
Front. Comput. Sci., 2021, 15(6): 156337
https://doi.org/10.1007/s11704-020-0268-6

BIC-based node order learning for improving Bayesian network
structure learning

Yali LV1,2, Junzhong MIAO1, Jiye LIANG2, Ling CHEN3, Yuhua QIAN 2,4

1 Shanxi University of Finance & Economics, Taiyuan 030031, China
2 Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education,

Shanxi University, Taiyuan 030006, China
3 The Center for Artificial Intelligence, University of Technology Sydney, New South Wales 2007, Australia

4 Institute of Big Data Science & Industry, Shanxi University, Taiyuan 030006, China

c© Higher Education Press 2021

Abstract Node order is one of the most important factors in
learning the structure of a Bayesian network (BN) for proba-
bilistic reasoning. To improve the BN structure learning, we
propose a node order learning algorithm based on the frequently
used Bayesian information criterion (BIC) score function. The
algorithm dramatically reduces the space of node order and
makes the results of BN learning more stable and effective.
Specifically, we first find the most dependent node for each
individual node, prove analytically that the dependencies are
undirected, and then construct undirected subgraphs UG. Sec-
ondly, the UG is examined and connected into a single undi-
rected graph UGC. The relation between the subgraph number
and the node number is analyzed. Thirdly, we provide the rules
of orienting directions for all edges in UGC, which converts
it into a directed acyclic graph (DAG). Further, we rank the
DAG’s topology order and describe the BIC-based node order
learning algorithm. Its complexity analysis shows that the al-
gorithm can be conducted in linear time with respect to the
number of samples, and in polynomial time with respect to the
number of variables. Finally, experimental results demonstrate
significant performance improvement by comparing with other
methods.

Keywords probabilistic reasoning, Bayesian networks, node
order learning, structure learning, BIC scores, V-structure

1 Introduction
Bayesian networks (BNs) [1] are well-known probabilistic
graphical models that can be used to represent and deal with
uncertainty in terms of probabilistic relationships. Their graphi-
cal and probabilistic nature makes such networks rather popular
in uncertainty reasoning. Consequently, BNs have been applied
in a wide range of fields, including bioinformatics [2, 3], a vi-
sual analysis of geospatial data [4], camera detection of pedes-
trians [5], complex activity recognition [6], and crime analy-
sis [7].

Received June 12, 2020; accepted October 15, 2020

E-mail: jinchengqyh@126.com

To enable probabilistic reasoning based on a BN, a critical
and necessary task is to learn the BN structure, which is com-
posed of two sequential problems. First, the directed acyclic
graph (DAG) of a BN that best captures the relationships be-
tween variables should be found. Second, the parameters quan-
tifying the probabilities of the relationships should be learned.
Because the parameters can be derived in a straightforward
manner (e.g., using a maximum likelihood estimation) when
the DAG structure is available, most existing studies have fo-
cused on the first problem of learning the best DAG structure of
a BN.

However, learning the DAG structure of a BN from the given
data is NP-hard [8, 9]. As derived by Robinson [10], the recur-
sive formula for DAGs’ number of a BN with n variables is as
follows:

f (n) =
n∑

i=1

(−1)i+1
(
n
i

)
2i(n−i) f (n − i) = n2O(n)

. (1)

That is, the search space required to find the best DAG structure
is exponential to the variables’ number. Therefore, it is a chal-
lenging problem to learn the BN structure for a large dataset
with numerous variables.

In general, most studies use score-&-search learning meth-
ods to learn a BN structure. These methods use heuristic strate-
gies to search the DAG space of possible candidates and eval-
uate the quality of the candidates with respect to predefined
scoring functions. The DAG structure with an optimal score
will then be returned. A number of scoring functions are used,
such as Bayesian Dirichlet likelihood-equivalent (BDe) [11]
and Minimum Description Length (MDL) [12]. In this study,
we follow most existing methods to adopt the Bayesian infor-
mation criterion (BIC) [13, 14] as the metric, and search the
DAG with the optimal BIC score. Many heuristic constraint
strategies are devised to improve the search efficiency, such
as limiting the number of parent nodes for each node in a
DAG [15], and restricting the treewidth of a DAG [16–19].
Among such strategies, node ordering is one of the most poten-
tial schemes used to reduce the DAG search space. Basically,

2 Front. Comput. Sci., 2021, 15(6): 156337

node ordering generates an order among variables such that the
preceding variables can only be parent nodes for the succeeding
variables.

Several node ordering methods are developed, including do-
main knowledge-based ordering [15] and sampling for node or-
dering [13, 20]. Cooper and Herskovits [15] proposed the fa-
mous K2 learning algorithm, which exploits some constraints
during the learning process, such as limiting the number of par-
ent nodes and giving node order in advance. Although the given
node order greatly reduces the search spaces, it is rather difficult
to be derived from domain knowledge [15], especially when the
number of nodes is large. Thus, we need to learn the node order
from data.

In addition, given a particular order, [21] studied a simple
and effective algorithm called Ordering-Based Search (OBS)
for learning a BN structure, which greedily explores neighbor-
ing orders by swapping their position, thereby optimizing the
BN’s score. Subsequently, [22] proposed an Acyclic Selection
OBS (ASOBS) that allows reverse edges if they do not generate
a directed cycle. Moreover, it has been proved that ASOBS has
a better performance than OBS in the analyzed dataset. How-
ever, ASOBS was conducted by uniformly sampling the space
of the orders. Hence, [13] introduced a novel entropy-based
sample approach that more effectively sampled from the order
spaces. It only considers sampling the node order based on the
entropy of each node. But according to the BIC metric, the node
order depends on not only its entropy but also the joint entropy
with the other node and its domain value. Moreover, the node
order spaces in [13, 22] are O(n!). So the algorithms are more
random and unstable because of the applied sample methods.

Besides, a new BN structure learning algorithm was studied
by finding the node order based on conditional independence
test [23]. To reflect the cause and effect between variables, an
efficient node order learning method was devised using a novel
scoring function based on the conditional frequency [24]. By
minimizing the inferential loss using a genetic algorithm, [25]
designed a wrapper node order learning method. [26] proposed
a mixed integer programming model based on the topological
order to optimize the structure of the BN, the nodes of which
have continuous values. However, these methods do not con-
sider the node order from a viewpoint consistent with the fre-
quently used BIC measurement, which not only reflects the
knowledge of the data by fitting the degree of data and also
simplifies the model, for learning the BN model.

Therefore, to avoid the aforementioned disadvantages of ex-
isting methods, we use the frequently adopted BIC score metric
to learn the node order in O(|V1|! · |V2|! · · · · · |Vq|!) order space,
where |V1|+ |V2|+ · · ·+ |Vq| = n; n is the node number in a BN,
|Vq| is the node number in node set Vq in which the node order
belongs to q-th rank. Obviously, O(|V1|! · |V2|! · · · · · |Vq|!) �
O(n!), which makes the performance of the learning methods
more stable and effective. Moreover, our node ranking tech-
nique can be efficiently computed. Therefore, it is easy to be
integrated into the existing BN learning methods.

The rest of this paper is organized as follows. Section 2
briefly reviews Bayesian networks and the BIC score function.
Section 3 describes our proposed node order learning algorithm
based on the BIC score function. Section 4 provides the exper-

imental results and their analysis. Section 5 gives the related
work. Finally, some concluding remarks regarding this research
are provided in Section 6.

2 Preliminaries
In this section, we review some preliminaries including
Bayesian networks and a BIC score function for measuring a
Bayesian network model.

2.1 Bayesian networks
Probabilistic reasoning is an important issue in the field of ar-
tificial intelligence. For a set of n random variables, the joint
probability distribution requires the specification of 2n−1 num-
bers. That is, the number of independent parameters is 2n − 1.
To reduce the computational complexity, a Bayesian network
(BN) [1] was proposed, the goal of which is to represent a joint
distribution Pr over a set of random variables through the condi-
tional independence among the variables. In general, the num-
ber of specifications or independent parameters is far smaller
than 2n − 1.

A BN model is the combination of graph theory and prob-
ability theory. It is a probabilistic graphical model and can be
expressed as M = (G, θ), where G = (V, E) denotes the DAG
structure. The triple is as follows.

• First, V = {X1, X2, . . . , Xn}, it is a set of nodes or random
variables.

• Second, E = {(Xi, X j)|1 � i � j � n}, it is a directed edge
set, where (Xi, X j) denotes Xi → X j in the DAG. Note
that < Xi, X j > indicates an undirected edge between Xi

and X j.
• Finally, θ = {Pr(Xi|ΠXi)} is the conditional probabilistic

distribution set of each node conditioned by its parent
nodes, where ΠXi is the set of parent nodes of node Xi.

Thus, a BN can be formally expressed as follows:

Pr(X1, X2, . . . , Xn) =
n∏

i=1

Pr(Xi|ΠXi), (2)

which indicates that, given the parent set ΠXi , each variable Xi

is independent of its non-descendants in the BN model.

