
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Incremental Feature Spaces Learning with Label Scarcity

SHILIN GU, The College of Liberal Arts and Science, National University of Defense Technology, China

YUHUA QIAN, The Institute of Big Data Science and Industry, Shanxi University, China

CHENPING HOU, The College of Liberal Arts and Science, National University of Defense Technology, China

Recently, learning and mining from data streams with incremental feature spaces have attracted extensive attention, where data

may dynamically expand over time in both volume and feature dimensions. Existing approaches usually assume that the incoming

instances can always receive true labels. However, in many real-world applications, e.g., environment monitoring, acquiring the true

labels is costly due to the need of human effort in annotating the data. To tackle this problem, we propose a novel incremental Feature

spaces Learning with Label Scarcity algorithm (FLLS), together with its two variants. When data streams arrive with augmented

features, we first leverage the margin-based online active learning to select valuable instances to be labeled and thus build superior

predictive models with minimal supervision. After receiving the labels, we combine the online passive-aggressive update rule and

margin-maximum principle to jointly update the dynamic classifier in the shared and augmented feature space. Finally, we use the

projected truncation technique to build a sparse but efficient model. We theoretically analyze the error bounds of FLLS and its two

variants. Also, we conduct experiments on synthetic data and real-world applications to further validate the effectiveness of our

proposed algorithms.

CCS Concepts: • Computing methodologies→ Online learning settings; • Theory of computation → Streaming models.

Additional Key Words and Phrases: Incremental feature spaces, online learning, label scarcity

ACM Reference Format:
Shilin Gu, Yuhua Qian, and Chenping Hou. 2021. Incremental Feature Spaces Learning with Label Scarcity. 1, 1 (February 2021),

26 pages.

1 INTRODUCTION

In many real-world applications, data are usually accumulated over time and collected from open and dynamic

environments[1], leading to the simultaneous increase of data volume and feature space. We refer this type of data as

data streams with incremental feature spaces, or trapezoidal data streams[2]. There are a few online learning approaches

that have been explored to learn from trapezoidal data streams[2–5]. Nonetheless, they all assume that the labels of data

streams can always be received, which does not always hold in practice. For example, as shown in Fig. 1, to monitor

environmental quality, different types of sensors are continuously installed, the volume and feature dimension of data

simultaneously increase due to the continuously installed sensors, and each instance needs to be labeled by experts,

Chenping Hou and Yuhua Qian are the corresponding authors.

Authors’ addresses: Shilin Gu, gslnudt@outlook.com, The College of Liberal Arts and Science, National University of Defense Technology, Changsha,

Hunan, China, 410073; Yuhua Qian, jinchengqyh@126.com, The Institute of Big Data Science and Industry, Shanxi University, Taiyuan, Shanxi, China,

030006; Chenping Hou, hcpnudt@hotmail.com, The College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan,

China, 410073.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Shilin Gu, Yuhua Qian, and Chenping Hou

which results in the expensive costs and scarcity of labels. Besides, it’s not always informative or necessary to query

every instance’s label in many cases, e.g., if the model correctly predicts the instance’s label with a high confidence[6].

T
im

e
 E

v
o

lv
in

g

Environment Monitoring

Initial sensors
Newly installed

sensors over time

Expensive!

L
a
b
e
ls

Fig. 1. Illustration of the setting arising from a real application. As time evolves, different types of sensors are installed to monitor
environmental quality. Each row represents the instance composed of features that are collected by all current sensors. Therefore,
the volume and feature dimension of data streams simultaneously increase over time. Besides, each instance needs to be labeled by
experts, resulting in expensive costs and scarcity of labels.

Trapezoidal data streams learning with scarce labels faces much more difficulties than current online learning

problems because the three important aspects of data: volume, features, and labels, are all different from traditional

learning settings at the same time. There are two main challenges, one is how to lift the restriction that all instances

must be labeled and how to effectively extract useful information from the very limited labeled instances to build a

superior classifier; the other one is how to design a model update strategy with high dynamicity such that the model

can adapt to the continuous expansion of the feature space and mine useful information. For the first challenge, a

line of research, which we call online active learning and online semi-supervised learning, has been explored to learn

from data streams with scarce labels[6–11]. For the second challenge, another line of research, which aims to learn

data streams in dynamic feature spaces[12–16], has been explored to relax the constraint that the feature space of all

arriving instances must be fixed. Unfortunately, the above two lines of research cannot be directly applied to handle

trapezoidal data streams with label scarcity because their model update criteria are designed either in the case of scarce

labels or in the case of dynamic feature spaces, without considering both at the same time. The goal of this paper is to

fill this critical gap.

A simple and straightforward approach is to take advantage of the newly obtained labeled instance and learn a new

model for classification. However, this approach may have two deficiencies. First, the newly coming data with the

same feature space are usually scarce, which might be insufficient to build a superior predictive model. Second, the

newly built model ignores the previously collected data, which can not fully exploit the information from historical

data streams.

To solve the above two deficiencies, we propose a new incremental Feature spaces Learning with Label Scarcity

algorithm (FLLS), together with its two variants FLLS-I and FLLS-II. We aim to effectively exploit the information of data

streams with different feature dimensions and build a powerful predictive model with minimal supervision. Specifically,

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Incremental Feature Spaces Learning with Label Scarcity 3

when data streams arrive with augmented features, we first determine whether to obtain the current instance’s label

from an oracle based on the margin-based online active learning strategy, i.e., the probability of actively querying

the label of current instance is inversely proportional to the predictive confidence of the current model. If the label is

not queried, the model keeps unchanged; otherwise, the model jointly updates the dynamic classifier in shared and

augmented feature space by combining the passive-aggressive update rule and margin-maximum principle. Finally, we

use the projected truncation technique to build a sparse but efficient model. Theoretical and empirical studies validate

the effectiveness of our proposed algorithms.

It is worthwhile to summarize the main contributions of the proposed approach as follows.

(1) We propose a new algorithm FLLS and its two variants to handle trapezoidal data streams with label scarcity,

where the volume and feature dimension of data streams simultaneously increase, and the labels of data streams

need to be actively acquired from an oracle. To the best of our knowledge, it may be the first work that is specially

designed for this kind of data streams.

(2) We design a novel strategy to learn a highly dynamic classification model from trapezoidal data streams with

minimal supervision. Besides, we theoretically analyze the error bounds of our proposed algorithms.

(3) Extensive experiments on both synthetic datasets and real-world applications validate the effectiveness of the

proposed algorithms.

The remainder of this paper is organized as follows. Section II introduces related work. The proposed algorithms are

presented in Section III. Section IV provides a corresponding theoretical analysis. The experimental results are reported

in Section V. The conclusion is in Section VI.

2 RELATEDWORK

In this paper, we aim to learn a classification model from trapezoidal data streams with scarce labels, which is mainly

related to online learning from dynamic feature space and online learning with label scarcity. We mainly review the

related work of this paper from the above two aspects.

2.1 Online Learning from dynamic Feature Space

The dynamic feature space means that the feature space of data streams keeps changing. The most relevant to our

work is trapezoidal data streams learning, where the volume and feature dimension of data simultaneously increase.

Zhang[2] is the first to deal with trapezoidal data streams. She proposed OLSF with its two variants. Specifically, Zhang

first divides the features of the current training instance into historical features and new features. Then a classifier

updates historical features and new features by following different update rules. Recently, a few works have been

proposed to handle feature evolvable data streams, where features would vanish or occur over time. For example,

Hou[3] proposed the FESL algorithm, it first recovers historical features by a mapping function learned in the period

where both historical features and new features exist, then it learns two models from features of the above two parts,

respectively. Finally, ensemble learning is used to make the final prediction. Based on FESL, literature[1, 12] conducted

in-depth exploration and expansion of FESL scenario and proposed EDM and PUFE algorithms respectively. EDM[1]

handles data streams with evolving distribution and feature space by utilizing a discrepancy measure, and presents the

generalization error analysis. PUFE[12] leverages an online matrix completion technique to deal with the case where

historical features would vanish unpredictably. In addition, there are two methods OLVF[17] and GLSC[18] studying

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Shilin Gu, Yuhua Qian, and Chenping Hou

more complex dynamic changes of feature space. They assume that the features of arriving instances can arbitrarily

occur or vanish.

2.2 Online Learning with Label Scarcity

Existing works of online learning with label scarcity can be divided into two groups[6]. The first group is online semi-

supervised learning. The core is to fully exploit the continuously received unlabeled and labeled data for learning tasks.

Manifold regularization[19] is a major framework in online semi-supervised learning (e.g.,Riemann manifolds[20–22]),

it simultaneously minimizes the prediction loss on the labeled data and the prediction differences on the unlabeled data

[6]. In other words, instances located in a neighborhood region tend to be classified into the same class, which leads to

the propagating of label information.

The second group is online active learning and our approach belongs to this group. At each round, when a new

unlabeled instance arrives, the online active learning algorithms first decide whether to query the instance’s label

by certain criteria; once the label is queried, the learning algorithms can update the current model by leveraging the

labeled instance; otherwise, the model will not be updated[6]. The current literature on online active learning contains

two mainstream solutions. The first solution is "selective sampling", which adapts current classical online learning

approaches for active learning by drawing a Bernoulli random variable[23–26]. The second solution is "learning with

experts’ advices"[27–29], where the model contains a set of experts, and it queries the instance’s label based on the

degree of discrepancy advised by these experts[30]. Both of the above solutions reveal that the instance’s label is only

queried when it meets certain conditions, for example, the predictive confidence of the model is below some threshold.

However, all these above algorithms either assume that all the instances arrived are fully labeled, or assume that the

feature space of entire data streams is fixed. Recently, only two works, AGDES[31] and SF
2
EL[13], are developed to

support both. They belong to online semi-supervised learning and both of them simultaneously handle data streams

with variable feature spaces under incomplete supervision. Different from our setting where whether the current

instance can receive a label is determined by the current instance and the classification model updated in the previous

round, AGDES and SF
2
EL assume that whether the current instance has a label is determined in advance. Thus, the

technical challenges and solutions are different.

