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Incremental Feature Spaces Learning with Label Scarcity

SHILIN GU, The College of Liberal Arts and Science, National University of Defense Technology, China

YUHUA QIAN, The Institute of Big Data Science and Industry, Shanxi University, China

CHENPING HOU, The College of Liberal Arts and Science, National University of Defense Technology, China

Recently, learning and mining from data streams with incremental feature spaces have attracted extensive attention, where data

may dynamically expand over time in both volume and feature dimensions. Existing approaches usually assume that the incoming

instances can always receive true labels. However, in many real-world applications, e.g., environment monitoring, acquiring the true

labels is costly due to the need of human effort in annotating the data. To tackle this problem, we propose a novel incremental Feature

spaces Learning with Label Scarcity algorithm (FLLS), together with its two variants. When data streams arrive with augmented

features, we first leverage the margin-based online active learning to select valuable instances to be labeled and thus build superior

predictive models with minimal supervision. After receiving the labels, we combine the online passive-aggressive update rule and

margin-maximum principle to jointly update the dynamic classifier in the shared and augmented feature space. Finally, we use the

projected truncation technique to build a sparse but efficient model. We theoretically analyze the error bounds of FLLS and its two

variants. Also, we conduct experiments on synthetic data and real-world applications to further validate the effectiveness of our

proposed algorithms.

CCS Concepts: • Computing methodologies→ Online learning settings; • Theory of computation → Streaming models.

Additional Key Words and Phrases: Incremental feature spaces, online learning, label scarcity
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1 INTRODUCTION

In many real-world applications, data are usually accumulated over time and collected from open and dynamic

environments[1], leading to the simultaneous increase of data volume and feature space. We refer this type of data as

data streams with incremental feature spaces, or trapezoidal data streams[2]. There are a few online learning approaches

that have been explored to learn from trapezoidal data streams[2–5]. Nonetheless, they all assume that the labels of data

streams can always be received, which does not always hold in practice. For example, as shown in Fig. 1, to monitor

environmental quality, different types of sensors are continuously installed, the volume and feature dimension of data

simultaneously increase due to the continuously installed sensors, and each instance needs to be labeled by experts,

Chenping Hou and Yuhua Qian are the corresponding authors.

Authors’ addresses: Shilin Gu, gslnudt@outlook.com, The College of Liberal Arts and Science, National University of Defense Technology, Changsha,

Hunan, China, 410073; Yuhua Qian, jinchengqyh@126.com, The Institute of Big Data Science and Industry, Shanxi University, Taiyuan, Shanxi, China,

030006; Chenping Hou, hcpnudt@hotmail.com, The College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan,

China, 410073.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1



53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Shilin Gu, Yuhua Qian, and Chenping Hou

which results in the expensive costs and scarcity of labels. Besides, it’s not always informative or necessary to query

every instance’s label in many cases, e.g., if the model correctly predicts the instance’s label with a high confidence[6].

T
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Environment Monitoring

Initial sensors
Newly installed 

sensors over time

Expensive!
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e
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Fig. 1. Illustration of the setting arising from a real application. As time evolves, different types of sensors are installed to monitor
environmental quality. Each row represents the instance composed of features that are collected by all current sensors. Therefore,
the volume and feature dimension of data streams simultaneously increase over time. Besides, each instance needs to be labeled by
experts, resulting in expensive costs and scarcity of labels.

Trapezoidal data streams learning with scarce labels faces much more difficulties than current online learning

problems because the three important aspects of data: volume, features, and labels, are all different from traditional

learning settings at the same time. There are two main challenges, one is how to lift the restriction that all instances

must be labeled and how to effectively extract useful information from the very limited labeled instances to build a

superior classifier; the other one is how to design a model update strategy with high dynamicity such that the model

can adapt to the continuous expansion of the feature space and mine useful information. For the first challenge, a

line of research, which we call online active learning and online semi-supervised learning, has been explored to learn

from data streams with scarce labels[6–11]. For the second challenge, another line of research, which aims to learn

data streams in dynamic feature spaces[12–16], has been explored to relax the constraint that the feature space of all

arriving instances must be fixed. Unfortunately, the above two lines of research cannot be directly applied to handle

trapezoidal data streams with label scarcity because their model update criteria are designed either in the case of scarce

labels or in the case of dynamic feature spaces, without considering both at the same time. The goal of this paper is to

fill this critical gap.

A simple and straightforward approach is to take advantage of the newly obtained labeled instance and learn a new

model for classification. However, this approach may have two deficiencies. First, the newly coming data with the

same feature space are usually scarce, which might be insufficient to build a superior predictive model. Second, the

newly built model ignores the previously collected data, which can not fully exploit the information from historical

data streams.

To solve the above two deficiencies, we propose a new incremental Feature spaces Learning with Label Scarcity

algorithm (FLLS), together with its two variants FLLS-I and FLLS-II. We aim to effectively exploit the information of data

streams with different feature dimensions and build a powerful predictive model with minimal supervision. Specifically,
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Incremental Feature Spaces Learning with Label Scarcity 3

when data streams arrive with augmented features, we first determine whether to obtain the current instance’s label

from an oracle based on the margin-based online active learning strategy, i.e., the probability of actively querying

the label of current instance is inversely proportional to the predictive confidence of the current model. If the label is

not queried, the model keeps unchanged; otherwise, the model jointly updates the dynamic classifier in shared and

augmented feature space by combining the passive-aggressive update rule and margin-maximum principle. Finally, we

use the projected truncation technique to build a sparse but efficient model. Theoretical and empirical studies validate

the effectiveness of our proposed algorithms.