2.2 BIC score function
The structure of a BN is a prerequisite of probabilistic reason-
ing using a BN model. Therefore, it is necessary to learn the
BN structure from the known dataset D = {D1,D2, . . . ,Dm},
where m denotes the sample number in D. Assume that the
data are complete and each variable Xi is a categorically ran-
dom variable. ΩXi denotes the state space of a random variable
Xi, ΩΠXi

denotes the state space of all parents of Xi, and we set
Ω∅ = 1. The goal of structure learning is to find the best BN
modelM = (G, θ) that fits well with the dataD.

In this study, we take the frequently used BIC score function
as a metric of a BN model, because it reflects the data knowl-
edge and simplifies the model. Also the BIC score is decompos-
able, and it can be expressed as the score sum of each variable
and its parent set. It can be written as follows:

BIC(M|D) = log Pr(D|M) − d
2

log m

Yali LV et al. BIC-based node order learning for improving Bayesian network structure learning 3

⇔
n∑

i=1

BIC(Xi|ΠXi) =
n∑

i=1

(L(Xi|ΠXi) − λ(Xi|ΠXi)). (3)

where

• d is the number of independent parameters in the BN
modelM, and

• L(Xi|ΠXi) represents the log-likelihood of Xi and its parent
set ΠXi , that is,

L(Xi|ΠXi) =
∑

π∈ΩΠXi

∑

x∈ΩXi

mx,π log θ∗x|π. (4)

Here, θ∗x|π denotes the maximum likelihood estimate
(MLE) of the conditional probability Pr(Xi = x|ΠXi = π),
which is written as mx,π

mπ
. mπ and mx,π represent the number

of samples (ΠXi = π) and (Xi = x & ΠXi = π) appear in
D, respectively. If π is null, then mπ = m and mx,π = mx.
If node Xi has no parents, then L(Xi) = L(Xi|∅).

• λ(Xi|ΠXi) is the penalization of complexity for Xi and its
parent set ΠXi .

λ(Xi|ΠXi) =
log m

2
(|ΩXi | − 1)|ΩΠXi

|. (5)

Similarly, if ΠXi = ∅, then λ(Xi) = λ(Xi|∅).
The higher the BIC score is, the better the BN model is,

which means that it fits the data well. Thus, to maximize the
score of each node in the learned modelM, the ultimate goal is
to find the following:

M∗ = arg max
M

BIC(M|D) = arg max
M

n∑

i=1

BIC(Xi|ΠXi). (6)

3 BIC-based node order learning
In this section, we address the BIC-based node order learning
method, which is divided into four steps. First, we learn some
undirected subgraphs based on the BIC measure. Second, all
undirected subgraphs can be connected into one undirected sub-
graph according to the BIC scores. Third, we orient all edges in
the entire undirected graph based on the BIC measure by orient-
ing small graph with three nodes. Fourth, we rank the topology
order of the DAG. Finally, we provide the pseudo-code of the
BIC-based node order learning algorithm and analyse its time
complexity.

3.1 Undirected subgraph learning
Usually, each node in a DAG has at least a directed edge that
points to or points from the other node, unless the DAG is an un-
connected graph. In this paper, we assume that the final learned
DAG with n nodes should be a connected DAG. So in the first
step, for each node Xi(1 � i � n), we learn the single node that
is most closely dependent on Xi from V\Xi. Here for each node
Xi, we will try to find its best single parent X j(1 � j � i � n)
using the BIC function, and thus we need to compute the fol-
lowing:

ΠXi ← arg max
X j∈ΠXi in Mi j

BIC(Mi j|D), (7)

whereMi j indicates that the DAG Gi j inMi j has only one di-
rected edge X j → Xi for n variables. This means that for Xi, we
search its best parent X j from n − 1 DAGs, in which each DAG
has only one edge X j → Xi. The n − 1 DAGs are as follows:

Gi1, Gi2, . . . , Gi j, . . . , Gin (1 � j � i � n).

Theorem 1 For each variable Xi, finding its ΠXi that meets
Eq. (7) from Gi1, Gi2, . . . , Gi j, . . . , Gin(1 � j � i � n) is
equivalent to the search of

ΠXi ← arg max
X j∈ΠXi

BIC(Xi|ΠXi),

between node Xi and any other one parent node X j.

Proof For each Xi and any one node X j ∈ ΠXi (1 � j � i � n),
we have

BIC(Mi1|D) = BIC(Gi1|D)

= BIC(Xi|X1) + BIC(X1) + BIC(X2)

+ · · · + BIC(Xn′−1) + BIC(Xn′)

= BIC(Xi|X1) + constant1, (8)

where constant1 = BIC(X1) + BIC(X2) + · · · + BIC(Xn′) and is
a constant number. In addition, Xn′ ∈ V\Xi and n′ = n − 1.

BIC(Mi2|D) = BIC(Gi2|D)

= BIC(X1) + BIC(Xi|X2) + BIC(X2)

+ · · · + BIC(Xn′−1) + BIC(Xn′)

= BIC(Xi|X2) + constant1. (9)

Similarly,

BIC(Mi j|D) = BIC(Gi j|D)

= BIC(X1) + BIC(X2) + · · ·
+BIC(Xi|X j) + BIC(X j) + · · ·
+BIC(Xn′−1) + BIC(Xn′)

= BIC(Xi|X j) + constant1, (10)

Further, we have the following:

BIC(Mi j|D) ∝ BIC(Xi|X j) ∝ BIC(Xi|ΠXi).

Thus, we conclude the following:

ΠXi ← argmax
X j∈ΠXi in Mi j

BIC(Mij|D)

⇐⇒ ΠXi ← argmax
X j∈ΠXi

BIC(Xi|ΠXi). (11)

�

According to the BIC score function shown in Eq. (3), we
also have the following theorem.

Theorem 2 Let Xi, X j ∈ V, Gi j and G ji be a DAG with only
one directed edge X j → Xi and Xi → X j for n variables inMi j

and M ji, respectively. Then, for the same dataset D, we have
the following:

BIC(Mi j|D) = BIC(M ji|D).

4 Front. Comput. Sci., 2021, 15(6): 156337

Proof Using the definition of information entropy, we have
the following formula:

H(Xi) = − log
∑

x∈ΩXi

Pr(x) log Pr(x)

= − log
∑

x∈ΩXi

mx

m
log

mx

m
, (12)

where x is the configuration of Xi. Because θ∗x = mx/m, for
any disjointed subsets Xi, X j ∈ V, using Eqs. (4) and (12), it is
obvious that

mH(Xi|X j) = −L(Xi|X j) (13)

as described in [14]. Moreover, we know that the information
entropy is also defined as follows:

H(Xi|X j) = H(Xi, X j) − H(X j). (14)

Further, based on Eqs. (3)–(5), and (10), we have

BIC(Mi j|D) = BIC(Gi j|D)

= BIC(X1) + · · · + BIC(Xi|X j) + BIC(X j) + · · · + BIC(Xn′′)

= BIC(Xi|X j) + BIC(X j) + constant2

= L(Xi|X j) − λ(Xi|X j) + L(X j|∅) − λ(X j|∅) + constant2

= −mH(Xi|X j) − log m
2
|ΩXi − 1||ΩX j |

−mH(X j) − log m
2
|ΩX j − 1| + constant2

= −mH(Xi, X j) +mH(X j) −mH(X j) − log m
2
|ΩXi ||ΩX j |

+
log m

2
|ΩX j | −

log m
2
|ΩX j | +

log m
2
+ constant2

= −mH(Xi, X j) − log m
2
|ΩXi ||ΩX j | +

log m
2
+ constant2

= −mH(Xi, X j) − log m
2
|ΩXi ||ΩX j | + constant3, (15)

where constant2 = BIC(X1)+ · · ·+BIC(Xn′′), Xn′′ ∈ V\{Xi, X j},
constant3 = log m

2 + constant2.
Similarly,

BIC(M ji|D) = BIC(G ji|D)

= −mH(Xi, X j) − log m
2
|ΩXi ||ΩX j | + constant3, (16)

Therefore, according to Eqs. (15) and (16), we have that

BIC(Mi j|D) = BIC(M ji|D). (17)

�

From Theorems 1 and 2, we can see that the best single par-
ent node with the highest BIC score can be regarded as the
closest dependent node. Thus, we can connect Xi and X j but
not distinguish the direction between them, meaning we will
have a learned undirected graph UG that reflects the undirected
dependent relation between variables during this process.

In addition, to improve readability and understanding, we
take a simple benchmark BN that can be found at http://www.

Fig. 1 The undirected subgraphs UG that can be learned by the first step

bnlearn.com/bnrepository/as a toy example to illustrate the pro-
cess of the algorithm in this paper. The learning process in-
cludes four steps and the learned edges in each step are de-
scribed in red.