3 OUR PROPOSED APPROACH

3.1 Notations

We consider a task of binary classification on data streams with incremental feature spaces and scarce labels. Let

{xt |t = 1, . . . ,T } denote an input training sequence, where xt ∈ Rdt represents the instance vector of dt dimensions,

dt−1 ≤ dt . wt ∈ Rdt−1
denotes the classifier built at round t − 1. w1 ∈ Rd1

is a vector with all elements being zero. As

illustrated in Fig. 2, at each round t , when an instance xt carrying new features arrives, we divide the feature space

into two groups: shared and augmented features. The shared features contain the same features as the instance xt−1

at round t − 1, the augmented features are only contained by the current instance xt . We denote the projection of an

instance at round t onto the shared feature space as xst and augmented feature space as xat , i.e., xt = [xst , x
a
t]. It also

applies for the projections of other vectors such as classifier [ws
t ,w

a
t].

To make clear description, we denote by Πxt xt+1 a vector of dt dimension, it consists of elements of xt+1 which

are in the same feature space of xt . Similarly, we denote by Π¬xt xt+1 a vector of dt+1 − dt dimension, it consists

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Incremental Feature Spaces Learning with Label Scarcity 5

of elements of xt+1 which are not in the feature space of xt . Therefore, we can derive that xst = Πxt−1
xt = Πwt xt ,

xat = Π¬xt−1
xt = Π¬wt xt , w

s
t+1
= Πwtwt+1, wa

t+1
= Π¬wtwt+1.

The notations are listed in Table 1, we explain their meanings when they are first used.

Q

D
a
ta

 E
v
o

lu
tio

n

Feature Evolution

Initial
Features

Augmented
Features

Augmented
Features

…

…

…

…

…

Label

NQ

?

Shared Features

Augmented Features

?

?

?

…
…

…

Fig. 2. FLLS notations. As time evolves, features and instances dynamically expand. The green and blue areas represent the shared
features and the augmented features, respectively. xst and xat represents the projection of instance xt in the shared and augmented
feature space, respectively, t = 1, . . . , T . "Q" means query the label, "NQ" means not query the label.

3.2 The Proposed Algorithm

We develop a new algorithm FLLS and its two variants in this section to handle data streams with incremental feature

spaces and scarce labels. The difference between FLLS, FLLS-I, and FLLS-II is the model update strategies. Therefore, we

first introduce the basic algorithm FLLS.

For instance xt arrived at round t , we first compute its prediction margin by the current classifier wt . Since the

feature space of data streams keeps expanding, the dimension of xt and wt may be different. Thus, we redefine the

prediction margin as follows,

qt = wt · Πwt xt = wt · xst , (1)

where qt can be regarded as the predictive confidence. Whether to query the label of xt is decided by δt ∈ {0, 1}, which

is a Bernoulli random variable, the probability of δt = 1 is ρ/(ρ + |qt |), ρ ≥ 1 is a smoothing parameter. The idea of

the above strategy is inspired by margin-based active learning, we decide whether to query the label of an instance

according to its importance in building a classification model. This importance is determined by the prediction margin

of the current classifier, i.e., qt . However, in online active learning, we may face the problem that the current classifier

is unreliable, especially in the first several epochs. There are not enough instances to train a reliable classifier since the

instances come in an online way. If we directly decide to query the label based on qt , we may make a wrong decision.

To alleviate the above problem, similar to the strategies in traditional works[6, 9, 24, 25], we also introduce the Bernoulli

random variable δt ∈ {0, 1} into our model. It can shake our decision with a certain probability. Even when the current

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Shilin Gu, Yuhua Qian, and Chenping Hou

Table 1. Notations

Notations Descriptions Notations Descriptions

wt wt ∈ Rdt−1, w1 ∈ Rd1 , classifier built at round

t − 1

ws
t+1

A vector consisting of elements which are owned

by both wt+1 and wt

C C > 0, penalty cost parameter, tradeoff in the

optimization problem of FLLS-I and FLLS-II

wa
t+1

A vector consisting of elements of wt+1 that are

beyond the feature space of wt

ℓ∗t hinge loss on instance (xt , yt) based on the classi-

fier u ∈ RdT
w̄t+1 intermediate variable of wt+1 after the update op-

eration

xst A vector consisting of elements which are owned

by both xt and xt−1

ŵt+1 intermediate variable of wt+1 on the L1 ball with-

out truncation

xat A vector consisting of elements of xt that are be-
yond the feature space of xt−1

Πwt+1
/wt u A vector which consists of elements of u that are

in the feature space of wt+1 but not wt

τt learning rate variable Πwt wt+1 Equivalent to the definition of ws
t+1

T T ∈ N + , total number of obtained instances Π¬wt wt+1 Equivalent to the definition of wa
t+1

ℓt hinge loss on instance (xt , yt) xt xt ∈ Rdt , the instance obtained on round t

u u ∈ RdT , arbitrary vector in RdT dt dt ≤ dt+1 , dimension of instance xt
δt δt ∈ {0, 1}, Bernoulli random variable dwt dimension of wt

ξ slack variable yt yt ∈ {−1, +1}, true label of xt
B B ∈ (0, 1], ratio of reserved features ŷt ŷt ∈ {−1, +1}, predicted label of xt

classifier makes a wrong prediction, we may still make the right choice due to the randomness. Moreover, using the

Bernoulli random variable has been proven effective and reliable in many real-world applications, such as personalized

recommendation, medical diagnosis, and malicious URL detection in literatures [6, 9, 24, 25].

There are two cases for δt , if δt = 0, the algorithm FLLS will not ask oracle for querying the instance label and thus

the model keeps unchanged; if δt = 1, the label of xt will be revealed by an oracle and FLLS will suffer an instantaneous

prediction loss ℓt (wt , (xt ,yt)), where yt ∈ {−1,+1}. Then it’s able to exploit the potential of the newly achieved

instance-label pair (xt ,yt) to update the classification model.

We choose the hinge loss as the loss function, i.e., ℓ(w, (xt ,yt)) = max{0, 1 − yt (w · xt)}, where the dimension of w
and xt are the same. The main reasons why we chose the hinge loss are as follows. First, hinge loss is widely used in

many literatures. It is specifically designed to solve the binary classification problem, which fits well with our binary

classification setting. Second, in optimization, the application of hinge loss makes the updating of our models simple

and effective. Finally, hinge loss can make the proposed algorithms have nice theoretical properties, which will be

stated in detail in Section 4. Particularly, the instantaneous prediction loss ℓt (wt , (xt ,yt)) is defined as

ℓt = ℓt (wt , (xt ,yt)) = max{0, 1 − yt (wt · xst)}. (2)

To updatewt with (xt ,yt), we adopt the online passive-aggressive learning idea proposed in [32] and [2]. Specifically,

at round t , the newly updated classifier wt+1 ∈ Rdt will be composed of two parts, which can be written as wt+1 =

[ws
t+1
,wa

t+1
], where ws

t+1
∈ Rdt−1

and wa
t+1

∈ Rdt−dt−1
. The role of ws

t+1
is to update shared features and inherit

information from wt , and the role of wa
t+1

is to update augmented features. Therefore, the update of wt can be

transformed into the update of ws
t+1

and wa
t+1

by optimizing the problem in (3)

wt+1 = arg min

w=[ws ,wa]

1

2

ws −wt
2

+
1

2

wa2

,

s .t . ℓ(w, (xt ,yt)) = 0.

(3)

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Incremental Feature Spaces Learning with Label Scarcity 7

where w ∈ Rdt , ℓ(w, (xt ,yt)) is the prediction loss of w on xt , which is,

ℓ(w, (xt ,yt)) = max{0, 1 − yt (ws · xst) − yt (wa · xat)}. (4)

From Eq. (3) and (4) we can derive that the solution to the above problem is the projection of w onto the set of all

weight vectors that obtain a loss of zero. On one hand, if the label prediction of existing classifier wt for the current

instance xt is correct, i.e., ℓt = max{0, 1 − yt (wt · xst)} = 0, the resulting algorithm is passive, that is, ws = wt ,

wa = (0, . . . , 0), and wt+1 = [wt , 0, . . . , 0].

On the other hand, if the label prediction of wt for the instance xt is incorrect, i.e., ℓt = max{0, 1 − yt (wt · xst)} > 0.

The algorithm aggressively updates classifier to meet the constraint in Eq. (3). It attempts to keep ws
t+1

as close to wt as

possible to acquire information from wt and let the norm of wa
t+1

be as small as possible to avoid over-fitting. The

Lagrangian of (3) is

L (w,τ) =
1

2

ws −wt
2

+
1

2

wa2

+ τ (1 − yt (ws · xst) − yt (wa · xat)). (5)

where τ ≥ 0 is a Lagrange multiplier. If we take the derivative of L with respect to ws
and wa

, and set them to zero,

we can achieve the following results

∇ws (L) = ws −wt − τytxst = 0 ⇒ ws = wt + τytxst ,

∇wa (L) = wa − τytxat = 0 ⇒ wa = τytxat .
(6)

To get the value of τ , we introduce the KKT conditions[33]. Since ws = wt + τytxst , w
a = τytxat , we plug these two

equations into Eq. (5) and take the derivative of L(τ) with respect to τ and set it to zero, we can achieve

L(τ) = −
1

2

τ 2
xst 2

−
1

2

τ 2
xat 2

+ τ − τyt (wt · xst),

∇τ (L) = 0 ⇒ τt =
1 − yt (wt · xst)xst 2

+
xat 2

=
ℓt

∥xt ∥2
.

(7)

Thus, the general update strategy of FLLS is wt+1 = [wt + τtytxst ,τtytx
a
t], where τt = ℓt /∥xt ∥

2
.

Eq. (3) needs the newly updated model to correctly predict the label of the current instance, which makes the model

of FLLS rigorous and sensitive to noise[34]. To solve this shortage, we adopt the soft-margin strategy and introduce a

slack variable ξ into Eq. (3), and then propose two variants of the FLLS algorithm, i.e., FLLS-I, FLLS-II. The objective

function of FLLS-I is,

wt+1 = arg min

w=[ws ,wa]

1

2

ws −wt
2

+
1

2

wa2

+Cξ ,

s .t . ℓ(w, (xt ,yt)) ≤ ξ , ξ ≥ 0.

(8)

where C > 0 is a tradeoff between rigidness and slackness. The update step will become more rigid as the value of C

increases. The objective function of FLLS-II scales quadratically with ξ ,

wt+1 = arg min

w=[ws ,wa]

1

2

ws −wt
2

+
1

2

wa2

+Cξ 2,

s .t . ℓ(w, (xt ,yt)) ≤ ξ , ξ ≥ 0.