It is worthwhile to summarize the main contributions of the proposed approach as follows.

(1) We propose a new algorithm FLLS and its two variants to handle trapezoidal data streams with label scarcity,

where the volume and feature dimension of data streams simultaneously increase, and the labels of data streams

need to be actively acquired from an oracle. To the best of our knowledge, it may be the first work that is specially

designed for this kind of data streams.

(2) We design a novel strategy to learn a highly dynamic classification model from trapezoidal data streams with

minimal supervision. Besides, we theoretically analyze the error bounds of our proposed algorithms.

(3) Extensive experiments on both synthetic datasets and real-world applications validate the effectiveness of the

proposed algorithms.

The remainder of this paper is organized as follows. Section II introduces related work. The proposed algorithms are

presented in Section III. Section IV provides a corresponding theoretical analysis. The experimental results are reported

in Section V. The conclusion is in Section VI.

2 RELATEDWORK

In this paper, we aim to learn a classification model from trapezoidal data streams with scarce labels, which is mainly

related to online learning from dynamic feature space and online learning with label scarcity. We mainly review the

related work of this paper from the above two aspects.

2.1 Online Learning from dynamic Feature Space

The dynamic feature space means that the feature space of data streams keeps changing. The most relevant to our

work is trapezoidal data streams learning, where the volume and feature dimension of data simultaneously increase.

Zhang[2] is the first to deal with trapezoidal data streams. She proposed OLSF with its two variants. Specifically, Zhang

first divides the features of the current training instance into historical features and new features. Then a classifier

updates historical features and new features by following different update rules. Recently, a few works have been

proposed to handle feature evolvable data streams, where features would vanish or occur over time. For example,

Hou[3] proposed the FESL algorithm, it first recovers historical features by a mapping function learned in the period

where both historical features and new features exist, then it learns two models from features of the above two parts,

respectively. Finally, ensemble learning is used to make the final prediction. Based on FESL, literature[1, 12] conducted

in-depth exploration and expansion of FESL scenario and proposed EDM and PUFE algorithms respectively. EDM[1]

handles data streams with evolving distribution and feature space by utilizing a discrepancy measure, and presents the

generalization error analysis. PUFE[12] leverages an online matrix completion technique to deal with the case where

historical features would vanish unpredictably. In addition, there are two methods OLVF[17] and GLSC[18] studying
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4 Shilin Gu, Yuhua Qian, and Chenping Hou

more complex dynamic changes of feature space. They assume that the features of arriving instances can arbitrarily

occur or vanish.

2.2 Online Learning with Label Scarcity

Existing works of online learning with label scarcity can be divided into two groups[6]. The first group is online semi-

supervised learning. The core is to fully exploit the continuously received unlabeled and labeled data for learning tasks.

Manifold regularization[19] is a major framework in online semi-supervised learning (e.g.,Riemann manifolds[20–22]),

it simultaneously minimizes the prediction loss on the labeled data and the prediction differences on the unlabeled data

[6]. In other words, instances located in a neighborhood region tend to be classified into the same class, which leads to

the propagating of label information.

The second group is online active learning and our approach belongs to this group. At each round, when a new

unlabeled instance arrives, the online active learning algorithms first decide whether to query the instance’s label

by certain criteria; once the label is queried, the learning algorithms can update the current model by leveraging the

labeled instance; otherwise, the model will not be updated[6]. The current literature on online active learning contains

two mainstream solutions. The first solution is "selective sampling", which adapts current classical online learning

approaches for active learning by drawing a Bernoulli random variable[23–26]. The second solution is "learning with

experts’ advices"[27–29], where the model contains a set of experts, and it queries the instance’s label based on the

degree of discrepancy advised by these experts[30]. Both of the above solutions reveal that the instance’s label is only

queried when it meets certain conditions, for example, the predictive confidence of the model is below some threshold.

However, all these above algorithms either assume that all the instances arrived are fully labeled, or assume that the

feature space of entire data streams is fixed. Recently, only two works, AGDES[31] and SF
2
EL[13], are developed to

support both. They belong to online semi-supervised learning and both of them simultaneously handle data streams

with variable feature spaces under incomplete supervision. Different from our setting where whether the current

instance can receive a label is determined by the current instance and the classification model updated in the previous

round, AGDES and SF
2
EL assume that whether the current instance has a label is determined in advance. Thus, the

technical challenges and solutions are different.

3 OUR PROPOSED APPROACH

3.1 Notations

We consider a task of binary classification on data streams with incremental feature spaces and scarce labels. Let

{xt |t = 1, . . . ,T } denote an input training sequence, where xt ∈ Rdt represents the instance vector of dt dimensions,

dt−1 ≤ dt . wt ∈ Rdt−1
denotes the classifier built at round t − 1. w1 ∈ Rd1

is a vector with all elements being zero. As

illustrated in Fig. 2, at each round t , when an instance xt carrying new features arrives, we divide the feature space

into two groups: shared and augmented features. The shared features contain the same features as the instance xt−1

at round t − 1, the augmented features are only contained by the current instance xt . We denote the projection of an

instance at round t onto the shared feature space as xst and augmented feature space as xat , i.e., xt = [xst , x
a
t ]. It also

applies for the projections of other vectors such as classifier [ws
t ,w

a
t ].

