 
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mean Acc values of FNPME-FS are the highest under classifier 

KNN. As we know, the lower the FPR value, the better the 

performance. Although FNPME-FS is 4.2% lower than FISEN 

for dataset Wdbc on metric TPR, its FPR is the minimum. In the 

same measure, as seen in Table IX under classifier CART, the 

mean metrics of Acc, TPR, and FPR of FNPME-FS are the 

largest on five datasets. The mean of Acc is nearly 1%-10% 

higher than those of the other six methods, and its mean values 

of FPR are mostly 4.1%-31.1% less than the other six models. 

While comparing FNPME-FS against the other six methods, 

the values of two metrics Acc and TPR have been obviously 

improved. Furthermore, on almost all datasets, FNPME-FS 

exhibits the minimal value as for FPR, except for the 

Ionosphere and Wpbc datasets under classifier CART. As 

observed in Tables VIII and IX, FNPME-FS eliminates some 

important features from some datasets, which result in a 

decrease in classification accuracy. Overall speaking, our 

algorithm can eliminate all redundant features and promote the 

values of two metrics Acc and TPR for most UCI datasets. 

TABLE VIII 

THREE METRICS WITH SEVEN METHODS UNDER CLASSIFIER KNN 

Methods Metrics Glass Ionosphere Wdbc Wine Wpbc Mean 

ODP 

Acc 

TPR 

FPR 

0.911 

0.667 

0.022 

0.825 

0.895 

0.568 

0.912 

0.903 

0.057 

0.920 

0.873 

0.042 

0.697 

0.697 

0.498 

0.853 

0.807 

0.237 

FNCE 

Acc 

TPR 

FPR 

0.863 

0.729 

0.046 

0.882 

0.916 

0.062 

0.983 

0.904 

0.175 

0.907 

0.852 

0.131 

0.657 

0.657 

0.704 

0.858 

0.811 

0.223 

FNRS 

Acc 

TPR 

FPR 

0.925 

0.824 

0.036 

0.860 

0.875 

0.686 

0.925 

0.920 

0.080 

0.932 

0.930 

0.031 

0.606 

0.606 

0.548 

0.849 

0.831 

0.276 

FISEN 

Acc 

TPR 

FPR 

0.953 

0.862 

0.015 

0.880 

0.889 

0.568 

0.953 

0.943 

0.057 

0.955 

0.915 

0.034 

0.651 

0.652 

0.225 

0.878 

0.852 

0.179 

OMGE 

Acc 

TPR 

FPR 

0.682 

0.673 

0.117 

0.875 

0.946 

0.054 

0.961 

0.934 

0.066 

0.955 

0.930 

0.028 

0.704 

0.468 

0.179 

0.835 

0.790 

0.088 

PMGE 

Acc 

TPR 

FPR 

0.925 

0.778 

0.015 

0.827 

0.900 

0.451 

0.953 

0.915 

0.085 

0.938 

0.887 

0.059 

0.667 

0.667 

0.504 

0.862 

0.829 

0.222 

FNPME-FS 

Acc 

TPR 

FPR 

0.939 

0.939 

0.007 

0.903 

0.978 

0.022 

0.928 

0.901 

0.056 

0.972 

0.972 

0.025 

0.722 

0.815 

0.016 

0.893 

0.921 

0.025 

TABLE IX 
THREE METRICS WITH SEVEN METHODS UNDER CLASSIFIER CART 

Methods Metrics Glass Ionosphere Wdbc Wine Wpbc Mean 

ODP 

Acc 

TPR 
FPR 

0.967 

0.889 
0.007 

0.865 

0.895 
0.660 

0.860 

0.892 
0.108 

0.893 

0.875 
0.103 

0.712 

0.712 
0.679 

0.859 

0.852 
0.311 

FNCE 

Acc 

TPR 
FPR 

0.848 

0.889 
0.013 

0.805 

0.892 
0.524 

0.881 

0.917 
0.085 

0.825 

0.891 
0.093 

0.614 

0.696 
0.275 

0.794 

0.857 
0.198 

FNRS 

Acc 

TPR 
FPR 

0.946 

0.889 
0.007 

0.891 

0.892 
0.869 

0.946 

0.915 
0.085 

0.898 

0.887 
0.093 

0.742 

0.742 
0.711 

0.884 

0.865 
0.353 

FISEN 

Acc 

TPR 
FPR 

0.941 

0.923 
0.005 

0.864 

0.903 

0.016 

0.914 

0.920 
0.080 

0.898 

0.887 
0.093 

0.722 

0.722 
0.742 

0.867 

0.871 
0.187 

OMGE 

Acc 

TPR 
FPR 

0.687 

0.687 
0.144 

0.848 

0.917 
0.038 

0.949 

0.925 
0.075 

0.893 

0.875 
0.103 

0.702 

0.702 

0.053 