(9)

Due to the space constraints, we omit the details of the optimization of FLLS-I and FLLS-II since they are similar to

FLLS. FLLS-I and FLLS-II have the same closed-form of update strategy as FLLS, i.e., wt+1 = [wt + τtytxst ,τtytx
a
t]. In

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Shilin Gu, Yuhua Qian, and Chenping Hou

general, the step size τt of the three proposed methods are:

τt =

ℓt /∥xt ∥2 (FLLS)

min

(
C, ℓt /∥xt ∥2

)
(FLLS - I)

ℓt /
(
∥xt ∥2 + 1/(2C)

)
. (FLLS - II)

(10)

3.3 The Sparsity Strategy

As the feature space of data keeps expanding, the dimension of wt will increase rapidly. To control the maximum

dimension and improve the memory usage and running efficiency, once the model is updated, we further conduct

projection and truncation on this model based on B ∈ [0, 1] to filter out redundant features. Here we stipulate that only

at most a ratio of B elements of classifier wt ∈ R
dt

are nonzero, which means ∥wt ∥0
≤ B · dt .

1
Since B · dt is usually

not an integer, we use f loor (B · dt)
2
instead of B · dt .

Algorithm 1 The proposed algorithm FLLS and its two variants FLLS-I and FLLS-II

1: Input: smoothing parameter ρ ≥ 1, penalty parameter C > 0, regularization parameter λ > 0, ratio of selected

features B ∈ (0, 1];

2: Initialization: w1 = (0, . . . , 0) ∈ Rd1
;

3: for t = 1, 2, . . . ,T do
4: receive xt ∈ Rdt ;
5: set qt = wt · Πwt xt , predict ŷt = siдn (qt);
6: draw a Bernoulli random variable δt ∈ {0, 1} of probability ρ/(ρ + |qt |);
7: if δt = 1 then
8: query the label of xt : yt ∈ {−1,+1};

9: suffer loss ℓt (wt) = max{0, 1 − yt (wt · Πwt xt)};
10: model update
11: compute τt according to Eq. (10);

12: update model: w̄t+1 = [wt + τtytxst ,τtytx
a
t];

13: model sparse
14: project w̄t+1 to a L1 ball according to Eq. (11);

15: truncate ŵt+1 and obtain wt+1:

16: wt+1 = truncate(ŵt+1,B) (See Algorithm 2);

17: else
18: wt+1 = wt ;

19: end if
20: end for

If we directly select the smallest weights from the classifier w̄t and set them to zero, it may perform poorly because

the result of the dot product is suddenly changed, besides, we can not be sure that the numerical values of the ignored

features are small enough. Therefore, we need a projection step before truncation. Usually, we project the classifier to

an L1 ball, through this way, most numerical values of classifier w̄t are concentrated to the largest elements, so setting

the smallest weights to zero will not result in a sudden change. Here is the projection,

ŵt+1 = min

{
1,

λ

∥w̄t+1∥1

}
w̄t+1, (11)

1 ∥a∥
0
is equal to the number of non-zero elements in the vector a.

2f loor (a) is equal to the largest integer smaller than a.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Incremental Feature Spaces Learning with Label Scarcity 9

Algorithm 2 w = truncate(ŵ,B)

1: Input: ŵ ∈ Rdŵ , B ∈ (0, 1].

2: if ∥ŵ∥
0
≥ B · dŵ then

3: retain max{1, f loor (B · dŵ)} largest elements in ŵ; set the rest elements in ŵ to zero. We denote by ŵB
the

corresponding vector. Then w = ŵB

4: else
5: w = ŵ
6: end if

where λ is a positive regularization parameter. With a ratio of B, we truncate the smallest elements from the classifier

ŵt+1 and obtain the final classifier wt+1. This strategy helps to truncate the redundant features. The overall procedure

of our methods is given in Algorithm 1 and Algorithm 2.

4 THEORETICAL ANALYSIS

We analyze the error bounds of FLLS and its two variants theoretically. In the following analysis, four theorems discuss

the upper error bounds of the proposed algorithms in the linear separable and non-separable cases, and the lemma is

the crux to prove the above four theorems.

For clarity, we use the notations: F = {t |t ∈ [T], ŷt , yt }, and G = {t |t ∈ [T], ŷt = yt , ℓt (wt ; (xt ,yt)) > 0}. where

[T] denotes {1, 2, . . . ,T }.

Lemma 1. Let (x1,y1), . . . , (xT ,yT) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1},

t = 1, . . . ,T . Let τt be the step size for FLLS, FLLS-I and FLLS-II as given in Eq. (10). The following bound holds for any

u ∈ RdT

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] ≤ θ2∥u∥2 +

T∑
t=1

τ 2

t ∥xt ∥
2 +

T∑
t=1

2θτt ℓ
∗
t (u). (12)

where Ft = I(t ∈F),Gt = I(t ∈G), I is an indicator function, and θ > 0, ℓ∗t (u) = max

(
0, 1 − yt

(
Πxt u · xt

))
.

Proof. Define ∆t =
wt − θΠwt u

2

−
wt+1 − θΠwt+1

u
2

. Thus

∑
t ∆t collapses to

T∑
t=1

∆t =
T∑
t=1

(wt − θΠwt u
2

−
wt+1 − θΠwt+1

u
2

)
=
w1 − θΠw1

u
2

−
wT+1 − θΠwT+1

u
2

,

(13)

where

wT+1 − θΠwT+1
u
2

≥ 0 always holds and w1 = (0, . . . , 0) ∈ Rd1
. Thus, we have

T∑
t=1

∆t ≤ θ2
Πw1

u
2

. (14)

Then we prove the following inequality always holds

(2Gtδtτt (θ − |qt |) + 2Ftδtτt (θ + |qt |)) ≤ ∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

. (15)

To prove the above inequality, we enumerate all the possible cases of δt , Ft , Gt and have the following discussions:

Case 1: if δt = 0, the inequality (15) holds since wt = wt+1 and τt = 0.

Case 2: if δt = 1 and Ft = 0, the label of xt is queried and the predicted label ŷt = yt . Here are two sub-cases:

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Shilin Gu, Yuhua Qian, and Chenping Hou

Sub-case 2.1: if Gt = 0, we have ℓt (wt) = 0, thus τt = 0 , wt = wt+1. According to Case 1, inequality (15) holds.

Sub-case 2.2: if Gt = 1, we only need to pay attention to rounds which have ℓt (wt) > 0. Note that w̄t+1 =

[wt +τtytxst ,τtytx
a
t], and the fact that ŵt+1 ≤ w̄t+1 andwt+1 ≤ ŵt+1, we havewt+1 ≤ w̄t+1 and ∥wt+1∥

2 ≤ ∥w̄t+1∥
2
.

Also,

wt+1 − θΠwt+1
u
2

−
w̄t+1 − θΠw̄t+1

u
2

= θ2∥wt+1∥
2 − θ2∥w̄t+1∥

2 − 2θ
Πwt+1

u
 (∥w̄t+1∥ − ∥wt+1∥) ≤ 0, we

have

wt+1 − θΠwt+1
u
2

≤
w̄t+1 − θΠw̄t+1

u
2

. Then

∆t =
wt − θΠwt u

2

−
wt+1 − θΠwt+1

u
2

≥
wt − θΠwt u

2

−
w̄t+1 − θΠw̄t+1

u
2

=
wt − θΠwt u

2

−
wt + τtytΠwt xt − θΠwt u

2

−
τtytΠ¬wt xt − θΠwt+1/wt u

2

= 2τtyt
(
θΠwt u −wt

)
· Πwt xt − τ 2

t
Πwt xt

2

−
τtytΠ¬wt xt − θΠwt+1/wt u

2

= 2τt
(
θytΠwt u · Πwt xt + θytΠwt+1/wt u · Π¬wt xt

)
− 2τtytwtΠwt xt − τ 2

t ∥xt ∥
2 − θ2

Πwt+1/wt u
2

(16)

According to definition, we have Π¬wt xt = Πwt+1/wt xt ,
Πwt xt

2

+
Π¬wt xt

2

= ∥xt ∥2
. Since ℓ∗t (u) ≥ 1 −

yt
(
Πxt u · xt

)
, we have yt

(
Πwt u · Πwt xt

)
+ yt

(
Πwt+1/wt u · Πwt+1/wt xt

)
≥ 1 − ℓ∗t (u). Then we have

∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

≥ 2τt
(
θ − ytwtΠwt xt

)
(17)

Since Ft = 0 and Gt = 1, it implies that ℓt (wt) > 0 and 0 < ytwt · Πwt xt < 1. Therefore, inequality (15) holds:

∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

≥ 2τt (θ − |qt |) (18)

Case 3: if δt = 1 and Ft = 1, the label of xt is queried but the predicted label ŷt , yt , thusGt = 0. Similarly, we have

∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

≥ 2τt
(
θ − ytwtΠwt xt

)
(19)

Since Ft = 1, it implies that ytwt · Πwt xt ≤ 0 and −ytwt · Πwt xt = |qt |. Therefore, inequality (15) holds:

∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

≥ 2τt (θ + |qt |) . (20)

Since inequality (15) always holds, we sum both sides of inequality Eq. (15) for t = 1, . . . ,T and have

T∑
t=1

(2Gtδtτt (θ − |qt |) + 2Ftδtτt (θ + |qt |)) ≤
T∑
t=1

∆t +
T∑
t=1

(
τ 2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u)

)
+

T∑
t=1

θ2
Πwt+1/wt u

2

≤ θ2
Πw1

u
2

+

T∑
t=1

θ2
Πwt+1/wt u

2

+

T∑
t=1

(
τ 2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u)

)
= θ2∥u∥2 +

T∑
t=1

τ 2

t ∥xt ∥
2 +

T∑
t=1

2θτt ℓ
∗
t (u)

(21)

The lemma is proved. □

With the help of Lemma 1, we can continue to prove the following four theorems, which discuss the upper error

bounds of the proposed algorithms in the linear separable and non-separable cases. First we derive the expected error

bound for FLLS in the separable case, i.e., for any t ∈ [T], we assume that there exists vector u ∈ RdT such that

yt (Πxt u · xt) ≥ 1.