To make clear description, we denote by Πxt xt+1 a vector of dt dimension, it consists of elements of xt+1 which

are in the same feature space of xt . Similarly, we denote by Π¬xt xt+1 a vector of dt+1 − dt dimension, it consists
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Incremental Feature Spaces Learning with Label Scarcity 5

of elements of xt+1 which are not in the feature space of xt . Therefore, we can derive that xst = Πxt−1
xt = Πwt xt ,

xat = Π¬xt−1
xt = Π¬wt xt , w

s
t+1
= Πwtwt+1, wa

t+1
= Π¬wtwt+1.

The notations are listed in Table 1, we explain their meanings when they are first used.

Q
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Feature  Evolution 

Initial 
Features

Augmented 
Features

Augmented 
Features

…

…

…

…

…

Label

NQ

?

Shared Features

Augmented Features

?

?

?

…
…

…

Fig. 2. FLLS notations. As time evolves, features and instances dynamically expand. The green and blue areas represent the shared
features and the augmented features, respectively. xst and xat represents the projection of instance xt in the shared and augmented
feature space, respectively, t = 1, . . . , T . "Q" means query the label, "NQ" means not query the label.

3.2 The Proposed Algorithm

We develop a new algorithm FLLS and its two variants in this section to handle data streams with incremental feature

spaces and scarce labels. The difference between FLLS, FLLS-I, and FLLS-II is the model update strategies. Therefore, we

first introduce the basic algorithm FLLS.

For instance xt arrived at round t , we first compute its prediction margin by the current classifier wt . Since the

feature space of data streams keeps expanding, the dimension of xt and wt may be different. Thus, we redefine the

prediction margin as follows,

qt = wt · Πwt xt = wt · xst , (1)

where qt can be regarded as the predictive confidence. Whether to query the label of xt is decided by δt ∈ {0, 1}, which

is a Bernoulli random variable, the probability of δt = 1 is ρ/(ρ + |qt |), ρ ≥ 1 is a smoothing parameter. The idea of

the above strategy is inspired by margin-based active learning, we decide whether to query the label of an instance

according to its importance in building a classification model. This importance is determined by the prediction margin

of the current classifier, i.e., qt . However, in online active learning, we may face the problem that the current classifier

is unreliable, especially in the first several epochs. There are not enough instances to train a reliable classifier since the

instances come in an online way. If we directly decide to query the label based on qt , we may make a wrong decision.

To alleviate the above problem, similar to the strategies in traditional works[6, 9, 24, 25], we also introduce the Bernoulli

random variable δt ∈ {0, 1} into our model. It can shake our decision with a certain probability. Even when the current
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6 Shilin Gu, Yuhua Qian, and Chenping Hou

Table 1. Notations

Notations Descriptions Notations Descriptions

wt wt ∈ Rdt−1, w1 ∈ Rd1 , classifier built at round

t − 1

ws
t+1

A vector consisting of elements which are owned

by both wt+1 and wt

C C > 0, penalty cost parameter, tradeoff in the

optimization problem of FLLS-I and FLLS-II

wa
t+1

A vector consisting of elements of wt+1 that are

beyond the feature space of wt

ℓ∗t hinge loss on instance (xt , yt ) based on the classi-

fier u ∈ RdT
w̄t+1 intermediate variable of wt+1 after the update op-

eration

xst A vector consisting of elements which are owned

by both xt and xt−1

ŵt+1 intermediate variable of wt+1 on the L1 ball with-

out truncation

xat A vector consisting of elements of xt that are be-
yond the feature space of xt−1

Πwt+1
/wt u A vector which consists of elements of u that are

in the feature space of wt+1 but not wt

τt learning rate variable Πwt wt+1 Equivalent to the definition of ws
t+1

T T ∈ N + , total number of obtained instances Π¬wt wt+1 Equivalent to the definition of wa
t+1

ℓt hinge loss on instance (xt , yt ) xt xt ∈ Rdt , the instance obtained on round t

u u ∈ RdT , arbitrary vector in RdT dt dt ≤ dt+1 , dimension of instance xt
δt δt ∈ {0, 1}, Bernoulli random variable dwt dimension of wt

ξ slack variable yt yt ∈ {−1, +1}, true label of xt
B B ∈ (0, 1], ratio of reserved features ŷt ŷt ∈ {−1, +1}, predicted label of xt

classifier makes a wrong prediction, we may still make the right choice due to the randomness. Moreover, using the

Bernoulli random variable has been proven effective and reliable in many real-world applications, such as personalized

recommendation, medical diagnosis, and malicious URL detection in literatures [6, 9, 24, 25].

There are two cases for δt , if δt = 0, the algorithm FLLS will not ask oracle for querying the instance label and thus

the model keeps unchanged; if δt = 1, the label of xt will be revealed by an oracle and FLLS will suffer an instantaneous

prediction loss ℓt (wt , (xt ,yt )), where yt ∈ {−1,+1}. Then it’s able to exploit the potential of the newly achieved

instance-label pair (xt ,yt ) to update the classification model.