For example, we select a benchmark BN including 11 nodes
(X1, X2, . . . , X11) and we sample 10000 instances to learn the
node order. In this step, we learn the undirected subgraphs UG

shown in Fig. 1.

3.2 Multiple undirected subgraph connecting
From Subsection 3.1, we can obtain n undirected edges by find-
ing the best single parent node given each node Xi (1 � i � n).
However, there may be some overlapping in n undirected edges,
which means a unconnected undirected graph may result in af-
ter the first step. Therefore, during the second step we check
and connect UG into a connected undirected graph UGC.

Let ñ be the number of different or non-overlapping undi-
rected edges and k be the number of unconnected undirected
subgraphs in UG. If ñ < n − 1, then UG is an unconnected
undirected graph consisting of some undirected subgraphs. The
number of variables n may be even or odd, and the relation be-
tween ñ and k is shown as Table 1 in detail.

From Table 1, when n is even, the range of ñ is [n
2 , n] and

the range of k is [1, n
2]; when n is an odd, the range of ñ is

[� n
2 �, n] and the range of k is [1, � n

2 �]. To summarise, n is even
or odd, and we have ñ ∈ [� n

2 �, n] and k ∈ [1, � n
2 �]. In general,

ñ + k = n, only there are no overlapping undirected edges in
UG, ñ + k = n + 1.

Table 1 The relation between ñ and k

n is an even n is an odd
ñ k ñ k

1 n
2

n
2 � n

2 � � n
2 �

2 n
2 + 1 n

2 − 1 � n
2 � + 1 � n

2 � − 1
3 n

2 + 2 n
2 − 2 � n

2 � + 2 � n
2 � − 2

4
5 n

2 + (n
2 − 1) 1 � n

2 � + (� n
2 � − 1) 1

6 n
2 +

n
2 1 � n

2 � + � n
2 � 1

n is
an even ñ ∈ [� n

2 �, n] k ∈ [1, � n
2 �]

or odd

Yali LV et al. BIC-based node order learning for improving Bayesian network structure learning 5

Fig. 2 The single undirected graph UGC that can be connected by the second
step

Further, we address how to connect some unconnected undi-
rected subgraphs into a connected undirected graph when ñ <
n − 1. Let Vk be the variable set of the kth undirected subgraph.
When k � 2, we search the highest BIC score of Gi j in UG,
where i ∈ Vk and j ∈ V \ Vk. We then connect Xi and X j us-
ing an undirected edge, meanwhile, let k = k − 1. We can loop
this process until k = 1. Thus, after the second step we obtain
UGC, which is a connected undirected graph. Continuing with
the previous example in Fig. 1, the connected undirected graph
UGC is shown in Fig. 2.

3.3 Orienting a connected undirected graph
In this step, we need to consider orienting the direction of
each edge in UGC. A large graph is composed of many small
graphs of three nodes, written as Gs, which can accurately rep-
resent a serial-link (e.g., X1 → X2 → X3), divergent-link (e.g.,
X2 → X1 & X2 → X3), and collision-link (e.g., X1 → X2 ← X3,
which is also called a V-structure) relationships among the vari-
ables in a large graph. Hence, we discuss the direction in UGC

by orienting an undirected graph in any small graph of three
nodes Gs.

For any Gs, we know they can generate 25 DAGs. There are
four different cases in these DAGs Gs by the number of edges,
which may be zero, one, two, or three. Assume that Gs have
three nodes: X1, X2, and X3. The DAG Gs with zero edges is as
shown in Fig. 3; the DAGs Gs with one edge are as shown in
Fig. 4; the DAGs Gs with two edges are as shown in Fig. 5; and
the DAGs Gs with three edges are as shown in Fig. 6.

When considering the orientation of the directions of undi-
rected edges in UGC by Gs, we have the following theorem.

Fig. 3 DAG G0, which has zero edges

Fig. 4 DAGs G1 ∼ G6, all of which have one edge

Fig. 5 DAGs G7 ∼ G18, all of which have two edges

Theorem 3 For 25 DAGs consisting of three nodes, we only
need to consider orienting the DAGs in these cases that have
two undirected edges in UGC; that is, only the 12 cases that are
from G7 to G18 in Fig. 5 need to be considered.

6 Front. Comput. Sci., 2021, 15(6): 156337

Fig. 6 DAGs G19 ∼ G24, all of which have three edges

Table 2 Six different BIC scores for 12 DAGs Gs

Cases DAGs with equal BIC

1 BIC(G7) = BIC(G8) = BIC(G9)
2 BIC(G10) = BIC(G11) = BIC(G12)
3 BIC(G13) = BIC(G14) = BIC(G15)
4 BIC(G16)
5 BIC(G17)
6 BIC(G18)

Proof First, because there are n − 1 connected undirected
edges in UGC after the second step, it is impossible to incur a
cycle for anyGs that consists of three nodes, which means there
are no cases in which Gs has three edges. Second, because UGC

is a connected undirected graph, for any one edge, it is always
connected by at least one edge. In addition, we can always find
another adjacent edge that gives the two edges a common node.
This means there are no cases in whichGs has zero or one edge.
Therefore we do not need to consider Gs with zero edges, one
edge, or three edges. We only need to consider orienting the
undirected edges in UGC using Gs with two edges, meaning we
only need to consider 12 DAGs from G7 to G18. �

Theorem 4 There are 6 different BIC score cases shown in
Table 2 for the 12 DAGs Gs with two edges from G7 to G18, as
shown in Fig. 5. Here, some DAGs are equivalent according to
the BIC metric.

Proof These cases shown in Table 2 can be directly deduced
from the BIC score function. �

As shown in Fig. 5, according to Theorem 4 and Table 2, we
have the following conclusions.

• For two edges having a common node X2, there are four
cases, namely G7, G8, G9, and G17, which denote exactly
a serial-link relationship (X1 → X2 → X3 or X3 → X2 →
X1), a divergent-link relationship (X2 → X1 & X2 → X3),
and a collision-link relationship (X1 → X2 ← X3, which

is also called a V-structure). Similarly, for two edges hav-
ing common nodes X3 and X1, the same cases occur.

• Moreover, BIC(G7) = BIC(G8) = BIC(G9), BIC(G10) =
BIC(G11) = BIC(G12) and BIC(G13) = BIC(G14) =
BIC(G15), which shows that, for any small graph with
three nodesGs having two edges with a common node, its
serial-link and divergent-link graphs always have equiv-
alent BIC scores and only its collision-link graph (V-
structure) may have different BIC scores.

Therefore, for any three nodes Xi, X j, Xk, if Xi is a common
node connecting the other two nodes, there are two undirected
edges < Xi, X j > and < Xi, Xk >, which is denoted as a undi-

rected small graphGi jk
s . Let Gi jk

s be a DAG oriented forGi jk
s , we

can also indicate that Gi jk
s has four cases, as shown in Fig. 7.

With serial-link DAGs (Gi jk
s − 1 and Gi jk

s − 2) and a divergent-
link DAG (Gi jk

s − 3) having equivalent BIC scores, it is easy to
conclude that

BIC(Gi jk
s − 1) = BIC(Gi jk

s − 2) = BIC(Gi jk
s − 3). (18)

Further, for any Gi jk
s , we can see which case Gi jk

s belongs to
in Fig. 7. In fact, by simply calculating the corresponding BIC
scores of BIC(Gi jk

s −1) and BIC(Gi jk
s −4), we have the following

orienting rules:

• Rule 1: If BIC(Gi jk
s − 4) > BIC(Gi jk

s − 1), it means that
there is a collision-link relationship or V-structure in Gi jk

s

and it is easy to orient the two edges, so we orient their
directions as X j → Xi and Xk → Xi.

• Rule 2: If BIC(Gi jk
s − 4) � BIC(Gi jk

s − 1), it means that
there is a serial-link or divergent-link relationship in Gi jk

s ,
so it isn’t easy to orient their directions and we list the two
undirected edges < Xi, X j > and < Xi, Xk > into a list L.

When all undirected edges in UGC are visited, some edges are
oriented and the others are not oriented. The graph is a partial
undirected graph, which we denote as PUGC. Continuing with
Fig. 2, the partial undirected graph PUGC is shown in Fig. 8.

Next, according to the principle of not raising V-structure,
we orient each undirected edge < Xi, X j > in list L by its

Fig. 7 Four DAGs in Gi jk
s

Yali LV et al. BIC-based node order learning for improving Bayesian network structure learning 7

Fig. 8 The partial undirected graph PUGC that can be oriented by Rule 1 and
Rule 2 in the third step

neighbour edges oriented in PUGC. This process is repeated us-
ing the following rules until L = ∅ or all edges are oriented in
PUGC.

• Rule 2.1: If a directed edge points to Xi (e.g., → Xi)
in PUGC, then we can set a serial-link relationship (e.g.,
→ Xi → X j) that doesn’t change the BIC score value,
thus we have Xi → X j and L = L\{< Xi, X j >}.