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Incremental Feature Spaces Learning with Label Scarcity 11

Theorem 1. Let (x1,y1), . . . , (xT ,yT) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1}

and ∥xt ∥ ≤ R for all t . Assume that there exists a vector u ∈ RdT such that ℓ∗t (u) = 0 for all t . Then the expected number

of errors made by FLLS is bounded by

E[
T∑
t=1

Ft] ≤ E[
T∑
t=1

Ft ℓt (wt)] ≤
R2

4

(ρ +
1

ρ
+ 2)∥u∥2. (22)

Setting ρ = 1, we can achieve the following upper bound:

E[
T∑
t=1

Ft] ≤ E[
T∑
t=1

Ft ℓt (wt)] ≤ R2∥u∥2. (23)

Proof. Combining ℓ∗t (u) = 0 for all t and the result of Lemma 1, we can get

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] ≤ θ2∥u∥2 +

T∑
t=1

τ 2

t ∥xt ∥
2. (24)

Inequality (24) can be further reformulated as:

θ2∥u∥2 ≥

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] −
T∑
t=1

τ 2

t ∥xt ∥
2

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
τt
2

∥xt ∥2) + Ft (θ + |qt | −
τt
2

∥xt ∥2)]

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
ℓt (wt)

2

) + Ft (θ + |qt | −
ℓt (wt)

2

)]

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
1 − ytqt

2

) + Ft (θ + |qt | −
1 − ytqt

2

)]

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
1 − |qt |

2

) + Ft (θ + |qt | −
1 + |qt |

2

)]

=

T∑
t=1

2Gtδtτt (θ −
1 + |qt |

2

) +

T∑
t=1

2Ftδt 2τt (θ −
1 − |qt |

2

).

(25)

If we set θ = (ρ + 1)/2, ρ ≥ 1 and plug it into inequality (25), we have

(
1 + ρ

2

)2∥u∥2 ≥

T∑
t=1

Ftδtτt (ρ + |pt |), (26)

Note that when Gt = 1, |qt | ∈ [0, 1), [θ − (1 + |qt |)/2] = (ρ − |qt |)/2 > 0, and [θ − (1 − |qt |)/2] = (ρ + |qt |)/2.

Plugging ℓt (wt)/∥xt ∥2 ≥ ℓt (wt)/R
2
into inequality (26) we have:

(
1 + ρ

2

)2∥u∥2 ≥
1

R2

T∑
t=1

Ftδt ℓt (wt)(ρ + |qt |). (27)

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Shilin Gu, Yuhua Qian, and Chenping Hou

Theorem 1 can be proved by taking expectation with inequality (27)

E[
1

R2

T∑
t=1

Ftδt ℓt (wt)(ρ + |qt |)] = E[
1

R2

T∑
t=1

Ft ℓt (wt)(ρ + |qt |)E(δt)]

=
1

R2
E[ρ

T∑
t=1

Ft ℓt (wt)] ≤ (
ρ + 1

2

)2∥u∥2.

(28)

Theorem 1 is proved. □

As can be seen from Theorem 1, the upper error bound is proportional to R and inversely proportional to 1/∥u∥2
,

revealing the consistency with existing research[32]. The deficiency of Theorem 1 is the assumption that there exists a

vector u ∈ RdT such that ℓ∗t (u) = 0 for all t , which means the classifier u can perfectly separate the data streams. In

Theorem 2, we further extend the above case and assume that ℓ∗t (u) = 0 may not always hold for all t . Besides, we

assume that ∥xt ∥2
is normalized, i.e., ∥xt ∥2 = 1. Then we have the following expected error bounds for FLLS algorithm:

Theorem 2. Let (x1,y1), . . . , (xT ,yT) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1}

and ∥xt ∥2 = 1 for all t . For any vector u ∈ RdT , the expected number of errors made by FLLS is then bounded by

E[
T∑
t=1

Ft] ≤
1

4

(ρ +
1

ρ
+ 2)∥u∥2 + (

1

ρ
+ 1)

T∑
t=1

ℓ∗t (u), (29)

Setting ρ = 1, we can achieve the following upper bound:

E[
T∑
t=1

Ft] ≤ ∥u∥2 + 2

T∑
t=1

ℓ∗t (u). (30)

Proof. According to the result of Lemma 1, we have

θ2∥u∥2+

T∑
t=1

2θτt ℓ
∗
t (u) ≥

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] −
T∑
t=1

τ 2

t ∥xt ∥
2

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
τt
2

∥xt ∥2) + Ft (θ + |qt | −
τt
2

∥xt ∥2]

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
ℓt (wt)

2

) + Ft (θ + |qt | −
ℓt (wt)

2

)]

=

T∑
t=1

2Gtδtτt (θ −
1 + |qt |

2

) +

T∑
t=1

2Ftδtτt (θ −
1 − |qt |

2

).

(31)

Similarly, plugging θ = (1 + ρ)/2, ρ ≥ 1 into (31), we have

(
ρ + 1

2

)2∥u∥2+

T∑
t=1

(ρ + 1)τt ℓ
∗
t (u) ≥

T∑
t=1

Ftδtτt (ρ + |qt |). (32)

Since ∥xt ∥2 = 1 and τt = ℓt /∥xt ∥
2
, we have τt = ℓt . Thus we can rewrite it as

(
ρ + 1

2

)2∥u∥2+

T∑
t=1

(ρ + 1) ℓt ℓ
∗
t (u) ≥

T∑
t=1

Ftδt ℓt (ρ + |pt |). (33)

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Incremental Feature Spaces Learning with Label Scarcity 13

Note that when Ft = 1, it means FLLS made a wrong prediction, then we have yt
(
wt · Πwt xt

)
≤ 0 and ℓt (wt) ≥ 1.

Divide both sides of the inequality by ℓt implies:

T∑
t=1

Ftδt (ρ + |qt |) ≤ (
ρ + 1

2

)2
∥u∥2

ℓt
+ (ρ + 1)

T∑
t=1

ℓ∗t (u)

≤ (
ρ + 1

2

)2∥u∥2 + (ρ + 1)

T∑
t=1

ℓ∗t (u)

(34)

Theorem 2 can be proved by taking expectation with the above inequality. □

The deficiency of Theorem 1 and 2 is the assumption that the training data is linearly separable, which is inconsistent

with most situations in reality. FLLS-I and FLLS-II are more suitable in practice by introducing ξ , the difference between

FLLS-I and FLLS-II is their model update strategies, the former scales linearly with ξ and the latter scales quadratically

with ξ . Therefore, the expected error bounds for FLLS-I and FLLS-II algorithms are further derived to adapt to the

linearly non-separable situations.

Theorem 3. Let (x1,y1), . . . , (xT ,yT) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1}

and ∥xt ∥ ≤ R for all t . For any vector u ∈ RdT , the expected number of errors made by FLLS-I is then bounded by

E[
T∑
t=1

Ft] ≤ β[(
ρ + 1

2

)2∥u∥2 + (ρ + 1)C
T∑
t=1

ℓ∗t (u)], (35)

where β = 1

ρ max{ 1

C ,R
2}. Setting ρ = 1, we can achieve the following upper bound:

E[
T∑
t=1

Ft] ≤ β[∥u∥2 + 2C
T∑
t=1

ℓ∗t (u)]. (36)

Proof. According to the definition of τt in FLLS-I algorithm, we have τt ≤ ℓt (wt)/∥xt ∥2
, so τt ∥xt ∥2 ≤ ℓt (wt).

Besides, according to the result of Lemma 1, we have

θ2∥u∥2+

T∑
t=1

2θτt ℓ
∗
t (u) ≥

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] −
T∑
t=1

τ 2

t ∥xt ∥
2

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
τt
2

∥xt ∥2) + Ft (θ + |qt | −
τt
2

∥xt ∥2]

≥

T∑
t=1

2δtτt [Gt (θ − |qt | −
ℓt (wt)

2

) + Ft (θ + |qt | −
ℓt (wt)

2

)]

=

T∑
t=1

2Gtδtτt (θ −
1 + |qt |

2

) +

T∑
t=1

2Ftδtτt (θ −
1 − |qt |

2

).

(37)

Similarly, plugging θ = (1 + ρ)/2, ρ ≥ 1 into (37), we have

(
ρ + 1

2

)2∥u∥2+

T∑
t=1

(ρ + 1)τt ℓ
∗
t (u) ≥

T∑
t=1

Ftδtτt (ρ + |qt |). (38)

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Shilin Gu, Yuhua Qian, and Chenping Hou

Note that when Ft = 1, it means FLLS-I made a wrong prediction, then we have yt
(
wt · Πwt xt

)
≤ 0 and ℓt (wt) ≥ 1.

So τt ≥ min{C, 1

R2
} when Ft = 1, and we have:

(
ρ + 1

2

)2∥u∥2+

T∑
t=1

(ρ + 1)τt ℓ
∗
t (u) ≥ min{C,

1

R2
}

T∑
t=1

Ftδt (ρ + |qt |). (39)

Theorem 3 can be proved by taking expectation with the above inequality. □

Theorem 4. Let (x1,y1), . . . , (xT ,yT) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1}

and ∥xt ∥ ≤ R for all t . For any vector u ∈ RdT , the expected number of errors made by FLLS-II is then bounded by

E[
T∑
t=1

Ft] ≤ γ
1

ρ
[(
ρ + 1

2

)2∥u∥2 + 2C(
ρ + 1

2

)2
T∑
t=1

ℓ∗t (u)
2], (40)

where γ = R2 + 1

2C . Setting ρ = 1, we can achieve the following upper bound:

E[
T∑
t=1

Ft] ≤ (R2 +
1

2C
)[∥u∥2 + 2C

T∑
t=1

ℓ∗t (u)
2]. (41)

Proof. First we define O = θ2∥u∥2 +
∑T
t=1

τ 2

t ∥xt ∥
2 +

∑T
t=1

2θτt ℓ
∗
t (u), P =

∑T
t=1

θ (τt√
2Cθ

−
√

2Cθℓ∗t (u))
2

and

Q = θ2∥u∥2 +
∑T
t=1

τ 2

t (∥xt ∥
2 + 1

2C) +
∑T
t=1

2Cθ2ℓ∗t (u)
2
, it can be easily verified that O ≤ O + P = Q. Then according

to the result of Lemma 1, we have

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] ≤ Q. (42)

We reformulated the above formulation as:

θ2∥u∥2+

T∑
t=1

2Cθ2ℓ∗t (u)
2 ≥

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] − τ 2

t (∥xt ∥
2 +

1

2C
)

=

T∑
t=1

2Gtδtτt (θ −
1 + |qt |

2

) +

T∑
t=1

2Ftδtτt (θ −
1 − |qt |

2

)

(43)

Similarly, plugging θ = (1 + ρ)/2, ρ ≥ 1 into (43), we have

(
ρ + 1

2

)2∥u∥2 +

T∑
t=1

2C(
ρ + 1

2

)2ℓ∗t (u)
2 ≥

T∑
t=1

Ftδtτt (ρ + |qt |). (44)

Note that when Ft = 1, it means FLLS-II made a wrong prediction, then we have yt
(
wt · Πwt xt

)
≤ 0 and ℓt (wt) ≥ 1.