We choose the hinge loss as the loss function, i.e., ℓ(w, (xt ,yt )) = max{0, 1 − yt (w · xt )}, where the dimension of w
and xt are the same. The main reasons why we chose the hinge loss are as follows. First, hinge loss is widely used in

many literatures. It is specifically designed to solve the binary classification problem, which fits well with our binary

classification setting. Second, in optimization, the application of hinge loss makes the updating of our models simple

and effective. Finally, hinge loss can make the proposed algorithms have nice theoretical properties, which will be

stated in detail in Section 4. Particularly, the instantaneous prediction loss ℓt (wt , (xt ,yt )) is defined as

ℓt = ℓt (wt , (xt ,yt )) = max{0, 1 − yt (wt · xst )}. (2)

To updatewt with (xt ,yt ), we adopt the online passive-aggressive learning idea proposed in [32] and [2]. Specifically,

at round t , the newly updated classifier wt+1 ∈ Rdt will be composed of two parts, which can be written as wt+1 =

[ws
t+1
,wa

t+1
], where ws

t+1
∈ Rdt−1

and wa
t+1

∈ Rdt−dt−1
. The role of ws

t+1
is to update shared features and inherit

information from wt , and the role of wa
t+1

is to update augmented features. Therefore, the update of wt can be

transformed into the update of ws
t+1

and wa
t+1

by optimizing the problem in (3)

wt+1 = arg min

w=[ws ,wa ]

1

2

ws −wt
2

+
1

2

wa2

,

s .t . ℓ(w, (xt ,yt )) = 0.

(3)
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Incremental Feature Spaces Learning with Label Scarcity 7

where w ∈ Rdt , ℓ(w, (xt ,yt )) is the prediction loss of w on xt , which is,

ℓ(w, (xt ,yt )) = max{0, 1 − yt (ws · xst ) − yt (wa · xat )}. (4)

From Eq. (3) and (4) we can derive that the solution to the above problem is the projection of w onto the set of all

weight vectors that obtain a loss of zero. On one hand, if the label prediction of existing classifier wt for the current

instance xt is correct, i.e., ℓt = max{0, 1 − yt (wt · xst )} = 0, the resulting algorithm is passive, that is, ws = wt ,

wa = (0, . . . , 0), and wt+1 = [wt , 0, . . . , 0].

On the other hand, if the label prediction of wt for the instance xt is incorrect, i.e., ℓt = max{0, 1 − yt (wt · xst )} > 0.

The algorithm aggressively updates classifier to meet the constraint in Eq. (3). It attempts to keep ws
t+1

as close to wt as

possible to acquire information from wt and let the norm of wa
t+1

be as small as possible to avoid over-fitting. The

Lagrangian of (3) is

L (w,τ ) =
1

2

ws −wt
2

+
1

2

wa2

+ τ (1 − yt (ws · xst ) − yt (wa · xat )). (5)

where τ ≥ 0 is a Lagrange multiplier. If we take the derivative of L with respect to ws
and wa

, and set them to zero,

we can achieve the following results

∇ws (L) = ws −wt − τytxst = 0 ⇒ ws = wt + τytxst ,

∇wa (L) = wa − τytxat = 0 ⇒ wa = τytxat .
(6)

To get the value of τ , we introduce the KKT conditions[33]. Since ws = wt + τytxst , w
a = τytxat , we plug these two

equations into Eq. (5) and take the derivative of L(τ ) with respect to τ and set it to zero, we can achieve

L(τ ) = −
1

2

τ 2
xst 2

−
1

2

τ 2
xat 2

+ τ − τyt (wt · xst ),

∇τ (L) = 0 ⇒ τt =
1 − yt (wt · xst )xst 2

+
xat 2

=
ℓt

∥xt ∥2
.

(7)

Thus, the general update strategy of FLLS is wt+1 = [wt + τtytxst ,τtytx
a
t ], where τt = ℓt /∥xt ∥

2
.

Eq. (3) needs the newly updated model to correctly predict the label of the current instance, which makes the model

of FLLS rigorous and sensitive to noise[34]. To solve this shortage, we adopt the soft-margin strategy and introduce a

slack variable ξ into Eq. (3), and then propose two variants of the FLLS algorithm, i.e., FLLS-I, FLLS-II. The objective

function of FLLS-I is,

wt+1 = arg min

w=[ws ,wa ]

1

2

ws −wt
2

+
1

2

wa2

+Cξ ,

s .t . ℓ(w, (xt ,yt )) ≤ ξ , ξ ≥ 0.

(8)

where C > 0 is a tradeoff between rigidness and slackness. The update step will become more rigid as the value of C

increases. The objective function of FLLS-II scales quadratically with ξ ,

wt+1 = arg min

w=[ws ,wa ]

1

2

ws −wt
2

+
1

2

wa2

+Cξ 2,

s .t . ℓ(w, (xt ,yt )) ≤ ξ , ξ ≥ 0.