• Rule 2.2: If a directed edge points from Xi and another
points to Xi (e.g.,→ Xi →) in PUGC, then we can also set
a serial-link relationship (e.g.,→ Xi → X j), thus, we also
have Xi → X j and L = L\{< Xi, X j >}.

• Rule 2.3: If a directed edge points from Xi and another
points from Xi (e.g., ← Xi →) in PUGC, then we can
set a serial-link or divergent-link relationship that doesn’t
change the BIC score value. To not increase the prob-
ability of generating V-structure, we set X j → Xi and
L = L\{< Xi, X j >}.

• Rule 2.4: If no directed edge connects to node Xi, then
we consider its neighbor node X j using the same Rules
(Rule 2.1–Rule 2.3) as considering node Xi.

Finally, we obtain a DAGG after the third step. Continuing with
Fig. 8, the learned DAG by Rule 2.1, Rule 2.2 and Rule 2.3 is
shown in Fig. 9.

3.4 Ranking node order from DAG
For a DAG, to rank the order of nodes, we first search the nodes
whose in-degree is zero, and sort them in the first ranking or-
der. If several nodes have the same in-degree, then they have
the same ranking order. Next, we delete these nodes and the
corresponding edges and then search for those nodes whose in-
degree is zero and sort them in the second ranking order. This
process is looped until all nodes and edges are deleted. The loop
number is the number of maximum rank. After the fourth step,
we can obtain the node order or topological order.

To summarize, there are |V1|! ∗ |V2|! · · · ∗ |Vq|! node orders,
where q is the number of maximum rank, |Vq| is the node num-
ber in node set Vq. Clearly, the search space of the node order is
dramatically reduced by comparing with the number of random

Fig. 9 The learned DAG that can be oriented by Rule 2.1, Rule 2.2 and Rule
2.3 in the third step

node orders. That is, |V1|!∗ |V2|! · · · ∗ |Vq|! � |V |!, where n is the
node number in a BN, |V1| + |V2| + · · · + |Vq| = n, |V | = n.

Continuing with Fig. 9, the node order is
[X5, X11, X2, X3, X6, X1, X4, X7, X8, X9, X10], where Vq denotes
the node set of q-th rank, and the nodes in node set Vq have the
same rank q. Here, q = 5. In this example, X5 and X11 have the
same rank (i.e., the first rank V1); X2, X3 and X6 belong to the
same rank V2, and so on. In the same rank, we can randomly
sample their order when learning the BN structure.

Thus, there are 288 (|V1|! ∗ |V2|! · · · ∗ |V5|! = 2! · 3! · 4! · 1! ·1!)
node orders, it can easily be concluded that 288 � 11! in this
example.

3.5 Node-order learning algorithm
From the above four steps, The pseudocode of the node order
learning algorithm from the complete dataD is given in Algo-
rithm 1.

3.6 Time complexity analysis
In Algorithm 1, there are four steps used to learn the node or-
der ρ from the data; hence, we analyse the time complexity in a
step-by-step manner. Let n be the node number, m be the sample
number, k be the number of unconnected undirected subgraphs
in UG, and |Vk| be the node number of the k-th undirected sub-
graph in UG. In addition, |V\Vk| is the number of variables that
are not in Vk but are in V .

In the first step (from lines 2 through 6), for each node, we
need to search its most dependent single node by computing
n − 1 BIC(Mi j). Because there are n nodes, we need to com-
pute n(n − 1) BIC(Mi j). Moreover, according to the BIC score
function,

BIC(Mi j) =
n∑

i

(−mH(Xi|X j) − log m
2

(|ΩXi | − 1)|ΩX j |). (19)

the time complexity is related to m and (|ΩXi |−1)|ΩX j |; however,
(|ΩXi | − 1)|ΩX j | � m, and thus the time complexity is O(n2m) in
this step.

In the second step (from lines 8 through 14), there are k un-
connected undirected subgraphs, where k is at most � n

2 �. For
each k, we need to search the maximum BIC from |Vk | ∗ |V\Vk|

8 Front. Comput. Sci., 2021, 15(6): 156337

Algorithm 1 Node-order learning algorithm

Input: Data D
Output: Node order ρ
1: The first step: obtain UG

2: Undirected edge set E = ∅; Directed edge set E = ∅;
3: for i = 0 to n do
4: ΠXi ← arg maxXj∈ΠXi in Mi j BIC(Mi j |D);

5: E = E ∪ {< Xi, X j >};
6: end for
7: The second step: obtain UCG

8: ñ = |E|;
9: if ñ < n − 1 then

10: for k = n − ñ to 2 do
11: < Xi, X j >← arg max<Xi ,Xj> BIC(Mi j) in UG, where Xi ∈ Vk and

X j ∈ V\Vk;
12: E = E ∪ {< Xi, X j >}; k = k − 1;
13: end for
14: end if
15: The third step: obtain DAG G
16: Gs ← all small graphs of three nodes with two edges in UGC;

17: Let any three nodes Xi, X j, Xk, Gi jk
s ∈ Gs;

18: Gi jk
s ← the DAG in which the edges in Gi jk

s have been oriented;
19: Undirected edge List L = ∅;
20: for each Gi jk

s in Gs do
21: compute BIC(Gi jk

s − 1) and BIC(Gi jk
s − 4);

22: if BIC(Gi jk
s − 1) < BIC(Gi jk

s − 4) then
23: E = E ∪ {(X j, Xi), (Xk, Xi)};
24: else
25: L = L ∪ {< Xi, X j >, < Xi, Xk >};
26: end if
27: end for
28: while L � ∅ do
29: for each < Xi, X j > in L do
30: if (a directed edge points to Xi) ∨ (a directed edge points from Xi

and another directed edge points to Xi) then
31: Xi → X j; L = L\{< Xi, X j >}; E = E ∪ {(Xi, X j)};
32: end if
33: if (a directed edge points from Xi) ∧ (another directed edge points

from Xi) then
34: X j → Xi; L = L\{< Xi, X j >}; E = E ∪ {(X j, Xi)};
35: end if
36: if no directed edge connects to Xi then
37: considering X j in the same way as node Xi;
38: end if
39: end for
40: end while
41: The fourth step: obtain node order ρ
42: G ← (E, V); V ′ ← V; i = 0; ρ = ∅;
43: Building the in-degree of each node using directed edges in G;
44: while V ′ � ∅ do
45: i = i + 1;
46: Find the node set V ′i in which all nodes have a zero in-degree;
47: ρ = ρ ∪ V ′i ; V ′ ← V ′\V ′i
48: end while
49: Return ρ;

BIC(Mi j), where |Vk| + |V\Vk| = n, and thus we need to search
k ∗ |Vk| ∗ |V\Vk| BIC(Mi j). Assume that the largest number is n
for |Vk| and |V\Vk|, although the number is actually less than n.
Thus, the search time complexity is O(n3m) in this step.

For the third step (from lines 16 through 40), the two loops
need a long computational time and the other lines need a con-
stant time. In terms of the for loop from lines 20 through 27,
because Gs is a set of all small graphs of three nodes with two
edges in UGC, let n − 1 be the edge number in UGC, and there

are

(
n − 1

2

)
small graphs in Gs that need to compute their BIC

scores. Thus, the time complexity is O(n2m) in this loop. For
the while loop from lines 28 through 40, there are at most n− 1
undirected edges in L, for each undirected edge < Xi, X j >,
and when we search the adjacent directed edges of node Xi or
X j, n − 1 edges at most are required. Thus, the time complexity
is O(n2) in this loop; therefore, the time complexity is O(n2m)
during the third step.

In the fourth step (from lines 42 through 48), building the in-
degree of each node in line 43 requires n− 1 iterations, because
n − 1 directed edges are in G. For the while loop from lines 44
through 48, because there are n nodes, n iterations are required.
Thus, the time complexity during the fourth step is O(n).

Therefore, the entire time complexity is O(n3m) for our pro-
posed learning Algorithm 1, that is, the worst time complexity
of Algorithm 1 is linear with respect to the sample number and
polynomial with respect to the node number.

4 Experiments
In this section, we assess the performance of the proposed node
order learning method, and compare it with the other existing
methods for ranking the node order by taking the node order
into the popular K2 algorithm to learn the BN structure. Clearly,
our proposed method can be used into most score-&-search-
based structure learning methods. The evaluation metrics in-
clude BIC score, KL divergence, precision, recall, F1 and run
time for the learned BN, and the mean absolute error (mae) [13]
for the inference results based on the learned BN.

4.1 Experiment setting and datasets
In this experiment, all experiments were implemented in
Python 3. We first learn the node order from the data, and then
take them into K2 algorithm to learn the structure of BN from
the same data. Here, we set the maximum number of parents to
3 when n � 10; to 4 when 10 < n � 30; and to 5 when n � 30.