0.815 

0.821 
0.083 

PMGE 

Acc 

TPR 
FPR 

0.941 

0.889 
0.007 

0.892 

0.892 
0.661 

0.940 

0.906 
0.094 

0.916 

0.873 
0.056 

0.717 

0.717 
0.744 

0.881 

0.855 
0.321 

FNPME-FS 

Acc 

TPR 
FPR 

0.981 

0.981 

0.004 

0.900 

0.965 

0.035 

0.931 

0.950 

0.050 

0.933 

0.983 

0.028 

0.737 

0.904 

0.093 

0.896 

0.957 

0.042 

For these compared feature selection methods, in metrics of 

time complexity, the rough ranking of eight methods is shown as: 

O(FNPME-FS) = O(FSNTDJE) = O(FISEN) < O(FNCE) < 

O(OMGE) = O(PMGE) < O(IFPR) < O(FNRS), where the time 

complexity of Algorithm A is described as O(A). Assume that 

there are m samples and n features in decision systems, the 

complexity of FSNTDJE and FISEN is O(mn) [40],[42], and the 

complexity of FNCE is no more than O(mn
2
) [14]. The 

complexity of OMGE and PMGE is O(mn
2
logm) [31], which is 

larger than that of FNPME-FS and FNCE. As for the IFPR and 

FNRS algorithms, their computational complexity may be 

O(m
2
n) and O(m

2
n/2+n

2
), respectively. Therefore, our presented 

FNPME-FS algorithm has the relatively lower computational 

complexity on UCI datasets. 

D. Classification Results of Gene Expression Datasets 

In metrics of the average size of genes selected from 

microarray gene expression datasets with high dimensions 

under ten-fold cross-validation, this first subsection follows 

with interest on the effectiveness of classification of 

FNPME-FS and the optimal selected gene subset by 

FNPME-FS under the KNN, CART and C4.5classifiers. The 

ODP method and three feature selection methods FNCE [14], 

IFPR [13], and FSNTDJE [40] are selected to compare with 

FNPME-FS. The average number of the selected gene subsets 

by these four algorithms with the original genes of raw data 

under ten-fold cross-validation is shown in Table X. Then the 

optimal selected gene subsets by using the FNPME-FS 

algorithm for all gene datasets on three classifiers KNN, CART 

and C4.5 are shown in Table XI. 

TABLE X 
NUMBER OF SELECTED GENES WITH FOUR FEATURE SELECTION METHODS 

Datasets Raw FNCE IFPR FSNTDJE FNPME-FS 

Breast 9216 13.7 9.5 7 10.6 

Colon 2000 4.9 6 11.5 7 
DLBCL 5469 16.3 12.4 7.3 6.4 

Leukemia 7129 8.7 6.4 7 6 

Prostate 12600 13.7 9.8 8 11.5 
Mean 7282.8 11.46 8.82 8.16 8.3 

TABLE XI 
OPTIMAL GENE SUBSET WITH FNPME-FS FOR FIVE GENE DATASETS 

Datasets KNN CART C4.5 

Breast {5651 8944 2611 5426 

7137 8958 6797 3484 

6410 1313 3522} 

{2585 109 4085 

6959 2779 7515 

6098 8303 6648} 

{2585 109 4085 7321 

4161 6503 9111 4918 

3484 4278 5643 4442 
5485} 

Colon {249 72 187 83 107 

698 1770 1917 994 
1247 1902 1808} 

{249 1047 1414 

1334} 

{249 1047 1414 1334} 

DLBCL {3313 409 453 1698 

2280 4767} 

{3313 409 453 

1698 2280 4767} 

{3313 409 453 1698 

2280 4767} 
Leukemia {758 5565 1268 538 

6180 1787} 

{758 5565 1268 

538 6180 1787} 

{758 5565 1268 538 

6180 1787} 

Prostate {5370 1656 2903 3363 
1414 2134 877 2867 

2521 1864 4346 4072} 

{3124 5136 1479 
1600 3023 930 

4644 2521 4072} 

{3124 5136 1479 1600 
3023 930 4644 2521 

4072} 

As clearly seen from Table X, for two datasets DLBCL and 

Leukemia, FNPME-FS is obviously superior against the other 

four algorithms; however, for datasets Breast and Prostate, 

FSNTDJE achieves the best classification results, and FNCE 

selects the minimum of gene subset on dataset Colon. 