(9)

Due to the space constraints, we omit the details of the optimization of FLLS-I and FLLS-II since they are similar to

FLLS. FLLS-I and FLLS-II have the same closed-form of update strategy as FLLS, i.e., wt+1 = [wt + τtytxst ,τtytx
a
t ]. In
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8 Shilin Gu, Yuhua Qian, and Chenping Hou

general, the step size τt of the three proposed methods are:

τt =


ℓt /∥xt ∥2 (FLLS)

min

(
C, ℓt /∥xt ∥2

)
(FLLS - I)

ℓt /
(
∥xt ∥2 + 1/(2C)

)
. (FLLS - II)

(10)

3.3 The Sparsity Strategy

As the feature space of data keeps expanding, the dimension of wt will increase rapidly. To control the maximum

dimension and improve the memory usage and running efficiency, once the model is updated, we further conduct

projection and truncation on this model based on B ∈ [0, 1] to filter out redundant features. Here we stipulate that only

at most a ratio of B elements of classifier wt ∈ R
dt

are nonzero, which means ∥wt ∥0
≤ B · dt .

1
Since B · dt is usually

not an integer, we use f loor (B · dt )
2
instead of B · dt .

Algorithm 1 The proposed algorithm FLLS and its two variants FLLS-I and FLLS-II

1: Input: smoothing parameter ρ ≥ 1, penalty parameter C > 0, regularization parameter λ > 0, ratio of selected

features B ∈ (0, 1];

2: Initialization: w1 = (0, . . . , 0) ∈ Rd1
;

3: for t = 1, 2, . . . ,T do
4: receive xt ∈ Rdt ;
5: set qt = wt · Πwt xt , predict ŷt = siдn (qt );
6: draw a Bernoulli random variable δt ∈ {0, 1} of probability ρ/(ρ + |qt |);
7: if δt = 1 then
8: query the label of xt : yt ∈ {−1,+1};

9: suffer loss ℓt (wt ) = max{0, 1 − yt (wt · Πwt xt )};
10: model update
11: compute τt according to Eq. (10);

12: update model: w̄t+1 = [wt + τtytxst ,τtytx
a
t ];

13: model sparse
14: project w̄t+1 to a L1 ball according to Eq. (11);

15: truncate ŵt+1 and obtain wt+1:

16: wt+1 = truncate(ŵt+1,B) (See Algorithm 2);

17: else
18: wt+1 = wt ;

19: end if
20: end for

If we directly select the smallest weights from the classifier w̄t and set them to zero, it may perform poorly because

the result of the dot product is suddenly changed, besides, we can not be sure that the numerical values of the ignored

features are small enough. Therefore, we need a projection step before truncation. Usually, we project the classifier to

an L1 ball, through this way, most numerical values of classifier w̄t are concentrated to the largest elements, so setting

the smallest weights to zero will not result in a sudden change. Here is the projection,

ŵt+1 = min

{
1,

λ

∥w̄t+1∥1

}
w̄t+1, (11)

1 ∥a∥
0
is equal to the number of non-zero elements in the vector a.

2f loor (a) is equal to the largest integer smaller than a.
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Incremental Feature Spaces Learning with Label Scarcity 9

Algorithm 2 w = truncate(ŵ,B)

1: Input: ŵ ∈ Rdŵ , B ∈ (0, 1].

2: if ∥ŵ∥
0
≥ B · dŵ then

3: retain max{1, f loor (B · dŵ)} largest elements in ŵ; set the rest elements in ŵ to zero. We denote by ŵB
the

corresponding vector. Then w = ŵB

4: else
5: w = ŵ
6: end if

where λ is a positive regularization parameter. With a ratio of B, we truncate the smallest elements from the classifier

ŵt+1 and obtain the final classifier wt+1. This strategy helps to truncate the redundant features. The overall procedure

of our methods is given in Algorithm 1 and Algorithm 2.

4 THEORETICAL ANALYSIS

We analyze the error bounds of FLLS and its two variants theoretically. In the following analysis, four theorems discuss

the upper error bounds of the proposed algorithms in the linear separable and non-separable cases, and the lemma is

the crux to prove the above four theorems.

For clarity, we use the notations: F = {t |t ∈ [T ], ŷt , yt }, and G = {t |t ∈ [T ], ŷt = yt , ℓt (wt ; (xt ,yt )) > 0}. where

[T ] denotes {1, 2, . . . ,T }.

Lemma 1. Let (x1,y1), . . . , (xT ,yT ) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1},

t = 1, . . . ,T . Let τt be the step size for FLLS, FLLS-I and FLLS-II as given in Eq. (10). The following bound holds for any

u ∈ RdT

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] ≤ θ2∥u∥2 +

T∑
t=1

τ 2

t ∥xt ∥
2 +

T∑
t=1

2θτt ℓ
∗
t (u). (12)

where Ft = I(t ∈F),Gt = I(t ∈G), I is an indicator function, and θ > 0, ℓ∗t (u) = max

(
0, 1 − yt

(
Πxt u · xt

) )
.