To conduct the experiments, we use nine synthetic datasets
generated from nine benchmark BNs, which can be found at
http://www.bnlearn.com/bnrepository/, respectively. The basic
properties of each BN include the BN names(abbreviated as
BNs), the node number(abbreviated as nodes), the edge num-
ber(abbreviated as edges), the parameter number(abbreviated as
parameters), the instance number and the sample times on each
BN (abbreviated as instances(times)). For the different BNs,
we generate 10,000 instances for 5 times, 3 times, or once,
using logic sample methods, which are denoted as 10000(5),
10000(3), and 10000(1), respectively. They all are described in
Table 3.

4.2 Evaluation metrics
To verify the performance of our proposed node order algo-
rithm, six evaluation metrics are used for comparison and anal-
ysis of the experimental results between our algorithm and the
other algorithms. The evaluation index are described as follows.

Yali LV et al. BIC-based node order learning for improving Bayesian network structure learning 9

Table 3 Description of nine synthetic benchmark BN generated datasets

No. BNs Nodes Edges Parameters Instances(times)

1 Cancer 5 4 10 10000(5)
2 Earthquake 5 4 10 10000(5)
3 Survey 6 6 21 10000(5)
4 Asia 8 8 18 10000(5)
5 Sachs 11 17 178 10000(5)
6 Alarm 37 46 509 10000(5)
7 Hailfinder 56 66 2656 10000(5)
8 Andes 223 338 1157 10000(3)
9 Pigs 441 592 5618 10000(1)

(1) BIC score This is described in Section 2.
(2) KL divergence KL divergence is also called relative en-

tropy and is a measure between different probability dis-
tributions of learned BNs and benchmark BNs. It can be
formalized into the following formula.

DKL(S‖T) =
∑

x∈ΩV

S(x) log(
S(x)
T(x)

). (20)

Here, S and T are two different discrete probability dis-
tributions, S is the joint probability distribution of the
learned BN, and T is the joint probability distribution of
the benchmark BN.

(3) Precision We can take the presence or absence of each
edge in a learned BN as a binary classification problem
herein, and thus the precision is the number of correct
edges present divided by the total number of edges in the
learned BN.

precision =
TP

TP + FP
. (21)

Here, TP is the number of edges correctly present in the
learned BN, and FP is the number of edges incorrectly
present in the learned BN.

(4) Recall The recall is the number of correct edges present
in the learned BN divided by the total number of edges
present in the benchmark BN.

recall =
TP

TP + FN
. (22)

Here, TP is described similarly to Eq. (21), and FN is the
number of incorrectly absent edges in the learned BN.

(5) F1 F1 is the harmonic mean of the recall and precision.

F1 = 2 · recall ∗ precision
recall + precision

. (23)

(6) Mean Absolute Error (mae) This can be used to mea-
sure the inference results between those based on the
learned BN and those based on the benchmark BN.

mae =
1
c

∑

i

| Pr
i

(q) − P̂ri(q)|. (24)

Here, c denotes the total number of queries based on the
BN inference, Pri(q) is the computed posterior probability
of the ith query based on the benchmark BNs, and P̂ri(q) is
the computed posterior probability of the ith query based
on the learned BNs.

(7) Run time(s) Here the run time(s) denotes that how many
seconds the k2 algorithm is conducted based on different
node orders.

4.3 Learning results based on synthetic data
In this subsection, we first verify the performance of our pro-
posed method based on the BN learning results by taking the
learned node order into the K2 algorithm, and by compar-
ing our proposed method (abbreviated as BIC-based) with the
three existing methods. They are the entropy-based node order
sampling method [13] (abbreviated as Entropy-based), random
sample node order method (abbreviated as Random), and topo-
logical order of benchmark BN (abbreviated as Benchmark).

Note that we can obtain the node order space of DAG struc-
ture of a BN by the fourth step described in Subsection 3.4.
Benchmark algorithm denotes that we use the fourth step of
our algorithm to obtain the node order space of benchmark
DAG of a BN, thus we sample one node order from the node
order space of benchmark DAG as the relative optimal order.
Our BIC-based algorithm denotes that we learn the DAG of a
BN by the first three steps of our algorithm and then obtain one
node order by the fourth step described in Subsection 3.4, so
our learned DAG may not be the same good as the correspond-
ing benchmark DAG, which makes that its node order may not
be relative optimal order as that of benchmark DAG.

The comparison results using the K2 algorithm with the four
different node order methods are shown in Table 4. Specifically,
the precision, recall, F1 and run time are used to measure the
learned DAG structures G; the BIC score and KL divergence
are used to measure the learned DAG structures and parameters
(G, θ), that is, they are used to measure the BN modelM.

The BIC score is the trade-off between the likelihood func-
tion for data and the complexity of the network structure. The
KL divergence is used to measure the joint probability distribu-
tion. The smaller the KL divergence is, the better the learned
BN. Note that “mean±sd” denotes the mean and standard de-
viation of the learned results of three times or five times from
the 10,000 different instances for each evaluation metric. For
each dataset, the best results in each metric are shown in bold
in Table 4.

From Table 4, we can conclude the following.

(1) According to the mean of the learned DAG structure of a
BN based on the precision, recall, and F1 metrics, we ob-
tained the best mean results except for the Hailfinder BN
when applying the benchmark node order method. The
second best results are from our proposed BIC-based node
order, with the exception of the Sachs dataset.
The reason for this is that the benchmark Sachs BN is
an unconnected DAG and includes two subDAGs, but we
connected the unconnected graph using the second step of
our method during the learning from the Sachs dataset.
In particular, our method has the same best results for the
Canner BN and Earthquake BN as those of the bench-
mark method, meaning the DAGs are completely learned
in the Canner and Earthquake datasets using our method.
Moreover, for the Hailfinder BN, our proposed method is

10 Front. Comput. Sci., 2021, 15(6): 156337

Table 4 Comparison results of the learned BNs using K2 algorithm with four different node order methods

BIC KL divergence Precision Recall F1 run time(s)
Dataset Methods

(mean±sd) (mean±sd) (mean±sd) (mean±sd) (mean±sd) (mean±sd)

Entropy-based –3152.694±3036.858 0.022±0.007 0.350±0.082 0.300±0.100 0.161±0.090 0.000±0.000
Cancer Random –12418.956±3087.023 0.023±0.020 0.510±0.258 0.450±0.187 0.236±0.213 0.000±0.000
10000 Benchmark –11949.743±44.769 0.018±0.000 1.000±0.000 1.000±0.000 0.500±0.000 0.000±0.000

BIC-based –11949.743±44.769 0.018±0.000 1.000±0.000 1.000±0.000 0.500±0.000 0.000±0.000
Entropy-based –3715.421±623.309 0.046±0.002 0.347±0.187 0.550±0.245 0.212±0.216 0.000±0.000

Earthquake Random –4313.796±748.221 0.032±0.025 0.211±0.079 0.400±0.123 0.137±0.093 0.000±0.000
10000 Benchmark –4230.709±114.87 0.027±0.000 1.000±0.000 1.000±0.000 0.500±0.000 0.000±0.000

BIC-based –4230.709±114.87 0.027±0.000 1.000±0.000 1.000±0.000 0.500±0.000 0.000±0.000
Entropy-based –19944.035±6427.984 0.009±0.005 0.493±0.168 0.400±0.133 0.220±0.148 0.800±0.400

Survey Random –21896.582±5782.218 0.010±0.006 0.500±0.217 0.367±0.125 0.211±0.160 0.200±0.400
10000 Benchmark –22883.773±110.284 0.008±0.007 1.000±0.000 0.967±0.067 0.491±0.036 0.000±0.000

BIC-based –20918.311±3917.798 0.006±0.005 0.813±0.016 0.733±0.082 0.385±0.052 0.400±0.490

Entropy-based –24375.558±2215.956 0.028±0.020 0.261±0.163 0.350±0.166 0.148±0.166 1.400±0.490
Asia Random –24317.325±2955.781 0.022±0.014 0.290±0.163 0.375±0.177 0.163±0.170 1.600±0.490
10000 Benchmark –21991.124±275.301 0.001±0.000 1.000±0.000 0.925±0.061 0.480±0.033 1.400±0.490

BIC-based –22981.3366±1974.582 0.019±0.036 0.858±0.226 0.825±0.100 0.418±0.169 1.400±0.490
Entropy-based –79707.263±1075.057 0.119±0.040 0.333±0.134 0.471±0.162 0.186±0.118 13.400±6.344

Sachs Random –75285.587±1882.341 0.154±0.059 0.476±0.160 0.518±0.155 0.248±0.157 13.000±6.841
10000 Benchmark –78212.950±191.800 0.075±0.010 1.000±0.000 1.000±0.000 0.500±0.000 10.000±5.060

BIC-based –74844.417±2156.969 0.120±0.015 0.422±0.027 0.447±0.029 0.217±0.028 14.000±1.414