So τt ≥ R2 + 1

2C when Ft = 1, and we have

(
ρ + 1

2

)2∥u∥2 +

T∑
t=1

2C(
ρ + 1

2

)2ℓ∗t (u)
2 ≥ (

1

R2 + 1/(2C)
)

T∑
t=1

Ftδt (ρ + |qt |). (45)

Taking expectation with the above inequality will conclude theorem 4. □

5 EXPERIMENTS

First, we give an introduction to the datasets and compared methods used in this paper along with the general settings.

Then we present the experimental results on synthetic data sets and real-world applications.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Incremental Feature Spaces Learning with Label Scarcity 15

5.1 Data Sets and General Settings

We conduct our experiments on twelve data sets from UCI Repository
3
and LIBSVM Library

4
, and two real-world data

sets which are rcv1[35] and RFID[3]. The details of the 14 data sets used in our experiments are listed in TABLE 2.

Table 2. The details of experimental data sets.

Dataset # Inst. # Feat. Dataset # Inst. # Feat.

air 210 64 splice 3175 60

vote 435 16 kr-V-kp1 3196 36

wdbc 569 29 spambase 4601 57

dna 949 180 phishing 11055 68

svmguide3 1243 22 a9a 32561 123

PCMAC 1943 3289 rcv1 20242 47236

basehock 1993 4862 RFID 940 150

Our proposed algorithms have the advantage of simultaneously processing label scarcity and feature incremental

learning problems. To verify the above conclusion, we compare our proposed algorithms with PEA, RPEA, RFESL,

and RFLLS algorithms. PEA is only designed for the label scarcity problem, it uses the Perceptron update strategy for

learning, i.e., wt+1 = [wt +ytxst ,ytx
a
t], and updates the current model only when the model makes a wrong prediction.

RFESL is only designed for the feature incremental learning problem, It is based on the FESL algorithm, the features of

data streams would vanish or occur in the basic setting of FESL. To adapt FESL to our new setting, we query labels

uniformly and randomly for FESL to handle label scarcity and complete the vanished features with true values. By

adding these assumptions, FESL can be applied in our incremental feature spaces learning with label scarcity. The

adjusted FESL is named as RFESL. RPEA is the random version of PEA, which is not designed for any of the above two

problems. RFLLS are the random version of the proposed algorithms, including RFLLS, RFLLS-I, and RFLLS-II. All the

above nine methods are as follows:

• "RFLLS": the Random FLLS algorithms, including RFLLS, RFLLS-I, RFLLS-II, which will uniformly and randomly

query labels;

• "PEA"[24]: the Perceptron-based Active learning algorithm;

• "RPEA"[36]: the Random PEA algorithm, which uniformly and randomly queries labels;

• "RFESL": the Random FESL algorithm[3], which uniformly and randomly queries labels;

• "FLLS": the proposed algorithm, including FLLS, FLLS-I and FLLS-II;

All the nine methods learn a linear binary classifier. Each dataset is randomly divided into two parts with 80% as the

training data and 20% as the testing data, which is non-overlapping. We use the training data to learn a classification

model and the testing data to evaluate the learning performance. We simulate trapezoidal streams as follows, the

training data is split into 10 chunks, the first chunk carries the first 10 percent instances and features. The second chunk

carries the second 10 percent instances with another 10 percent features (20 percent features in total). The testing data

carries all features.

3
http://archive.ics.uci.edu/ml

4
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Manuscript submitted to ACM

http://archive.ics.uci.edu/ml
http://www.csie.ntu.edu.tw/~cjlin/libsvm

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Shilin Gu, Yuhua Qian, and Chenping Hou

We set λ = 30 and B = 0.5 unless otherwise specified, i.e., 50 percent features are used for learning at each round

t . Cross-validation is used for all the methods and datasets to determine parameter C , which is searched from 2
[−5:5]

.

Parameter ρ, which determines the query ratio, is set as 2
[−20:20]

to examine varied query ratios. After T rounds, we

measure the performance of the learned classifier on test data. Both ACC and AUC are used for evaluating metrics. For

each data set, we run the experiment 20 times, each with a random partition. The results are reported by an average

performance.

5.2 Comparisons with Benchmarks

In this subsection, we present the experimental results of nine methods on 12 benchmark data sets. Fig. 3 and Fig. 4

show the average ACC results of these nine methods with varied ratios of queried instances. Table 3 and Table 4 show

the average AUC values and running time of these nine methods with the query ratio near 10% and 20%, the best AUC

result and its comparable results are highlighted in boldface based on the paired t-tests at 95% significance level.

From Fig. 3 and Fig. 4, Table 3 and Table 4, we can have several conclusions. First, we can observe that all these three

proposed algorithms are better than their corresponding random versions on ACC and AUC results, validating the

effectiveness of the label querying strategy. Second, among FLLS, FLLS-I, and FLLS-II, FLLS-I performs the best on

dna, svmguide3, splice, spambase, phishing, and a9a. FLLS-II performs well on high-dimensional data sets PCMAC and

basehock. FLLS performs the worst on most data sets. There are two reasons, one is the noise contained in these data

sets, the other one is the sensitivity of FLLS to noise since it conducts a more aggressive update. In contrast, FLLS-I

and FLLS-II avoid overfitting to noise by using a "soft" update strategy. Third, these two soft algorithms FLLS-I and

FLLS-II also achieve significantly higher ACC and AUC values than PEA and RPEA algorithms, which indicates that the

proposed model update strategy can effectively exploit the information of labeled data. Forth, on six datasets, i.e., air,

vote, PCMAC, basehock, spambase, a9a, PEA performs better than RPEA, on the rest, their performance is equal. Since

PEA and RPEA only use a simple update strategy to deal with the feature incremental learning problem, it results in a

small performance difference between PEA and RPEA on some datasets. Fifth, RFESL performs better than RPEA and

RFLLS on most datasets, which again validates the importance of using an effective model update strategy to exploit

the information of labeled data with different feature spaces. Sixth, in Fig. 3 and Fig. 4, an abnormal phenomenon is

that when the query ratio exceeds some thresholds, some curves could decrease as the query ratio increases. We think

this is mainly caused by over-fitting on the noisy training data because FLLS-I and FLLS-II have fewer such phenomena

than FLLS. Finally, we find that most curves of the proposed methods tend to be stable quickly after the query ratio

exceeds some thresholds, which indicates the effectiveness of the proposed algorithms in alleviating the problem of

label scarcity.

We can also observe from Table 3 and Table 4 that the running time of the proposed algorithms is consistently

higher than the versions with random queries and PEA algorithms, the reasons are as follows. First, compared with

the versions with random queries, the proposed algorithms decide whether to query the label of the current instance

by a Bernoulli random variable δt ∈ {0, 1} with probability ρ/(ρ + |qt |), ρ ≥ 1, which guarantees the superior to the

versions with random queries. Thus, the proposed algorithms would cost more time. Second, compared with the PEA

algorithm, the model update strategy of the proposed algorithms is more complicated. PEA updates the current model

only when the model makes a wrong prediction, however, the proposed algorithms aggressively update the current

model whenever the loss is nonzero (even if the prediction is correct) to use more instances for model updating and

getting better results than the PEA algorithm. Besides, as can be seen from the numerical results in Table 3 and Table 4,

we think that the additional computational cost is not so large and it is affordable for real applications.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Incremental Feature Spaces Learning with Label Scarcity 17

0 0.20.40.60.8 1
RPEA RFESL RFLLS RFLLS-I RFLLS-II PEA FLLS FLLS-I FLLS-II

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.6

0.7

0.8

0.9

1

A
C

C
 v

al
u

es

(a) air

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.7

0.75

0.8

0.85

0.9

0.95

A
C

C
 v

al
u

es

(b) vote

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.8

0.85

0.9

0.95

A
C

C
 v

al
u

es

(c) wdbc

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
C

C
 v

al
u

es

(d) dna

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
C

C
 v

al
u

es

(e) svmguide3

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.4

0.5

0.6

0.7

0.8

0.9

A
C

C
 v

al
u

es

(f) PCMAC

Fig. 3. The ACC results for the 6 data sets: air, vote, wdbc, dna, svmguide3, and PCMAC. The curve shows the average learning
accuracy over the fraction of queried labels.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Shilin Gu, Yuhua Qian, and Chenping Hou

0 0.20.40.60.8 1
RPEA RFESL RFLLS RFLLS-I RFLLS-II PEA FLLS FLLS-I FLLS-II

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.4

0.5

0.6

0.7

0.8

0.9

1
A

C
C

 v
al

u
es

(a) basehock

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.6

0.65

0.7

0.75

0.8

0.85

A
C

C
 v

al
u

es

(b) splice

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
C

C
 v

al
u

es

(c) kr-V-kp1

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.78

0.8

0.82

0.84

0.86

0.88

0.9

A
C

C
 v

al
u

es

(d) spambase

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.86

0.88

0.9

0.92

A
C

C
 v

al
u

es

(e) phishing

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
C

C
 v

al
u

es

(f) a9a

Fig. 4. The ACC results for the 6 data sets: basehock, splice, kr-V-kp1, spambase, phishing, and a9a. The curve shows the average
learning accuracy over the fraction of queried labels.
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Incremental Feature Spaces Learning with Label Scarcity 19

Table 3. AUC results of algorithms with the query ratio fixed to about 10%.