Proof. Define ∆t =
wt − θΠwt u

2

−
wt+1 − θΠwt+1

u
2

. Thus

∑
t ∆t collapses to

T∑
t=1

∆t =
T∑
t=1

(wt − θΠwt u
2

−
wt+1 − θΠwt+1

u
2

)
=
w1 − θΠw1

u
2

−
wT+1 − θΠwT+1

u
2

,

(13)

where

wT+1 − θΠwT+1
u
2

≥ 0 always holds and w1 = (0, . . . , 0) ∈ Rd1
. Thus, we have

T∑
t=1

∆t ≤ θ2
Πw1

u
2

. (14)

Then we prove the following inequality always holds

(2Gtδtτt (θ − |qt |) + 2Ftδtτt (θ + |qt |)) ≤ ∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

. (15)

To prove the above inequality, we enumerate all the possible cases of δt , Ft , Gt and have the following discussions:

Case 1: if δt = 0, the inequality (15) holds since wt = wt+1 and τt = 0.

Case 2: if δt = 1 and Ft = 0, the label of xt is queried and the predicted label ŷt = yt . Here are two sub-cases:
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10 Shilin Gu, Yuhua Qian, and Chenping Hou

Sub-case 2.1: if Gt = 0, we have ℓt (wt ) = 0, thus τt = 0 , wt = wt+1. According to Case 1, inequality (15) holds.

Sub-case 2.2: if Gt = 1, we only need to pay attention to rounds which have ℓt (wt ) > 0. Note that w̄t+1 =

[wt +τtytxst ,τtytx
a
t ], and the fact that ŵt+1 ≤ w̄t+1 andwt+1 ≤ ŵt+1, we havewt+1 ≤ w̄t+1 and ∥wt+1∥

2 ≤ ∥w̄t+1∥
2
.

Also,

wt+1 − θΠwt+1
u
2

−
w̄t+1 − θΠw̄t+1

u
2

= θ2∥wt+1∥
2 − θ2∥w̄t+1∥

2 − 2θ
Πwt+1

u
 (∥w̄t+1∥ − ∥wt+1∥) ≤ 0, we

have

wt+1 − θΠwt+1
u
2

≤
w̄t+1 − θΠw̄t+1

u
2

. Then

∆t =
wt − θΠwt u

2

−
wt+1 − θΠwt+1

u
2

≥
wt − θΠwt u

2

−
w̄t+1 − θΠw̄t+1

u
2

=
wt − θΠwt u

2

−
wt + τtytΠwt xt − θΠwt u

2

−
τtytΠ¬wt xt − θΠwt+1/wt u

2

= 2τtyt
(
θΠwt u −wt

)
· Πwt xt − τ 2

t
Πwt xt

2

−
τtytΠ¬wt xt − θΠwt+1/wt u

2

= 2τt
(
θytΠwt u · Πwt xt + θytΠwt+1/wt u · Π¬wt xt

)
− 2τtytwtΠwt xt − τ 2

t ∥xt ∥
2 − θ2

Πwt+1/wt u
2

(16)

According to definition, we have Π¬wt xt = Πwt+1/wt xt ,
Πwt xt

2

+
Π¬wt xt

2

= ∥xt ∥2
. Since ℓ∗t (u) ≥ 1 −

yt
(
Πxt u · xt

)
, we have yt

(
Πwt u · Πwt xt

)
+ yt

(
Πwt+1/wt u · Πwt+1/wt xt

)
≥ 1 − ℓ∗t (u). Then we have

∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

≥ 2τt
(
θ − ytwtΠwt xt

)
(17)

Since Ft = 0 and Gt = 1, it implies that ℓt (wt ) > 0 and 0 < ytwt · Πwt xt < 1. Therefore, inequality (15) holds:

∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

≥ 2τt (θ − |qt |) (18)

Case 3: if δt = 1 and Ft = 1, the label of xt is queried but the predicted label ŷt , yt , thusGt = 0. Similarly, we have

∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

≥ 2τt
(
θ − ytwtΠwt xt

)
(19)

Since Ft = 1, it implies that ytwt · Πwt xt ≤ 0 and −ytwt · Πwt xt = |qt |. Therefore, inequality (15) holds:

∆t + τ
2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u) + θ

2
Πwt+1/wt u

2

≥ 2τt (θ + |qt |) . (20)

Since inequality (15) always holds, we sum both sides of inequality Eq. (15) for t = 1, . . . ,T and have

T∑
t=1

(2Gtδtτt (θ − |qt |) + 2Ftδtτt (θ + |qt |)) ≤
T∑
t=1

∆t +
T∑
t=1

(
τ 2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u)

)
+

T∑
t=1

θ2
Πwt+1/wt u

2

≤ θ2
Πw1

u
2

+

T∑
t=1

θ2
Πwt+1/wt u

2

+

T∑
t=1

(
τ 2

t ∥xt ∥
2 + 2θτt ℓ

∗
t (u)

)
= θ2∥u∥2 +

T∑
t=1

τ 2

t ∥xt ∥
2 +

T∑
t=1

2θτt ℓ
∗
t (u)

(21)

The lemma is proved. □

With the help of Lemma 1, we can continue to prove the following four theorems, which discuss the upper error

bounds of the proposed algorithms in the linear separable and non-separable cases. First we derive the expected error

bound for FLLS in the separable case, i.e., for any t ∈ [T ], we assume that there exists vector u ∈ RdT such that

yt (Πxt u · xt ) ≥ 1.
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Incremental Feature Spaces Learning with Label Scarcity 11