Entropy-based –185510.511±2074.264 × 0.216±0.042 0.313±0.045 0.128±0.044 389.200±37.664
Alarm Random –184993.350±5853.005 × 0.278±0.090 0.409±0.130 0.166±0.106 379.000±30.183
10000 Benchmark –174219.558±602.242 × 0.957±0.000 0.957±0.000 0.478±0.000 238.200±10.323

BIC-based –174913.070±2803.941 × 0.690±0.055 0.791±0.038 0.368±0.048 286.800±28.684

Entropy-based –593490.104±15283.241 × 0.363±0.058 0.424±0.059 0.391±0.059 1348.000±77.087
Hailfinder Random –625115.637±10248.728 × 0.245±0.093 0.294±0.112 0.267±0.102 1384.400±190.713
10000 Benchmark –489725.072±211.998 × 0.770±0.012 0.730±0.011 0.750±0.011 829.400±73.796

BIC-based –519608.918±11238.885 × 0.809±0.014 0.782±0.007 0.795±0.004 1251.400±118.417

Entropy-based –1477041.770±49783.398 × 0.282±0.020 0.448±0.029 0.173±0.012 14196.000±1638.252
Andes Random –1522018.851±32834.350 × 0.243±0.025 0.390±0.025 0.150±0.013 16115.333±2078.353
10000 Benchmark –1191163.696±20040.096 × 0.938±0.003 0.920±0.022 0.464±0.005 6067.000±1232.552

BIC-based –1164586.578±12672.698 × 0.660±0.017 0.727±0.005 0.346±0.006 9424.333±1200.276
Entropy-based –5964326.913 × 0.321 0.530 0.200 ×

Pigs Random –6024467.904 × 0.291 0.490 0.183 ×
10000 Benchmark –4448620.160 × 1.000 1.000 0.500 ×

BIC-based –4899597.984 × 0.676 0.830 0.373 ×

better than the benchmark method, because it uses a ran-
dom sample for nodes that are in the same rank of node
order. Further, it is occasionally possible for our method
to outperform the benchmark method when the variable
number is large.

(2) For the learned BNs in the BIC score metric, when the
number of nodes is extremely small, such as n = 4 or
n = 5, the BIC scores of the learned BN are the best when
using the Entropy-based method, whereas the results for
the corresponding precision, recall, and F1 are the worst.
It is clear that these results are completely inconsistent
with the BIC scores, particularly with the Canner BN. But
for n � 8, although the BIC score is consistent with the
corresponding precision, recall, and F1 metrics, the re-
sults of these metrics are all poor when using the Entropy-
based method. That is, the BIC score is unsuitable for
measuring a much smaller BN when using the Entropy-
based method.
However, the BIC scores of our methods are consistent

with the corresponding precision, recall, and F1 metrics
for all datasets except for the Sachs benchmark dataset,
which is an unconnected DAG and includes two sub-
DAGs. In general cases, the BIC score based on our pro-
posed method is higher than that based on the Entropy-
based method and the Random method. It is occasionally
higher than that based on the benchmark method, such as
for the Andes BN.

(3) For the learned BNs in the KL divergence metric, it
achieves the best result based on the benchmark method
for most datasets, our method achieves the second. The
experiment results in Table 4 show that the KL divergence
is consistent with that of the other metrics. In addition, be-
cause the KL divergence needs to compute the joint prob-
ability distribution of the BNs, it has a rather high com-
putational complexity. Thus, we no longer compute the
KL divergence in large BNs, and use "×" to express the
results for BNs of n > 20.

(4) For run time, four methods have the same run times in

Yali LV et al. BIC-based node order learning for improving Bayesian network structure learning 11

small BNs (n < 10) except for Survey BN, because the
different node orders are ones that are sampled from dif-
ferent node order space based on four methods, respec-
tively, with a certain probability, it is possible to sample
the same good node order, and even other methods sam-
ple the better node order than our method and benchmark
method. In addition, our method is suitable for single con-
nected DAG and the benchmark Sachs BN includes two
subDAGs, thus there is not good result on Sachs BN. In
general, for big or large BNs, the bigger or larger n is,
the higher the probabilities of our method sampling good
node order are. In this experiment, the benchmark method
achieves the best results and our method have the second
ones on the big or large BNs, such as Alarm, Haifinder
and Andes BNs, which is consistent with our intuition.

(5) In terms of the stability or robustness of the four methods,
the rank of the standard deviation (sd) of the benchmark
method is the best for the six metrics in most cases. There
are 86.67% cases in which the sd achieves the best results
for the benchmark method, that is,

7(BIC) + 4(KL) + 8(precision) + 7(recall) + 7(F1) + 6(run time)
8 + 5 + 8 + 8 + 8 + 8

.

Further, except for the benchmark method, compared with
the other two methods, the stability or robustness of our
BIC-based method is better in most cases. That is, 35 out
of 45 (77.78%) cases are better than the other methods,
except for the benchmark method.

To summarize, our proposed node order method outperforms
the Entropy-based method and Random sample method in most
cases. In addition, our method is more suitable for a connected
graph.

4.4 Inference results on synthetic data
Because one of the main aims at learning a BN is to infer or
compute certain queries, in this subsection we further verify
the performance of our method based on the inference results.
Here, we consider the inference tasks over domains where the
true BN is known, and thus we can obtain the true inference
probability. The nine true BNs are shown in Table 3. We can
compare the inference performance of the learned BNs by the
four different methods mentioned above with that of the corre-
sponding true BNs.

Numerous inference algorithms have been developed, such
as clique tree propagation algorithm [27, 28], iterative join
graph propagation [29], and variational inference algorithm. In
this experiment, we use the famous clique tree propagation al-
gorithm to compute Pri(q) and P̂ri(q) by conducting an exact
inference on each true BN and each learned BN, respectively.
Note that for each BN, the inference results are the average of
the mae from several different datasets except for the Pigs BN.

For each small BN (n � 20), such as the Cancer, Earthquake,
Survey, Asia, and Sachs BNs, based on the mae determined
through Eq. (24), we first take each variable as evidence to in-
fer the posterior probabilities of other variables using the four
learned BNs and the known true BN, and thus c = n(n − 1) in
these cases. For each medium BN (20 < n � 50), each large BN
(50 < n � 100), or each extremely large BN (100 < n � 1000),

such as Alarm, Hailfinder, Andes, and Pigs BNs, because they
have a rather high inference complexity, we consider taking
each variable as a query variable and the other variables as evi-
dence to compute the mae, and thus c = n in these cases.

Note that in the BNs based on the four node order meth-
ods, the "mean±sd" in the inference results shown in Table 5
are obtained by conducting five times for small BNs (n � 20),
three times for Alarm, Hailfinder, and Andes, and once for the
Pigs BN, respectively. The comparison details of the inference
results are shown in Table 5. The smallest mae of each BN
based on four different node order methods is shown in bold in
Table 5.

From Table 5, the benchmark method has the smallest mae
or the best inference results in most cases. Our method has the
second smallest mae and it outperforms the other two meth-
ods. Occasionally, our method has the equivalent best inference
results, such as in the Cancer and Earthquake BNs, and even
achieves much better inference results than those based on the
benchmark method, such as with the Sachs BN.

Moreover, in terms of the stability or robustness of the four
methods regarding the inference results of the learned BNs (ex-

Table 5 Comparison of the mae in the inference results

Dataset c Methods Mae (mean ± sd)

Entropy-based 0.02185±0.00513
Cancer Random 0.01842±0.00737
BNs

n(n − 1)
Benchmark 0.00967±0.00326
BIC-based 0.00967±0.00326

Entropy-based 0.04220±0.00395
Earthquake Random 0.03460±0.00732
BNs

n(n − 1)
Benchmark 0.01721±0.00549
BIC-based 0.01721±0.00549

Entropy-based 0.00507±0.00094
Survey Random 0.00527±0.00094
BNs

n(n − 1)
Benchmark 0.00365±0.00084
BIC-based 0.00413±0.00085

Entropy-based 0.01024±0.00227
Asia Random 0.01181±0.00276
BNs

n(n − 1)
Benchmark 0.00674±0.00151
BIC-based 0.00999±0.00530

Entropy-based 0.00519±0.00169
Sachs Random 0.00682±0.00274
BNs

n(n − 1)
Benchmark 0.00443±0.00072
BIC-based 0.00440±0.00058

Entropy-based 0.08897±0.02752
Alarm Random 0.08265±0.02519
BNs

n
Benchmark 0.03187±0.00962
BIC-based 0.06371±0.01702

Entropy-based 0.04288±0.01644
Hailfinder Random 0.04106±0.01345
BNs

n
Benchmark 0.01685±0.00611
BIC-based 0.02128±0.00484

Entropy-based 0.13245±0.00589
Andes Random 0.15127±0.00561
BNs

n
Benchmark 0.12952±0.00162
BIC-based 0.14578±0.00456

Entropy-based 0.50383
Pigs Random 0.49961
BNs

n
Benchmark 0.56184
BIC-based 0.54067

12 Front. Comput. Sci., 2021, 15(6): 156337

cept for the benchmark method), six out of eight (75%) cases
based on our method are better than those based on the Entropy-
based and Random methods shown in Table 5. Note that the sd
of the Pigs BN does not need to be considered because there is
only one dataset. In conclusion, our BIC-based method is more
stable or robust than the other methods except for the bench-
mark method.