Moreover, the mean size of the selected gene subset by 
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FNPME-FS is less than that of FNCE and IFPR; however, it is 

slightly inferior to FSNTDJE, which is only 0.14 fewer than 

FSNTDJE in metrics of the mean number. In short, FNPME-FS 

can select a smaller gene subset from each gene dataset. 

In this following portion, from the results of Tables X and XI, 

two classifiers KNN and CART are applied to verify the 

average accuracy of classification for these reduced results of 

five methods including ODP, FNCE [14], IFPR [13], 

FSNTDJE [40], and FNPME-FS under ten-fold 

cross-validation for five gene datasets, and then the outcomes 

are provided in Tables XII and XIII, respectively. 

TABLE XII 

CLASSIFICATION ACCURACY WITH FIVE METHODS ON CLASSIFIER KNN  

Datasets ODP FNCE IFPR FSNTDJE FNPME-FS 

Breast 0.6285 0.6918 0.7833 0.7143 0.8738 

Colon 0.7903 0.9231 0.7574 0.7742 0.8548 

DLBCL 0.8701 0.8917 0.9480 0.8051 0.9611 

Leukemia 0.7344 0.8970 0.8042 0.8327 0.9444 

Prostate 0.7647 0.8516 0.8095 0.7871 0.8903 

Mean 0.7576 0.8510 0.8204 0.7826 0.9048 

TABLE XIII 

CLASSIFICATION ACCURACY WITH FIVE METHODS ON CLASSIFIER CART  

Datasets ODP FNCE IFPR FSNTDJE FNPME-FS 

Breast 0.7023 0.7509 0.7312 0.6905 0.7976 

Colon 0.5967 0.7964 0.7595 0.7097 0.8064 

DLBCL 0.8181 0.7698 0.8700 0.8054 0.9091 

Leukemia 0.7556 0.8342 0.7556 0.7222 0.9722 

Prostate 0.6917 0.8046 0.7610 0.8492 0.8224 
Mean 0.7128 0.7911 0.7754 0.7554 0.8615 

From Tables XII and XIII, for almost all gene expression 

datasets, FNPME-FS exhibits the highest accuracy, except for 

the Colon dataset on the KNN classifier and dataset Prostate 

under classifier CART. Although FSNTDJE selects fewer 

genes for datasets Breast and Prostate in Table X, FNPME-FS 

achieves the highest accuracy for dataset Breast under two 

different classifiers, which is only 4.68% lower than that of 

FSNTDJE for dataset Prostate under classifier CART. 

Compared with FNCE and IFPR, our method eliminates a lot of 

redundant genes with noise to improve classification 

performance. As for the mean accuracy under two classifiers 

KNN and CART, our method is 5.38%-14.72% and 

7.04%-14.87% higher than the other four methods, respectively. 

Therefore, FNPME-FS achieves the best results of data 

classification for these five gene datasets. 

The third part continues to test the efficiency of classification 

of FNPME-FS, and five feature selection methods including 

FNCE [14], IFPR [13], FSNTDJE [40], MIBARK [43], and 

EGGS [44] are selected for the comparison results of the Colon, 

DLBCL, Leukemia, and Prostate datasets from Table I. 

According to the last results on different fuzzy neighborhood 

parameters, all the used models are implemented under  ten- 

fold cross-validation. Tables XIV and XV demonstrate the 

average values of accuracy of classification for these four gene 

expression datasets with seven methods including the ODP 

method under two classifiers KNN and C4.5, respectively. 