Theorem 1. Let (x1,y1), . . . , (xT ,yT ) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1}

and ∥xt ∥ ≤ R for all t . Assume that there exists a vector u ∈ RdT such that ℓ∗t (u) = 0 for all t . Then the expected number

of errors made by FLLS is bounded by

E[
T∑
t=1

Ft ] ≤ E[
T∑
t=1

Ft ℓt (wt )] ≤
R2

4

(ρ +
1

ρ
+ 2)∥u∥2. (22)

Setting ρ = 1, we can achieve the following upper bound:

E[
T∑
t=1

Ft ] ≤ E[
T∑
t=1

Ft ℓt (wt )] ≤ R2∥u∥2. (23)

Proof. Combining ℓ∗t (u) = 0 for all t and the result of Lemma 1, we can get

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] ≤ θ2∥u∥2 +

T∑
t=1

τ 2

t ∥xt ∥
2. (24)

Inequality (24) can be further reformulated as:

θ2∥u∥2 ≥

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] −
T∑
t=1

τ 2

t ∥xt ∥
2

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
τt
2

∥xt ∥2) + Ft (θ + |qt | −
τt
2

∥xt ∥2)]

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
ℓt (wt )

2

) + Ft (θ + |qt | −
ℓt (wt )

2

)]

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
1 − ytqt

2

) + Ft (θ + |qt | −
1 − ytqt

2

)]

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
1 − |qt |

2

) + Ft (θ + |qt | −
1 + |qt |

2

)]

=

T∑
t=1

2Gtδtτt (θ −
1 + |qt |

2

) +

T∑
t=1

2Ftδt 2τt (θ −
1 − |qt |

2

).

(25)

If we set θ = (ρ + 1)/2, ρ ≥ 1 and plug it into inequality (25), we have

(
1 + ρ

2

)2∥u∥2 ≥

T∑
t=1

Ftδtτt (ρ + |pt |), (26)

Note that when Gt = 1, |qt | ∈ [0, 1), [θ − (1 + |qt |)/2] = (ρ − |qt |)/2 > 0, and [θ − (1 − |qt |)/2] = (ρ + |qt |)/2.

Plugging ℓt (wt )/∥xt ∥2 ≥ ℓt (wt )/R
2
into inequality (26) we have:

(
1 + ρ

2

)2∥u∥2 ≥
1

R2

T∑
t=1

Ftδt ℓt (wt )(ρ + |qt |). (27)
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12 Shilin Gu, Yuhua Qian, and Chenping Hou

Theorem 1 can be proved by taking expectation with inequality (27)

E[
1

R2

T∑
t=1

Ftδt ℓt (wt )(ρ + |qt |)] = E[
1

R2

T∑
t=1

Ft ℓt (wt )(ρ + |qt |)E(δt )]

=
1

R2
E[ρ

T∑
t=1

Ft ℓt (wt )] ≤ (
ρ + 1

2

)2∥u∥2.

(28)

Theorem 1 is proved. □

As can be seen from Theorem 1, the upper error bound is proportional to R and inversely proportional to 1/∥u∥2
,

revealing the consistency with existing research[32]. The deficiency of Theorem 1 is the assumption that there exists a

vector u ∈ RdT such that ℓ∗t (u) = 0 for all t , which means the classifier u can perfectly separate the data streams. In

Theorem 2, we further extend the above case and assume that ℓ∗t (u) = 0 may not always hold for all t . Besides, we

assume that ∥xt ∥2
is normalized, i.e., ∥xt ∥2 = 1. Then we have the following expected error bounds for FLLS algorithm:

Theorem 2. Let (x1,y1), . . . , (xT ,yT ) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1}

and ∥xt ∥2 = 1 for all t . For any vector u ∈ RdT , the expected number of errors made by FLLS is then bounded by

E[
T∑
t=1

Ft ] ≤
1

4

(ρ +
1

ρ
+ 2)∥u∥2 + (

1

ρ
+ 1)

T∑
t=1

ℓ∗t (u), (29)

Setting ρ = 1, we can achieve the following upper bound:

E[
T∑
t=1

Ft ] ≤ ∥u∥2 + 2

T∑
t=1

ℓ∗t (u). (30)

Proof. According to the result of Lemma 1, we have

θ2∥u∥2+

T∑
t=1

2θτt ℓ
∗
t (u) ≥

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] −
T∑
t=1

τ 2

t ∥xt ∥
2

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
τt
2

∥xt ∥2) + Ft (θ + |qt | −
τt
2

∥xt ∥2]

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
ℓt (wt )

2

) + Ft (θ + |qt | −
ℓt (wt )

2

)]

=

T∑
t=1

2Gtδtτt (θ −
1 + |qt |

2

) +

T∑
t=1

2Ftδtτt (θ −
1 − |qt |

2

).

(31)

Similarly, plugging θ = (1 + ρ)/2, ρ ≥ 1 into (31), we have

(
ρ + 1

2

)2∥u∥2+

T∑
t=1

(ρ + 1)τt ℓ
∗
t (u) ≥

T∑
t=1

Ftδtτt (ρ + |qt |). (32)

Since ∥xt ∥2 = 1 and τt = ℓt /∥xt ∥
2
, we have τt = ℓt . Thus we can rewrite it as

(
ρ + 1

2

)2∥u∥2+

T∑
t=1

(ρ + 1) ℓt ℓ
∗
t (u) ≥

T∑
t=1

Ftδt ℓt (ρ + |pt |). (33)
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Incremental Feature Spaces Learning with Label Scarcity 13

Note that when Ft = 1, it means FLLS made a wrong prediction, then we have yt
(
wt · Πwt xt

)
≤ 0 and ℓt (wt ) ≥ 1.