5 Related work
Learning the BN structure is a critical and necessary task in
probabilistic reasoning based on a Bayesian network (BN)
model. BN learning includes structure learning [13, 14, 16, 20,
26, 30–39] and parameter learning [40–43]. When the DAG of
the BN is known, we only need to conduct parameter learning.
The methods of parameter learning can be summarised as the
maximum likelihood estimation (MLE) and Bayesian estima-
tion. When the DAG is unknown, we not only need to learn the
DAG, but also need to learn its parameters, which is called the
structure learning of the BN.

Existing methods of DAG structure learning can be gener-
ally classified into three categories: 1) score-&-search-based
methods, 2) constraint-based algorithms, and 3) hybrid ap-
proaches. 1) Score-&-search-based methods, as mentioned pre-
viously, employ a scoring function to measure the quality of
a candidate DAG. Heuristic strategies are used to search the
DAG space of the possible candidates and evaluate the quality
of the candidates with respect to predefined scoring functions.
2) Constraint-based algorithms exploit the dependent (and in-
dependent) relationships between variables based on informa-
tion theory to learn the BN structure. Although constraint-based
methods are computationally efficient (e.g., their running time
is linear with respect to the number of data records and poly-
nomial with respect to the number of attributes), the effective-
ness may be handicapped through the engagement of too many
conditional independence (CI) tests. Each test is built upon the
results of the other tests, which leads to escalated errors. 3) Hy-
brid approaches combine the techniques of the first two cate-
gories. In general, a constraint-based approach is adopted as
the initial step to restrict the search space of the possible struc-
tures, which is followed by a score-&-search-based method to
search for the optimal DAG. To avoid the accumulated errors
caused by CI tests involved in constraint-based methods and
hybrid approaches, in this study we consider score-&-search-
based methods, focusing on improving the computational effi-
ciency incurred by the exponential DAG search space.

For a score-&-search-based BN structure method, a BN
model selection and a BN model optimisation are included. We
can select a BN model based on the score functions, such as
CH [15], MDL [12], BIC, Akaike information criterion (AIC),
and BDe [11]. Here, the BIC score function is a frequently
used metric for the learned BN model, and we can optimise
the BN model by considering some influential factors, such as
limiting the number of parent nodes [15], giving the node or-
der through the domain knowledge [15], sampling partial or-
ders [20], applying the entropy-based sampling node order [13],
swapping the order between two consecutive nodes [44], using
an ordering-based search for learning the BN structure [21], ap-
plying a bounding tree width of the corresponding BN, conduct-

ing a parallel search [45], and providing the iteration conditions
or limiting the iteration times. Here, the node order is one of the
most important factors influencing the optimisation of the BN
model.

Moreover, the other goal of learning the BN structure is to
apply probabilistic reasoning other than a knowledge represen-
tation. A good indicator of the inference complexity of a BN
model with DAG G is the treewidth of G, which is denoted
as tw(G). However, determining the tree width of a graph is
NP-hard [46], no efficient methods are available to solve this
problem. Thus, to learn the BN structure with a low inference
complexity, numerous researchers have addressed the bounded
treewidth BN learning methods and have recently achieved
some advanced results [13, 16, 19, 31, 32, 47]. In most of these
methods, the node order is also rather helpful for improving the
learning of the structure of a BN with a low inference complex-
ity. Therefore, learning the node order from the data is an im-
portant and necessary issue in a knowledge representation and
probabilistic reasoning based on the BN model.

However, existing node order learning methods have certain
disadvantages: 1) The node order is rather difficult to be given
by domain knowledge, as in [15], and thus we need to learn the
node order from the data, particularly when the node number is
large. 2) According to the frequently used BIC metric, the node
order not only depends on its entropy but also depends on the
joint entropy with the other node and its domain value. More-
over, the learned BN results are unstable because of the sample
methods adopted [13,21,22]. 3) Most existing methods [23–26]
have not been studied from a perspective consistent with the
frequently used BIC measurement of the learning BN model.
Therefore, in this study, we address the node order learning al-
gorithm using data from the viewpoint of the frequently applied
BIC measurement and avoid these disadvantages as much as
possible.

6 Conclusion
To improve the BN structure learning, we proposed a node or-
der learning method based on a frequently used BIC score func-
tion. The main contributions are summarized as follows:

• We provided the learning and connecting method for con-
necting undirected subgraphs based on BIC measure and
proved the relative theorems of the nondirectional proper-
ties.

• We presented the orienting edges rules for an undirected
graph based on the BIC.

• We proposed a learning algorithm of the node order for
improving the BN structure learning and analysed its time
complexity.

• Based on experiments conducted on synthetic databases,
we illustrated the significant performance of our proposed
learning method.

To sum up, the theoretical analysis and experimental results
demonstrate that our algorithm outperforms other state-of-the-
art methods in terms of BIC score, KL divergence, precision,
recall, F1, run time and mae in most cases.

In the future, it will be interesting to show some theoretical

Yali LV et al. BIC-based node order learning for improving Bayesian network structure learning 13

analysis over the correctness of the learned graph structure.
Also, although there are numerous existing methods for lean-
ing a BN structure and obtaining better results from incomplete
data [16, 20, 32, 48–50], there are few methods for learning the
node order from incomplete data, and thus we have focused on
learning the node order from incomplete data for improving the
BN structure. In addition, we aim to address the relation be-
tween the DAGs’ density and the number of node order spaces,
this would clarify the situations in which the stability of learn-
ing results. Which remains as our further research.

Acknowledgements The work partially supported by the National Natural
Science Foundation of China (Grant Nos. 61432011, U1435212, 61322211 and
61672332), the Postdoctoral Science Foundation of China (2016M591409), the
Natural Science Foundation of Shanxi Province, China (201801D121115 and
2013011016-4) and Research Project Supported by Shanxi Scholarship Council
of China (2020-095).

References

1. Judea P. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, San Mateo, Califor-
nia, 1988

2. Friedman N. Inferring cellular networks using probabilistic graphical
models. Science, 2004, 303(5659): 799–805

3. Raval A, Ghahramani Z, Wild D L. A Bayesian network model for pro-
tein fold and remote homologue recognition. Bioinformatics, 2002, 18(6):
788–801

4. Chen W, Zhu B, Zhang H. BN-mapping: visual analysis of geospatial
data with Bayesian network. Chinese Journal of Computers, 2016, 39(7):
1281–1293

5. Peng P, Tian Y, Wang Y, Li J, Huang T. Robust multiple cameras pedes-
trian detection with multi-view Bayesian network. Pattern Recognition,
2015, 48(5): 1760–1772

6. Liu L, Wang S, Su G, Huang Z, Liu M. Towards complex activity recogni-
tion using a Bayesian network-based probabilistic generative framework.
Pattern Recognition, 2017, 68: 295–309

7. Oatley G, Ewart B. Crimes analysis software: ‘pins in maps’, clustering
and Bayes net prediction. Expert Systems with Applications, 2003, 25(4):
569–588

8. Chickering D M, Heckerman D, Meek C. Learning Bayesian networks
is NP-hard. Technical Report, MSR-TR-94-17, Microsoft Research, Mi-
crosoft Corporation, 1994

9. Chickering D M, Heckerman D, Meek C. Large-sample learning of
Bayesian networks is NP-hard. Journal of Machine Learning Research,
2004, 5: 1287–1330

10. Bouhamed H, Masmoudi A, Lecroq T, Rebai A. Structure space of
Bayesian networks is dramatically reduced by subdividing it in sub-
networks. Journal of Computational and Applied Mathematics, 2015,
287: 48–62

11. Heckerman D, Geiger D, Chickering D M. Learning Bayesian networks:
the combination of knowledge and statistical data. Machine Learning,
1995, 20: 197–243

12. Lam W, Bacchus F. Learning Bayesian belief networks: an approach
based on the MDL principle. Computational Intelligence, 1994, 10(3):
269–293

13. Scanagatta M, Corani G, De Campos C P, Zaffalon M. Approximate struc-
ture learning for large Bayesian networks. Machine Learning, 2018, 107:
1209–1227

14. De Campos C P, Scanagatta M, Corani G, Zaffalon M. Entropy-based
pruning for learning Bayesian networks using BIC. Artificial Intelligence,
2018, 260: 42–50

15. Cooper G F, Herskovits E H. A Bayesian method for the induction of

probabilistic networks from data. Machine Learning, 1992, 9: 309–347
16. Scanagatta M, Corani G, Zaffalon M, Yoo J, Kang U. Efficient learn-

ing of bounded-treewidth Bayesian networks from complete and incom-
plete data sets. International Journal of Approximate Reasoning, 2018,
95: 152–166