As seen from the average classification results shown in 

Tables XIV and XV, our algorithm achieves the largest values 

for the DLBCL, Leukemia, and Prostate datasets on two 

classifiers KNN and C4.5. For dataset Colon in Table XIV 

under classifier KNN, FNCE exhibits the highest accuracy, 

which is 6.83% higher than that of FNPME-FS. What is more, 

the mean accuracy of FNPME-FS is 2.18%-21.97% higher than 

the other six methods. Similarly, from Table XV, FSNTDJE 

obtains the accuracy of 91.19%, which is 10.54% higher than 

our algorithm for dataset Colon under classifier C4.5. However, 

the classification accuracy of FNPME-FS under classifier C4.5 

is 5.2%-10.52%, 4.1%-22.5%, and 11.08%-31.58% higher than 

the other six methods on three datasets DLBCL, Leukemia, and 

Prostate, respectively. In addition, the mean accuracy of 

FNPME-FS exhibits the largest results. In general, FNPME-FS 

can efficiently delete the redundant genes and is superior 

against the other six compared models on these gene datasets. 

TABLE XIV 
CLASSIFICATION ACCURACY WITH SEVEN METHODS ON CLASSIFIER KNN  

Datasets ODP FNCE IFPR FSNTDJE MIBARK EGGS FNPME-FS 

Colon 0.7903 0.9231 0.7574 0.7742 0.7700 0.6493 0.8548 

DLBCL 0.8701 0.8917 0.9480 0.8051 0.7654 0.8540 0.9611 

Leukemia 0.7344 0.8970 0.8042 0.8327 0.8285 0.6292 0.9444 

Prostate 0.7647 0.8516 0.8095 0.7871 0.5127 0.6394 0.8903 

Mean 0.7898 0.8908 0.8297 0.7997 0.7191 0.6929 0.9126 

TABLE XV 

CLASSIFICATION ACCURACY WITH SEVEN METHODS ON CLASSIFIER C4.5  

Datasets ODP FNCE IFPR FSNTDJE MIBARK EGGS FNPME-FS 

Colon 0.7419 0.7419 0.8342 0.9119 0.8221 0.6464 0.8065 

DLBCL 0.7922 0.8181 0.8312 0.7890 0.7780 0.8264 0.8832 

Leukemia 0.8143 0.8754 0.9044 0.9173 0.8341 0.7333 0.9583 

Prostate 0.6400 0.7426 0.7058 0.7715 0.5665 0.5913 0.8823 

Mean 0.7471 0.7945 0.8189 0.8474 0.7501 0.6993 0.8825 

E. Statistical Analysis 

In this subsection, to systematically explore the statistical 

performance on classification accuracy of all compared 

algorithms, the Friedman test and corresponding post-hoc tests 

will be conducted. The Friedman statistic is expressed [45] as 

2
2 2

1

12 ( 1)
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( 1) 4

k

F j

j

N k k
R

k k





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






 
,     (34) 

where N and k is the number of datasets and algorithms, 

respectively; Rj (j = 1, 2, …, k) denotes the mean rank of a certain 

method on all datasets; and FF 
denotes an F-distribution under (k 

– 1) and (k – 1)(N – 1) freedom degrees. Then the critical 

difference is described [46] as 

( 1)

6

k k
CD q

N
 


 ,                                (35) 

where α describes the significance level of the Bonferroni- 

Dunn test and qα denotes a critical value [46]. 

Following the statistical test provided in [5],[7],[40], for all 

datasets, the mean values of ranking are acquired through 

averaging all levels of the accuracy of classification. The 

best-ranking value under the accuracy metric is set to 1; the 

second is the rank of 2, and so on. For the classification 

accuracy on seven datasets in Tables VI and VII, the Friedman 

tests are achieved by the comparison of FNPME-FS with 

FSNTDJE, FNCE, IFPR, OMGE, and PMGE. When all 

algorithms are equivalent in metrics of accuracy of 

classification, one can establish the null hypothesis of the 

Friedman test [3]. Then the rankings of six algorithms can be 

easily calculated, and their mean rankings are obtained under 

two classifiers KNN and CART. It follows that the values of 

Authorized licensed use limited to: Shanxi University. Downloaded on April 29,2020 at 10:07:35 UTC from IEEE Xplore.  Restrictions apply. 



1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2020.2989098, IEEE
Transactions on Fuzzy Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

11 

2

F  and FF can be computed. Table XVI demonstrates the 

results of the mean ranking of six algorithms and the values of 
2

F  and FF under classifiers KNN and CART. 