Algorithm

air vote wdbc

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .917(.041) .0014 10.00(.00) .877(.041) .0015 10.00(.00) .913(.032) .0017 10.00(.00)

RFESL .979(.018) .0030 10.00(.00) .930(.021) .0042 10.00(.00) .948(.019) .0053 10.00(.00)

RFLLS .875(.077) .0014 10.00(.00) .876(.070) .0016 10.00(.00) .913(.043) .0017 10.00(.00)

RFLLS-I .959(.029) .0015 10.00(.00) .911(.036) .0018 10.00(.00) .931(.022) .0018 10.00(.00)

RFLLS-II .918(.051) .0017 10.00(.00) .917(.036) .0018 10.00(.00) .931(.024) .0018 10.00(.00)

PEA .898(.075) .0042 10.06(.47) .905(.041) .0056 10.13(.56) .913(.029) .0072 10.18(.31)

FLLS .978(.015) .0044 9.97(.36) .956(.017) .0066 10.06(.65) .950(.023) .0073 9.77(.40)

FLLS-I .963(.025) .0045 10.09(.46) .940(.026) .0066 9.77(.77) .939(.018) .0074 10.11(.54)

FLLS-II .975(.022) .0045 9.97(.65) .950(.021) .0067 10.10(.51) .949(.015) .0078 10.02(.36)

Algorithm

dna svmguide3 PCMAC

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .884(.030) .0033 10.00(.00) .581(.051) .0026 10.00(.00) .717(.047) .0433 10.00(.00)

RFESL .941(.015) .0113 10.00(.00) .689(.036) .0129 10.00(.00) .792(.036) .0636 10.00(.00)

RFLLS .874(.024) .0041 10.00(.00) .557(.090) .0029 10.00(.00) .631(.041) .0450 10.00(.00)

RFLLS-I .910(.015) .0046 10.00(.00) .639(.043) .0032 10.00(.00) .748(.039) .0460 10.00(.00)

RFLLS-II .904(.023) .0050 10.00(.00) .594(.070) .0033 10.00(.00) .723(.050) .0476 10.00(.00)

PEA .876(.031) .0186 10.13(.24) .576(.065) .0148 9.69(.42) .793(.061) .2995 9.86(.36)

FLLS .920(.020) .0191 9.89(.27) .659(.028) .0155 10.31(.36) .692(.028) .3007 10.10(.15)

FLLS-I .898(.019) .0191 10.26(.91) .667(.040) .0159 9.80(.50) .820(.020) .3011 9.74(.23)

FLLS-II .914(.016) .0201 9.99(.27) .662(.024) .0181 10.31(.39) .843(.014) .3012 10.02(.70)

Algorithm

basehock splice kr-V-kp

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .838(.039) .0704 10.00(.00) .781(.020) .0064 10.00(.00) .772(.045) .0064 10.00(.00)

RFESL .888(.016) .0954 10.00(.00) .799(.018) .0234 10.00(.00) .773(.026) .0217 10.00(.00)

RFLLS .666(.058) .0724 10.00(.00) .759(.035) .0065 10.00(.00) .768(.052) .0064 10.00(.00)

RFLLS-I .842(.040) .0742 10.00(.00) .788(.022) .0069 10.00(.00) .818(.044) .0067 10.00(.00)

RFLLS-II .849(.052) .0751 10.00(.00) .801(.024) .0079 10.00(.00) .827(.037) .0072 10.00(.00)

PEA .925(.021) .4886 9.97(.24) .765(.032) .0437 10.11(.18) .750(.030) .0404 10.15(.45)

FLLS .762(.031) .4994 10.34(.18) .808(.014) .0439 9.81(.27) .831(.018) .0426 10.10(.36)

FLLS-I .936(.014) .5071 9.85(.36) .782(.026) .0463 10.09(.57) .765(.025) .0426 9.91(.96)

FLLS-II .948(.009) .5071 10.10(.15) .812(.012) .0469 10.23(.24) .809(.016) .0441 9.86(.45)

Algorithm

spambase phishing a9a

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .856(.015) .0080 10.00(.00) .907(.007) .0176 10.00(.00) .587(.077) .0611 10.00(.00)

RFESL .868(.005) .0315 10.00(.00) .913(.006) .1036 10.00(.00) .780(.005) .3058 10.00(.00)

RFLLS .835(.027) .0086 10.00(.00) .898(.018) .0186 10.00(.00) .587(.081) .0627 10.00(.00)

RFLLS-I .862(.018) .0086 10.00(.00) .917(.006) .0189 10.00(.00) .732(.041) .0655 10.00(.00)

RFLLS-II .870(.018) .0099 10.00(.00) .917(.005) .0199 10.00(.00) .611(.079) .0656 10.00(.00)

PEA .866(.019) .0542 9.68(.22) .909(.007) .1234 9.93(.31) .523(.059) .3505 9.91(.72)

FLLS .889(.014) .0589 10.01(.23) .922(.005) .1371 10.07(.35) .732(.028) .3618 10.20(.16)

FLLS-I .882(.013) .0595 9.98(.33) .919(.006) .1375 9.78(.60) .765(.021) .3719 9.75(.37)

FLLS-II .884(.011) .0601 10.16(.46) .921(.005) .1418 10.16(.58) .682(.070) .3747 10.11(.26)

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Shilin Gu, Yuhua Qian, and Chenping Hou

Table 4. AUC results of algorithms with the query ratio fixed to about 20%.

Algorithm

air vote wdbc

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .904(.049) .0015 20.00(.00) .894(.046) .0016 20.00(.00) .920(.026) .0019 20.00(.00)

RFESL .985(.018) .0047 20.00(.00) .925(.023) .0051 20.00(.00) .941(.019) .0062 20.00(.00)

RFLLS .931(.035) .0018 20.00(.00) .889(.045) .0019 20.00(.00) .915(.028) .0025 20.00(.00)

RFLLS-I .961(.026) .0018 20.00(.00) .931(.031) .0021 20.00(.00) .935(.019) .0025 20.00(.00)

RFLLS-II .970(.013) .0019 20.00(.00) .927(.038) .0021 20.00(.00) .934(.023) .0023 20.00(.00)

PEA .937(.030) .0052 20.21(.54) .896(.053) .0057 19.76(.65) .923(.026) .0084 19.93(.61)

FLLS .992(.006) .0057 19.97(.73) .955(.019) .0063 20.52(.61) .951(.017) .0086 19.52(.53)

FLLS-I .978(.012) .0058 19.76(.98) .954(.022) .0067 20.30(.77) .946(.015) .0089 19.75(.39)

FLLS-II .986(.010) .0061 20.03(.68) .955(.019) .0079 20.06(.94) .950(.019) .0093 20.62(.71)

Algorithm

dna svmguide3 PCMAC

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .896(.030) .0040 20.00(.00) .584(.075) .0042 20.00(.00) .718(.045) .0693 20.00(.00)

RFESL .952(.014) .0126 20.00(.00) .688(.029) .0137 20.00(.00) .799(.024) .0820 20.00(.00)

RFLLS .918(.024) .0044 20.00(.00) .529(.073) .0045 20.00(.00) .650(.048) .0700 20.00(.00)

RFLLS-I .941(.015) .0047 20.00(.00) .665(.032) .0046 20.00(.00) .763(.034) .0706 20.00(.00)

RFLLS-II .934(.018) .0052 20.00(.00) .598(.071) .0046 20.00(.00) .765(.033) .0754 20.00(.00)

PEA .895(.024) .0215 19.76(.43) .576(.055) .0172 19.72(.41) .839(.021) .3112 20.21(.67)

FLLS .943(.009) .0236 19.80(.35) .665(.034) .0175 19.46(.58) .688(.023) .3143 19.82(.23)

FLLS-I .921(.018) .0241 19.82(.83) .677(.025) .0179 20.42(.92) .851(.016) .3156 19.93(.49)

FLLS-II .937(.012) .0246 19.82(.51) .653(.034) .0191 19.55(.19) .866(.016) .3166 19.84(.13)

Algorithm

basehock splice kr-V-kp

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .837(.055) .1148 20.00(.00) .796(.019) .0072 20.00(.00) .812(.040) .0070 20.00(.00)

RFESL .892(.025) .3481 20.00(.00) .801(.013) .0279 20.00(.00) .781(.011) .0280 20.00(.00)

RFLLS .664(.065) .1161 20.00(.00) .785(.021) .0078 20.00(.00) .839(.040) .0073 20.00(.00)

RFLLS-I .867(.033) .1163 20.00(.00) .821(.014) .0080 20.00(.00) .868(.037) .0074 20.00(.00)

RFLLS-II .884(.021) .1187 20.00(.00) .812(.018) .0088 20.00(.00) .875(.029) .0082 20.00(.00)

PEA .946(.015) .5014 19.96(.08) .792(.018) .0440 19.98(.35) .782(.028) .0450 19.77(.42)

FLLS .747(.046) .5148 19.79(.37) .820(.012) .0465 20.34(.07) .897(.020) .0454 20.41(.24)

FLLS-I .955(.010) .5159 19.87(.60) .819(.019) .0458 20.31(.49) .805(.027) .0455 19.98(.35)

FLLS-II .963(.009) .5164 20.19(.10) .822(.012) .0487 19.58(.30) .879(.028) .0458 19.66(.25)

Algorithm

spambase phishing a9a

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .862(.022) .0094 20.00(.00) .907(.013) .0201 20.00(.00) .570(.079) .0848 20.00(.00)

RFESL .865(.005) .0410 20.00(.00) .912(.006) .1129 20.00(.00) .778(.004) .3305 20.00(.00)

RFLLS .853(.033) .0102 20.00(.00) .900(.015) .0217 20.00(.00) .571(.083) .0895 20.00(.00)

RFLLS-I .877(.015) .0107 20.00(.00) .920(.005) .0217 20.00(.00) .749(.054) .0956 20.00(.00)

RFLLS-II .875(.019) .0113 20.00(.00) .920(.007) .0232 20.00(.00) .618(.082) .0960 20.00(.00)

PEA .875(.017) .0565 20.23(.27) .907(.010) .1250 20.15(.42) .544(.074) .3604 20.39(.09)

FLLS .896(.013) .0617 19.73(.31) .921(.005) .1394 19.76(.53) .726(.045) .3730 20.39(.65)

FLLS-I .893(.013) .0638 19.72(.33) .923(.005) .1416 19.71(.53) .757(.024) .3818 19.69(.65)

FLLS-II .892(.011) .0638 19.63(.38) .922(.005) .1437 20.28(.83) .654(.085) .3881 19.76(.27)

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Incremental Feature Spaces Learning with Label Scarcity 21

5.3 Comparisons with Simple and Direct Approaches

To verify the necessity of using all the information of the data streams as much as possible, in this subsection, we take

FLLS-I as an example and compare it with its two simplified versions, FLLS -ISN and FLLS -ISI on six data sets. FLLS

-ISN simply takes advantage of the newly obtained labeled instance to learn a new model for classification when the

feature dimension of instance increases. FLLS -ISI only uses the initial features to update its model, that is, the data

streams in FLLS -ISI is xt ∈ Rd1
.