17. Nie S, De Campos C P, Ji Q. Learning Bayesian networks with bounded
treewidth via guided search. In: Proceedings of the 30th AAAI Confer-
ence on Artificial Intelligence. 2016, 3294–3300

18. Parviainen P, Farahani H S, Lagergren J. Learning bounded treewidth
Bayesian networks using integer linear programming. In: Proceedings of
the 17th International Conference on Artificial Intelligence and Statistics.
2014, 751–759

19. Elidan G, Gould S. Learning bounded treewidth Bayesian networks. Jour-
nal of Machine Learning Research, 2008, 9: 2699–2731

20. Niinimaki T, Parviainen P, Koivisto M. Structure discovery in Bayesian
networks by sampling partial orders. Journal of Machine Learning Re-
search, 2016, 17(1): 2002–2048

21. Teyssier M, Koller D. Ordering-based search: a simple and effective al-
gorithm for learning Bayesian networks. In: Proceedings of the 21st Con-
ference on Uncertainty in Artificial Intelligence. 2005, 584–590

22. Scanagatta M, De Campos C P, Corani G, Zaffalon M. Learning Bayesian
networks with thousands of variables. Neural Information Processing
Systems, 2015, 28: 1855–1863

23. Chen X, Anantha G, Lin X. Improving Bayesian network structure learn-
ing with mutual information-based node ordering in the K2 algorithm.
IEEE Transactions on Knowledge and Data Engineering, 2008, 20(5): 1–
13

24. Ko S, Kim D. An efficient node ordering method using the conditional
frequency for the K2 algorithm. Pattern Recognition Letters, 2014, 40:
80–87

25. Hsu W H, Guo H, Perry B B, Stilson J A. A permutation genetic algo-
rithm for variable ordering in learning Bayesian networks from data. In:
Proceedings of the Genetic and Evolutionary Computation Conference.
2002, 383–390

26. Park Y W, Klabjan D. Bayesian network learning via topological order.
Journal of Machine Learning Research, 2017, 18: 1–32

27. Zhang L, Guo H. Introduction to Bayesian Networks. Science Press, 2006
28. Zhang N L, Yan L. Independence of causal influence and clique tree prop-

agation. International Journal of Approximate Reasoning, 1998, 19(3–4):
335–349

29. Mateescu R, Kask K, Gogate V, Dechter R. Join-graph propagation algo-
rithms. Journal of Artificial Intelligence Research, 2010, 37: 279–328

30. Goudie R J, Mukherjee S. A Gibbs sampler for learning DAGs. Journal
of Machine Learning Research, 2016, 17: 1–39

31. Benjumeda M, Bielza C, Larranaga P. Learning tractable Bayesian net-
works in the space of elimination orders. Artificial Intelligence, 2019,
274: 66–90

32. Benjumeda M, Luengosanchez S, Larranaga P, Bielza C. Tractable learn-
ing of Bayesian networks from partially observed data. Pattern Recogni-
tion, 2019, 91: 190–199

33. Tsamardinos I, Brown L E, Aliferis C F. The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning, 2006,
65: 31–78

34. Lv Y, Wu J, Liang J, Qian Y. Random search learning algorithm of BN
based on super-structure. Journal of Computer Research and Develop-
ment, 2017, 54(11): 2558–2566

35. Qi X, Fan X, Gao Y, Liu Y. Learning Bayesian network structures using
weakest mutual-information-first strategy. International Journal of Ap-
proximate Reasoning, 2019, 114: 84-98

36. Talvitie T, Eggeling R, Koivisto M. Learning Bayesian networks with lo-
cal structure, mixed variables, and exact algorithms. International Journal
of Approximate Reasoning, 2019, 115: 69–95

37. Scutari M, Graafland C E, Gutiérrez J M. Who learns better Bayesian

14 Front. Comput. Sci., 2021, 15(6): 156337

network structures: accuracy and speed of structure learning algorithms.
International Journal of Approximate Reasoning, 2019, 115: 235–253

38. Ye Q L, Amini A A, Zhou Q. Optimizing regularized cholesky
score for order-based learning of Bayesian networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2020, DOI:
10.1109/TPAMI.2020.2990820

39. Lee S, Kim S B. Parallel simulated annealing with a greedy algorithm for
Bayesian network structure learning. IEEE Transactions on Knowledge
and Data Engineering, 2020, 32(6): 1157–1166

40. Yao T, Choi A, Darwiche A. Learning Bayesian network parameters un-
der equivalence constraints. Artificial Intelligence, 2017, 244: 239–257

41. Riggelsen C. Learning parameters of Bayesian networks from incomplete
data via importance sampling. International Journal of Approximate Rea-
soning, 2006, 42: 69–83

42. Niculescu R S, Mitchell T M, Rao R B. Bayesian network learning with
parameter constraints. Journal of Machine Learning Research, 2006, 7:
1357–1383

43. Yang Y, Gao X, Guo Z, Chen D. Learning Bayesian networks using the
constrained maximum a posteriori probability method. Pattern Recogni-
tion, 2019, 91: 123–134

44. Benjumeda M, Bielza C, Larranaga P. Tractability of most probable expla-
nations in multidimensional Bayesian network classifiers. International
Journal of Approximate Reasoning, 2018, 93: 74–87

45. Madsen A L, Jensen F, Salmeron A, Langseth H, Nielsen T D. A parallel
algorithm for Bayesian network structure learning from large data sets.
Knowledge Based Systems, 2017, 117: 46–55

46. Arnborg S, Corneil D G, Proskurowski A. Complexity of finding embed-
dings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 1987,
8(2): 277–284

47. Nie S, Maua D D, De Campos C P, Ji Q. Advances in learning Bayesian
networks of bounded treewidth. Advances in Neural Information Process-
ing Systems, 2014, 27: 2285–2293

48. Liao W, Ji Q. Learning Bayesian network parameters under incomplete
data with domain knowledge. Pattern Recognition, 2009, 42: 3046–3056

49. Lv Y, Wu J, Jing T. Pqisem: BN’s structure learning based on partial qual-
itative influences and SEM algorithm from missing data. International
Journal of Wireless and Mobile Computing, 2018, 14(4): 348–357

50. Masegosa A R, Feelders A, Der Gaag L C. Learning from incomplete data
in Bayesian networks with qualitative influences. International Journal of
Approximate Reasoning, 2016, 69: 18–34

Yali Lv received the PhD degree in Computer
Application Technology from Tianjin University,
China. She is a professor at Shanxi University
of Finance & Economics of China, and also a
member of Key Laboratory of Computational In-
telligence and Chinese Information Processing of
Ministry of Education, Shanxi University, China.
From Sep. 2018 to Oct. 2019, she visited the Uni-

versity of Technology Sydney (UTS), Australia, as a visiting scholar.
Her research interests include probabilistic reasoning, data mining and
machine learning.

Junzhong Miao received the Bachelor degree in
Computer Science and Technology from Shanxi
University of Finance & Economics, China. He is
currently a master candidate at Shanxi University
of Finance & Economics of China. His research
interests include Bayesian machine learning and
data mining.

Jiye Liang received the PhD degree in Ap-
plied Mathematics from Xi’an Jiaotong Univer-
sity, China. He is currently a professor and PhD
supervisor in the Key Laboratory of Computa-
tional Intelligence and Chinese Information Pro-
cessing of Ministry of Education, Shanxi Univer-
sity, China. His research interests include artificial
intelligence, granular computing, data mining and
machine learning. He has published more than 100

articles and his papers appear in major international journals including
AI, PAMI, TKDE, TNNLS, and so on.

Ling Chen received the PhD degree in Computer
Engineering from Nanyang Technological Univer-
sity, Singapore. She is currently an associate pro-
fessor and PhD supervisor in the Priority Research
Center for Artificial Intelligence (CAI), University
of Technology Sydney (UTS), Australia. Before
joining UTS, She was a Postdoctoral Research Fel-
low with L3S Research Center, Leibiniz Univer-

sity of Hannover, Germany. Her current research interests include ma-
chine learning, data mining, social network analysis, and recommen-
dation system. Her papers appear in major conferences and journals
including SIGKDD, ICDM, SDM, ACM TOIS, TKDE, and TNNLS.

Yuhua Qian received the PhD degrees in Computer
Application Technology from Shanxi University,
China. He is currently a professor and PhD super-
visor in the Institute of Big Data Science and In-
dustry, and also a member of the Key Laboratory
of Computational Intelligence and Chinese Infor-
mation Processing at the Ministry of Education,
Shanxi University, China. His research interests

include data mining and machine learning, granular computing, and ar-
tificial intelligence. He has published more than 80 articles and his pa-
pers appear in major international journals including AI, KDM, TKDE
and so on. He is a member of the IEEE.