TABLE XVI 

STATISTICAL TEST OF SIX METHODS UNDER CLASSIFIERS KNN AND CART 

Classifiers 
Mean rankings 

2

F  FF  
FSNTDJE FNCE IFPR OMGE PMGE FNPME-FS 

KNN 4.43 3.71 4.43 2.86 3.71 1.86 9.83 2.35 
CART 4.86 4.86 4.57 2.86 2.29 1.57 21.02 9.03 

By computing, when the significance level equals 0.1, one 

has the value of F(5, 30) in the F-distribution, which is 2.05, 

and the value of 2 (5)F  on 2

F  distribution is 9.24. Then, 

according to Table XVI, the values of 2

F  and FF under 

classifiers KNN and CART are larger than those of 2 (5)F  and 

F(5, 30). It follows from Table 5 in [46] that CD = 2.394. Thus, 

all null hypotheses are rejected, and the six algorithms are 

different under classifiers KNN and CART. To more 

objectively compare the differences of several algorithms more 

intuitively, a graph [46] was introduced to connect the methods, 

which are not clearly different from each other, and then the 

critical values among all algorithms can be obviously 

illustrated in these graphs. Fig. 3 shows the comparison of 

FNPME-FS with the other five algorithms under classifiers 

KNN and CART, where the top line is the critical value, the 

coordinate axis shows the mean ranking of each method, and 

the mean ranking of the left-hand side is the lowest. It is noted 

that the horizontal lines are used to connect groups of methods 

with no significant difference in classification performance 

[46]. As seen in Fig. 3, the significant differences of six 

algorithms are obvious. In Fig. 3(a), under the classifier KNN, 

FNPME-FS performs clearly better than IFPR and FSNTDJE. 

Although there is no significant difference between OMGE, 

PMGE, and FNCE, it can be concluded that the performance of 

classification of FNPME-FS is better than the others. Similarly, 

as shown in Fig. 3(b) on the CART, FNPME-FS outperforms 

FNCE, FSNTDJE and IFPR, and is similar to OMGE and 

PMGE. However, in the same group, FNPME-FS excels 

against the two compared methods. To sum up, our model 

outperforms the other five algorithms as the whole. 

     
        (a) KNN classifier                              (b) CART classifier 

Fig. 3.  Accuracy comparison with six methods on classifiers KNN and CART. 

The next statistical results and analyses are executed on four 

different algorithms FNCE, IFPR, FSNTDJE, and FNPME-FS 

for five gene expression datasets from Tables XII and XIII 

under two classifiers KNN and CART. The average rankings of 

four algorithms and the values of 
2

F  and FF under classifiers 

KNN and CART are calculated and illustrated in Table XVII. 

As we can see from Table XVII, the values of 
2

F  and FF are 

larger than those of 
2 (3)F  = 6.25 and F(3, 12) = 2.61, and then 

one has CD = 1.74. Thus, all null hypotheses are rejected, and 

the four algorithms are different under two classifiers KNN and 

CART. In the same way, the comparisons of the four 

algorithms under two different classifiers are demonstrated in 

Fig. 4. The differences between FNPME-FS and other 

algorithms can obviously be exhibited in Fig. 4. FNPME-FS is 

statistically superior to IFPR and FSNTDJE under classifiers 

KNN and CART, which show an excellent classification effect 

on the two criteria. Therefore, our FNPME-FS method is the 

best when compared with FNCE, IFPR and FSNTDJE. 

TABLE XVII 

STATISTICAL TEST OF FOUR METHODS UNDER CLASSIFIERS KNN AND CART 

Classifiers 
Mean rankings 

2

F  FF  
FNCE IFPR FSNTDJE FNPME-FS 

KNN 2.4 3 3.4 1.2 8.28 4.93 
CART 2.6 3 3.2 1.2 7.32 3.81 

       
(a) KNN classifier                                    (b) CART classifier 

Fig. 4. Accuracy comparison with four methods on classifiers KNN and CART. 

In this final portion of this subsection, the statistical results 

and analyses focus on the accuracy of classification of the six 

compared algorithms on the C4.5 and KNN classifiers for four 

gene datasets, namely, Colon, DLBCL, Leukemia, and Prostate 

in Tables XIV and XV. The Friedman test is wielded to indicate 

these differences in classification among six algorithms. Then 

the mean rankings of six algorithms under classifiers KNN and 

C4.5 can be achieved and illustrated in Table XVIII. 