Table 5. AUC values of FLLS-I and its two simplified versions on six datasets with the query ratio fixed to about 10%.

Dataset

FLLS -ISN FLLS -ISI FLLS-I

AUC Query(%) AUC Query(%) AUC Query(%)

air .712(.141) 10.11(.09) .760(.054) 10.33(.56) .951(.039) 10.00(.39)

vote .678(.208) 10.01(.03) .682(.049) 10.04(.25) .937(.028) 10.01(.76)

basehock .546(.078) 9.97(.07) .929(.018) 9.97(.23) .934(.015) 9.99(.19)

spambase .604(.065) 9.94(.07) .727(.013) 9.95(.52) .897(.006) 10.11(.41)

phishing .582(.083) 9.98(.08) .618(.007) 10.08(.71) .925(.005) 10.00(.26)

a9a .751(.030) 10.07(.09) .765(.006) 10.50(.17) .837(.008) 9.92(.80)

We set B = 1, i.e., all features are used for learning at each round t . We adjust ρ to make the query ratio near 10%.

From Table 5 we can observe that FLLS-I achieves significantly better results than FLLS -ISN and FLLS -ISI , which

indicates that the abandonment of data information will lead to a significant degeneration of model performance. The

above results further reveal the necessity of our methods to make full use of data information.

5.4 Comparisons with all Features Accessed FLLS-I

In this subsection, we take FLLS-I as an example and conduct experiments on a special case of FLLS-I, marked as FLLS

-If . Specifically, we assume that FLLS -If can access the full features at each round for training, i.e., the data streams in

FLLS -If is xt ∈ RdT . We try to explore how close the performance between FLLS-I and FLLS -If .

We conduct experiments on four data sets, i.e., vote, basehock, phishing, a9a. As can be seen from Fig. 5, the difference

in experimental results between FLLS-I and FLLS -If is relatively small. FLLS-I is even comparable to FLLS -If on

some data sets, such as basehock and a9a. Fig. 5 again proves that our proposed methods can effectively extract the

information in the data streams, and it can achieve satisfying results even if some features are missing.

5.5 Analysis of Sparsity Strategy

In this subsection, we conduct experiments to test the effectiveness of model sparseness in our algorithms. We replicate

different proportions of the original features as the additional features. Thus, the redundancy relative to the features

already included is increasing gradually. Then, we test the performance of the proposed algorithms on the original

features and redundant features, respectively.

We conduct experiments on four datasets, i.e., vote, svmguide3, PCMAC, a9a. The ACC results with varied query

ratios (10%, 50%, 90%) are displayed in Fig. 6. We use the stacked bar to show the results. In each group, from left to right,

the algorithms are FLLS, FLLS-I, and FLLS-II. The ACC results on redundant features are plotted by green face. If the

results on original features are better than the results on redundant features, we add a yellow bar on the green face. It

can be observed that the performances of our algorithms on the original dataset, with and without additional redundant

features, are similar, which indicates the effectiveness of the model sparseness part in our proposed algorithms.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Shilin Gu, Yuhua Qian, and Chenping Hou

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.8

0.85

0.9

0.95

1

A
C

C
 v

al
ue

s

FLLS-I
f

FLLS-I

(a) vote

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.7

0.75

0.8

0.85

0.9

0.95

A
C

C
 v

al
ue

s

FLLS-I
f

FLLS-I

(b) basehock

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.81

0.82

0.83

0.84

0.85

A
C

C
 v

al
ue

s

FLLS-I
f

FLLS-I

(c) a9a

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.89

0.9

0.91

0.92

0.93

0.94

A
C

C
 v

al
ue

s

FLLS-I
f

FLLS-I

(d) phishing

Fig. 5. ACC Performance of algorithms FLLS -If and FLLS-I on four different datasets.

vo(10%) vo(50%) vo(90%) sv(10%) sv(50%) sv(90%) pc(10%) pc(50%) pc(90%) a9(10%) a9(50%) a9(90%)
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
C

C
 v

al
u

es

Fig. 6. ACC Performance of the proposed algorithms on original features and redundant features, respectively. Each group corresponds
to the results on a data set (vo, sv, pc and a9 represent the abbreviations for data sets vote, svmguide3, PCMAC, and a9a, respectively)
with query ratio (10%, 50%, 90%). In each group, the results on redundant features are plotted by green face and the yellow face
represents the decrease of the results on original datasets compared to the results on redundant features. In each group, from left to
right, the algorithms are FLLS, FLLS-I, and FLLS-II.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Incremental Feature Spaces Learning with Label Scarcity 23

5.6 Parameter Analysis

Here we study the parameter sensitivity of our algorithms on two data sets, dna and splice. There are two important

parameters in proposed algorithms, i.e., penalty cost parameter C and ratio of selected features B. First we fix B = 0.5

and tune C in 2
[−5:5]

, then we fix C = 1 and tune B in {0.04, 0.08, 0.16, 0.32, 0.64} . All these experiments are conducted

under the query ratio fixed to about 50%.

2
-5

2
-4

2
-3

2
-2

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

ParameterC

0.84

0.86

0.88

0.9

0.92

0.94

0.96

A
C

C
 v

a
lu

e
s

FLLS-I

FLLS-II

(a) dna

2
-5

2
-4

2
-3

2
-2

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

ParameterC

0.76

0.78

0.8

0.82

0.84

A
C

C
 v

a
lu

e
s

FLLS-I

FLLS-II

(b) splice

0.04 0.08 0.16 0.32 0.64

Parameter B

0.6

0.7

0.8

0.9

1

A
C

C
 v

a
lu

e
s

FLLS

FLLS-I

FLLS-II

(c) dna

0.04 0.08 0.16 0.32 0.64

Parameter B

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
C

C
 v

a
lu

e
s

FLLS

FLLS-I

FLLS-II

(d) splice

Fig. 7. The ACC results on two data sets with respect to parameter C and B .

As can be seen from Fig. 7, (a) and (b) show the performance of FLLS-I and FLLS-II under different values ofC . FLLS-I

and FLLS-II are not very sensitive to parameter C in a wide range. Besides, the larger the value of C , the closer the

performance of FLLS-I and FLLS-II. This is because the value of τt in FLLS-I and FLLS-II is getting closer and closer

as C increases, resulting in their models tending to be consistent. When the value of C is large enough, FLLS-I and

FLLS-II degenerate to FLLS. (c) and (d) show the performance of the proposed algorithms on different values of B. We

can see that a larger value of B may not necessarily lead to better performance, indicating that the sparsity strategy can

not only improve the memory usage and running time efficiency, but also ensure that the proposed algorithms have

superior performance.

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Shilin Gu, Yuhua Qian, and Chenping Hou

5.7 Real-World Applications

In this subsection, we apply FLLS and its two variants on two real-world datasets, i.e., rcv1 and RFID. rcv1
5
is a text

classification dataset, which aims to classify the JMLR articles into different groups. Generally, new articles are published

continuously with new research topics, so this setting can be regarded as trapezoidal data streams learning. The "RFID"

data stream
6
is collected by Hou et al[3] using the RFID technique. Each RFID aerial keeps receiving the tag signals

on each round. To ensure continuous signal reception, new aerials are deployed beside the old ones before the aerials

expired. During this overlapping period, we achieve data streams from both historical and augmented feature spaces,

which indicates that the volume and dimension of data streams increase over time. Therefore, the RFID data collected

by Hou also satisfies our assumptions.

Table 6 shows the average AUC values and running time of these nine methods with the query ratio near 10% and

20%, the best AUC result and its comparable results are highlighted in boldface based on the paired t-tests at 95%

significance level. Fig. 8 show the average ACC results of these nine methods with varied ratios of queried instances. We

can observe from Table 6 and Fig. 8 that the proposed methods achieve significantly better results than the compared

methods, which indicates that our proposed methods can also achieve good performance in real-world applications.

Table 6. AUC Performance of algorithms on two real-world data sets with the query ratio fixed to about 10% and 20%.