TABLE XVIII 

STATISTICAL TEST OF SIX METHODS ON CLASSIFIERS KNN AND C4.5 

Classifiers 
Mean rankings 

2

F  FF  
FNCE IFPR FSNTDJE MIBARK EGGS FNPME-FS 

KNN 2 3.75 3.75 5 5.25 1.25 14.57 8.05 

C4.5 4 2.75 2.5 5 5 1.75 10.71 3.46 

From Table XVIII, one can calculate 2

F  
= 14.57 and FF = 

8.05 under classifier KNN and 2

F  
= 10.71 and FF = 3.46 under 

classifier C4.5. It follows that 2 (5)F  = 9.24, F(5, 30) = 2.05 

and CD = 3.08. Then 2

F  and FF is larger. All null hypotheses 

are rejected, and six algorithms are different under classifiers 

KNN and C4.5. Similarly, Fig. 5, respectively, illustrates the 

grouping of six algorithms under the KNN and C4.5 classifiers, 

and the significant differences can be exhibited easily. 

       
(a) KNN classifier                            (b) C4.5 classifier 

Fig. 5.  Accuracy comparison with six methods on classifiers KNN and C4.5. 

 In Fig. 5(a) under classifier KNN, FNPME-FS gets the 

lowest mean ranking, and its performance is significantly better 

than MIBARK and EGGS because the different value is larger 

than 3.08. In terms of the classifier C4.5 in Fig. 5(b), 

FNPME-FS has the same group as FNCE, IFPR, and FSNTDJE, 

which means the differences among the four algorithms are not 

obvious although FNPME-FS performs better than FNCE, 
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IFPR, and FSNTDJE. In conclusion, FNPME-FS indeed 

surpasses the other five compared methods under the results of 

the Friedman statistic test. 

F. Discussion 

From the above experimental results, this part summarizes the 

main objectives of our experiments as follows. 

(1) As far as the five gene expression datasets with high 

dimensions in Table I, the Fisher score model is first employed 

for gene extraction and preliminary dimension reduction and 

improves classification efficiency in the process of data 

classification. Then, for setting the fuzzy neighborhood decision 

system for each dataset in Table I, the classification accuracy and 

the reduction rate under three classifiers KNN, CART, and C4.5 

are attained on seven UCI datasets and five gene datasets, their 

suitable fuzzy neighborhood radius parameter values are found 

and shown in Tables II and III. 

(2) As for the seven UCI datasets with low dimensions, in 

metrics of the sizes of the selected feature subsets in Table IV, 

our FNPME-FS method chooses fewer features than three 

algorithms FSNTDJE, FNCE, and IFPR on almost all datasets. 

From Table VI, under classifier KNN, FNPME-FS gains the 

better accuracy of classification on almost UCI datasets; 

nevertheless, the classification accuracy of FNPME-FS is 5.46% 

less than FNCE for the Wdbc dataset and 1.52% less than 

FSNTDJE for the Wpbc dataset, respectively. On classifier 

CART, FNPME-FS manifests the best result in Table VII, except 

for the Heart and Wdbc datasets by using OMGE; however, the 

mean accuracy of FNPME-FS is 5.27% higher than OMGE. In 

general, from Tables IV to VII, FNPME-FS exhibits the best 

values. In metrics of three metrics Acc, TPR and FPR in Tables 

VIII and IX, FNPME-FS performs better than the other methods 

on almost the datasets. What is more, FNPME-FS achieves 

higher values than the other methods in terms of TPR, except for 

the Wdbc datasets under the classifier KNN. Under the classifier 

CART in Table IX, the TPR values of FNPME-FS are superior to 

the other six methods for almost all datasets. In general, 

FNPME-FS can exhibit the great classification performance on 

all UCI datasets under two different classifiers KNN and CART. 