Dataset Algorithm

Request 10% labels Request 20% labels

AUC Time(s) Query(%) AUC Time(s) Query(%)

RFID RPEA .721(.060) 0.0031 10.00(.00) .746(.049) 0.0035 20.00(.00)

RFESL .752(.065) 0.0101 10.00(.00) .778(.038) 0.0118 20.00(.00)

RFLLS .729(.037) 0.0039 10.00(.00) .750(.048) 0.0042 20.00(.00)

RFLLS-I .749(.040) 0.0042 10.00(.00) .775(.029) 0.0045 20.00(.00)

RFLLS-II .740(.035) 0.0048 10.00(.00) .787(.037) 0.0051 20.00(.00)

PEA .705(.051) 0.0167 9.93(.10) .763(.041) 0.0192 20.21(.16)

FLLS .785(.022) 0.0183 9.96(.15) .809(.020) 0.0203 19.52(.18)

FLLS-I .759(.030) 0.0185 10.06(.46) .777(.021) 0.0213 19.57(.72)

FLLS-II .789(.029) 0.0190 10.09(.08) .806(.016) 0.0235 20.27(.16)

rcv RPEA .835(.044) 0.3495 10.00(.00) .853(.034) 0.3520 20.00(.00)

RFESL .912(.004) 0.5575 10.00(.00) .912(.048) 0.5844 20.00(.00)

RFLLS .797(.034) 0.3496 10.00(.00) .794(.048) 0.3521 20.00(.00)

RFLLS-I .919(.006) 0.3506 10.00(.00) .920(.006) 0.3533 20.00(.00)

RFLLS-II .891(.022) 0.3512 10.00(.00) .894(.017) 0.3542 20.00(.00)

PEA .890(.011) 1.3259 10.06(.03) .886(.017) 1.3516 19.88(.03)

FLLS .848(.014) 1.3407 9.87(.03) .843(.021) 1.3763 20.40(.03)

FLLS-I .937(.003) 1.3626 9.82(.23) .937(.004) 1.3778 19.87(.16)

FLLS-II .912(.007) 1.3712 9.96(.04) .910(.005) 1.3799 20.42(.06)

6 CONCLUSION

In this paper, we aim to learn a highly dynamic model from trapezoidal data streams with label scarcity and propose

a new algorithm called incremental feature spaces learning with label scarcity (FLLS), together with its two variants

5
http://www.csie.ntu.edu.tw/~cjlin/libsvm

6
http://www.lamda.nju.edu.cn/data_RFID.ashx

Manuscript submitted to ACM

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.lamda.nju.edu.cn/data_RFID.ashx

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Incremental Feature Spaces Learning with Label Scarcity 25

0 0.20.40.60.8 1
RPEA RFESL RFLLS RFLLS-I RFLLS-II PEA FLLS FLLS-I FLLS-II

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
C

C
 v

al
u

es

(a) RFID

0 0.2 0.4 0.6 0.8 1

Fraction of queried labels

0.75

0.8

0.85

0.9

0.95

A
C

C
 v

al
u

es

(b) rcv1

Fig. 8. The ACC results on two real-world data sets.

FLLS-I and FLLS-II. Our approaches are particularly useful when labels are scarce and feature spaces are increasing.

We first leverage the margin-based online active learning to annotate the most valuable instances and thus a build

superior model with minimal supervision. After receiving the label, we combine the passive-aggressive update rule

and margin-maximum principle to jointly update the dynamic classifier in the shared and augmented feature space.

Theoretical and empirical studies demonstrate the effectiveness of our proposed algorithms.

Since our proposed algorithms are designed for linear tasks, we think it is an interesting and vital work to extend

our proposal into a nonlinear case. How to design a nonlinear classifier in the setting of incremental feature spaces

learning is one of our future works. In addition, how to exploit more valuable information within the data streams,

such as second-order information, distribution information, and how to conduct clustering with evolving feature space

are also interesting works. These works are quite useful in practice and we will do further study on them.

7 ACKNOWLEDGEMENTS

This work was partially supported by the Key NSF of China under Grant No. 62136005, the NSF of China under Grant No.

61922087, Grant No. 61906201, and Grant No. 62006238, the NSF for Distinguished Young Scholars of Hunan Province

under Grant No. 2019JJ20020. Chenping Hou and Yuhua Qian are the corresponding authors.

REFERENCES
[1] Zhenyu Zhang, Peng Zhao, Yuan Jiang, and Zhi-Hua Zhou. Learning with feature and distribution evolvable streams. In Proceedings of the 37th

International Conference on Machine Learning, ICML 2020, volume 119, pages 11317–11327. PMLR, 2020.

[2] Qin Zhang, Peng Zhang, Guodong Long, Wei Ding, Chengqi Zhang, and Xindong Wu. Online learning from trapezoidal data streams. IEEE
Transactions on Knowledge and Data Engineering, 28(10):2709–2723, 2016.

[3] Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. Learning with feature evolvable streams. In Advances in Neural Information Processing Systems 30,
Long Beach, CA, USA, pages 1417–1427, 2017.

[4] Chenping Hou and Zhi-Hua Zhou. One-pass learning with incremental and decremental features. IEEE Trans. Pattern Anal. Mach. Intell., 40(11):2776–
2792, 2018.

[5] Di Wu, Yi He, Xin Luo, Mingsheng Shang, and Xindong Wu. Online feature selection with capricious streaming features: A general framework. In

IEEE International Conference on Big Data, Los Angeles, CA, USA, pages 683–688. IEEE, 2019.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Shilin Gu, Yuhua Qian, and Chenping Hou

[6] Steven C. H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey. CoRR, abs/1802.02871, 2018.
[7] Dehua Liu, Peng Zhang, and Qinghua Zheng. An efficient online active learning algorithm for binary classification. Pattern Recognit. Lett., 68:22–26,

2015.

[8] Liyao Ma, Sébastien Destercke, and Yong Wang. Online active learning of decision trees with evidential data. Pattern Recognit., 52:33–45, 2016.
[9] Shuji Hao, Jing Lu, Peilin Zhao, Chi Zhang, Steven C. H. Hoi, and Chunyan Miao. Second-order online active learning and its applications. IEEE

Trans. Knowl. Data Eng., 30(7):1338–1351, 2018.
[10] Lei Zhu, Shaoning Pang, Abdolhossein Sarrafzadeh, Tao Ban, and Daisuke Inoue. Incremental and decremental max-flow for online semi-supervised

learning. IEEE Trans. Knowl. Data Eng., 28(8):2115–2127, 2016.
[11] Peilin Zhao, Dayong Wang, Pengcheng Wu, and Steven C. H. Hoi. A unified framework for sparse online learning. ACM Trans. Knowl. Discov. Data,

14(5), August 2020.

[12] Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. Prediction with unpredictable feature evolution. CoRR, abs/1904.12171, 2019.
[13] Bo-Jian Hou, Yu-Hu Yan, Peng Zhao, and Zhi-Hua Zhou. Storage fit learning with feature evolvable streams. CoRR, abs/2007.11280, 2020.
[14] Peng Zhou, Peipei Li, Shu Zhao, and Xindong Wu. Feature interaction for streaming feature selection. IEEE Transactions on Neural Networks and

Learning Systems, 2020.
[15] Xuegang Hu, Peng Zhou, Pei-Pei Li, Jing Wang, and Xindong Wu. A survey on online feature selection with streaming features. Frontiers Comput.

Sci., 12(3):479–493, 2018.
[16] Xindong Wu, Kui Yu, Wei Ding, Hao Wang, and Xingquan Zhu. Online feature selection with streaming features. IEEE Trans. Pattern Anal. Mach.

Intell., 35(5):1178–1192, 2013.
[17] Ege Beyazit, Jeevithan Alagurajah, and Xindong Wu. Online learning from data streams with varying feature spaces. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 3232–3239. AAAI Press, 2019.

[18] Yi He, Baijun Wu, Di Wu, Ege Beyazit, and Xindong Wu. Toward mining capricious data streams: A generative approach. IEEE Transactions on
Neural Networks and Learning Systems, PP(99):1–13, 2020.

[19] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled

examples. J. Mach. Learn. Res., 7:2399–2434, 2006.
[20] Andrew B. Goldberg, Ming Li, and Xiaojin Zhu. Online manifold regularization: A new learning setting and empirical study. In Machine Learning

and Knowledge Discovery in Databases, volume 5211, pages 393–407, 2008.

[21] Mehrdad Farajtabar, Amirreza Shaban, Hamid Reza Rabiee, and Mohammad Hossein" Rohban. Manifold coarse graining for online semi-supervised

learning. In Machine Learning and Knowledge Discovery in Databases, pages 391–406, 2011.
[22] Atsutoshi Kumagai and Tomoharu Iwata. Learning dynamics of decision boundaries without additional labeled data. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, pages 1627–1636. ACM, 2018.

[23] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. Learning probabilistic linear-threshold classifiers via selective sampling. In Learning
Theory and Kernel Machines, pages 373–387. Springer, 2003.

[24] Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Worst-case analysis of selective sampling for linear classification. J. Mach. Learn. Res.,
7:1205–1230, 2006.

[25] Peilin Zhao and Steven C. H. Hoi. Cost-sensitive online active learning with application to malicious URL detection. In The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD, pages 919–927. ACM, 2013.

[26] Jing Lu, Peilin Zhao, and Steven C. H. Hoi. Online passive aggressive active learning and its applications. In Proceedings of the Sixth Asian Conference
on Machine Learning, ACML ,Nha Trang City, Vietnam, volume 39. JMLR.org, 2014.

[27] Yoram Baram, Ran El-Yaniv, and Kobi Luz. Online choice of active learning algorithms. J. Mach. Learn. Res., 5:255–291, 2004.
[28] Shuji Hao, Peiying Hu, Peilin Zhao, Steven C. H. Hoi, and Chunyan Miao. Online active learning with expert advice. ACM Trans. Knowl. Discov.

Data, 12(5):58:1–58:22, 2018.
[29] Shuji Hao, Steven C. H. Hoi, Chunyan Miao, and Peilin Zhao. Active crowdsourcing for annotation. In IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology, WI-IAT, Volume II, pages 1–8. IEEE Computer Society, 2015.

[30] H. Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Proceedings of the Fifth Annual ACMConference on Computational
Learning Theory, COLT, pages 287–294. ACM, 1992.

[31] Yi He, Xu Yuan, Sheng Chen, and Xindong Wu. Online learning in variable feature spaces under incomplete supervision. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, pages 4106–4114. AAAI Press, 2021.

[32] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online passive-aggressive algorithms. J. Mach. Learn. Res.,
7:551–585, 2006.

[33] S. Boyd and L. Vandenberghe. Convex Optimization. Convex Optimization, 2004.

[34] Jing Lu, Peilin Zhao, and Steven C. H. Hoi. Online passive-aggressive active learning. Mach. Learn., 103(2):141–183, 2016.
[35] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology,

2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[36] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

Manuscript submitted to ACM

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Abstract
	1 Introduction
	2 Related Work
	2.1 Online Learning from dynamic Feature Space
	2.2 Online Learning with Label Scarcity

	3 Our Proposed Approach
	3.1 Notations
	3.2 The Proposed Algorithm
	3.3 The Sparsity Strategy

	4 Theoretical Analysis
	5 Experiments
	5.1 Data Sets and General Settings
	5.2 Comparisons with Benchmarks
	5.3 Comparisons with Simple and Direct Approaches
	5.4 Comparisons with all Features Accessed FLLS-I
	5.5 Analysis of Sparsity Strategy
	5.6 Parameter Analysis
	5.7 Real-World Applications

	6 Conclusion
	7 Acknowledgements
	References