(3) In terms of gene expression datasets with high dimensions, 

as shown in Table X, the size of the selected gene subset by 

FNPME-FS is a little bit larger than the other four methods for 

three datasets Breast, Colon, and Prostate. However, the 

classification accuracy of FNPME-FS under classifiers KNN and 

CART in Tables XII and XIII are higher than the other four 

methods, except for the Colon and Prostate datasets under two 

classifiers KNN and CART. From Tables XIV and XV, on four 

datasets Colon, DLBCL, Leukemia, and Prostate, although the 

accuracy of FNPME-FS for dataset Colon is 6.83% lower than 

FNCE under classifier KNN and 10.54% lower than FSNTDJE 

under classifier C4.5, respectively, our results perform the best 

on three datasets DLBCL, Leukemia, and Prostate under two 

different classifiers. In summary, from Tables X to XV, 

FNPME-FS indicates the better classification performance for 

these selected gene expression datasets. 

(4) The statistical analysis is performed to further 

demonstrate the statistical significance of our algorithm. By 

analyzing all the classification results from Tables VI and VII 

for all UCI datasets, the statistical differences between 

FNPME-FS and the other algorithms under classifiers KNN 

and CART are indicated in Fig. 3. As shown in Fig. 3, 

FNPME-FS outperforms the other five algorithms. As for these 

gene expression datasets, the comparison results of FNPME-FS 

with the other algorithms are illustrated in Fig. 5. It follows that 

FNPME-FS excels at all the statistic tests against the other 

algorithms. Therefore, in neighborhood decision systems, our 

FNPME-FS method can produce worthy classification results 

and exhibit great statistical performance for these datasets. 

VI. CONCLUSION AND FUTURE WORK 

In this article, a new FNMRS-based feature selection 

approach is brought forward to ameliorate the performance of 

classification for neighborhood decision systems. The 

definitions of the FNRS and NMRS models are first 

investigated, and some efficient uncertainty measures based on 

fuzzy neighborhood entropy are expanded in neighborhood 

decision systems. Then by integrating algebra with information 

views in the FNMRS model, the fuzzy neighborhood 

pessimistic multigranulation entropy is put forward to analyze 

the noises, uncertainty, and fuzziness of neighborhood decision 

systems. Furthermore, some properties are found. Accordingly, 

a novel forward search algorithm for feature selection is 

devised to make the performance of classification better for the 

selected feature subset. All the designed experiments exhibit 

that our FNPME-FS model is able to select a feasible and stable 

feature subset owning the optimal performance of classification 

for some low-dimensional UCI datasets and several gene 

datasets with high dimensions. Nevertheless, the developed 

feature selection method cannot fully balance the size of the 

selected feature subset and the classification accuracy for all 

heterogeneous datasets. Therefore, in our future work, more 

effective search methods and uncertainty measures for the 

FNMRS will be further studied to achieve an optimal balance 

and improve the computational efficiency of our method on 

many large-scale and high-dimensional datasets. 
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APPENDIX 

TABLE A 

SUMMARIZED ALL ACRONYMS AND FIRST DEFINED REFERENCE 

Full Name Abbr. Ref. 

Neighborhood Rough Sets NRS [16] 

Fuzzy Rough Sets FRS [18] 

Fuzzy Neighborhood Rough Sets FNRS [10] 
Multigranulation Rough Sets MRS [21] 

Neighborhood Multigranulation Rough Sets NMRS [24] 

Fuzzy Multigranulation Rough Sets FMRS [25] 
Original Data Processing ODP  

Neighborhood Tolerance Dependency Joint 

Entropy-Based Feature Selection 
FSNTDJE [40] 

Fuzzy Neighborhood Conditional Entropy-Based Feature 

Selection  
FNCE [14] 

Intuitionistic Fuzzy Positive Region-Based Attribute 

Subset Selection  
IFPR [13] 

Optimistic Multi-Granulation Entropy-Based Feature 
Selection for Classification 

OMGE [31] 

Pessimistic Multi-Granulation Entropy-Based Feature 

Selection for Classification 
PMGE [31] 

Fuzzy Neighborhood Rough Sets-Based Feature Subset 

Selection  
FNRS [10] 

Fuzzy Entropy-Based Information-Preserving Hybrid 
Data Reduction 

FISEN [42] 

Mutual Information-Based Attribute Reduction for 

Knowledge Reduction 
MIBARK [43] 

Entropy Gain-Based Gene Selection EGGS [44] 

Accuracy Acc  

True Positive Rate TPR  
False Positive Rate FPR  

k-Nearest Neighbor  KNN  

Classification and Regression Tree CART  
Version of the C4 Induction Tree Methodology Known as 

ID3 
C4.5 
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