Divide both sides of the inequality by ℓt implies:

T∑
t=1

Ftδt (ρ + |qt |) ≤ (
ρ + 1

2

)2
∥u∥2

ℓt
+ (ρ + 1)

T∑
t=1

ℓ∗t (u)

≤ (
ρ + 1

2

)2∥u∥2 + (ρ + 1)

T∑
t=1

ℓ∗t (u)

(34)

Theorem 2 can be proved by taking expectation with the above inequality. □

The deficiency of Theorem 1 and 2 is the assumption that the training data is linearly separable, which is inconsistent

with most situations in reality. FLLS-I and FLLS-II are more suitable in practice by introducing ξ , the difference between

FLLS-I and FLLS-II is their model update strategies, the former scales linearly with ξ and the latter scales quadratically

with ξ . Therefore, the expected error bounds for FLLS-I and FLLS-II algorithms are further derived to adapt to the

linearly non-separable situations.

Theorem 3. Let (x1,y1), . . . , (xT ,yT ) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1}

and ∥xt ∥ ≤ R for all t . For any vector u ∈ RdT , the expected number of errors made by FLLS-I is then bounded by

E[
T∑
t=1

Ft ] ≤ β[(
ρ + 1

2

)2∥u∥2 + (ρ + 1)C
T∑
t=1

ℓ∗t (u)], (35)

where β = 1

ρ max{ 1

C ,R
2}. Setting ρ = 1, we can achieve the following upper bound:

E[
T∑
t=1

Ft ] ≤ β[∥u∥2 + 2C
T∑
t=1

ℓ∗t (u)]. (36)

Proof. According to the definition of τt in FLLS-I algorithm, we have τt ≤ ℓt (wt )/∥xt ∥2
, so τt ∥xt ∥2 ≤ ℓt (wt ).

Besides, according to the result of Lemma 1, we have

θ2∥u∥2+

T∑
t=1

2θτt ℓ
∗
t (u) ≥

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] −
T∑
t=1

τ 2

t ∥xt ∥
2

=

T∑
t=1

2δtτt [Gt (θ − |qt | −
τt
2

∥xt ∥2) + Ft (θ + |qt | −
τt
2

∥xt ∥2]

≥

T∑
t=1

2δtτt [Gt (θ − |qt | −
ℓt (wt )

2

) + Ft (θ + |qt | −
ℓt (wt )

2

)]

=

T∑
t=1

2Gtδtτt (θ −
1 + |qt |

2

) +

T∑
t=1

2Ftδtτt (θ −
1 − |qt |

2

).

(37)

Similarly, plugging θ = (1 + ρ)/2, ρ ≥ 1 into (37), we have

(
ρ + 1

2

)2∥u∥2+

T∑
t=1

(ρ + 1)τt ℓ
∗
t (u) ≥

T∑
t=1

Ftδtτt (ρ + |qt |). (38)

Manuscript submitted to ACM



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Shilin Gu, Yuhua Qian, and Chenping Hou

Note that when Ft = 1, it means FLLS-I made a wrong prediction, then we have yt
(
wt · Πwt xt

)
≤ 0 and ℓt (wt ) ≥ 1.

So τt ≥ min{C, 1

R2
} when Ft = 1, and we have:

(
ρ + 1

2

)2∥u∥2+

T∑
t=1

(ρ + 1)τt ℓ
∗
t (u) ≥ min{C,

1

R2
}

T∑
t=1

Ftδt (ρ + |qt |). (39)

Theorem 3 can be proved by taking expectation with the above inequality. □

Theorem 4. Let (x1,y1), . . . , (xT ,yT ) be a sequence of obtained instances, where xt ∈ Rdt , dt−1 ≤ dt , yt ∈ {−1,+1}

and ∥xt ∥ ≤ R for all t . For any vector u ∈ RdT , the expected number of errors made by FLLS-II is then bounded by

E[
T∑
t=1

Ft ] ≤ γ
1

ρ
[(
ρ + 1

2

)2∥u∥2 + 2C(
ρ + 1

2

)2
T∑
t=1

ℓ∗t (u)
2], (40)

where γ = R2 + 1

2C . Setting ρ = 1, we can achieve the following upper bound:

E[
T∑
t=1

Ft ] ≤ (R2 +
1

2C
)[∥u∥2 + 2C

T∑
t=1

ℓ∗t (u)
2]. (41)

Proof. First we define O = θ2∥u∥2 +
∑T
t=1

τ 2

t ∥xt ∥
2 +

∑T
t=1

2θτt ℓ
∗
t (u), P =

∑T
t=1

θ ( τt√
2Cθ

−
√

2Cθℓ∗t (u))
2

and

Q = θ2∥u∥2 +
∑T
t=1

τ 2

t (∥xt ∥
2 + 1

2C ) +
∑T
t=1

2Cθ2ℓ∗t (u)
2
, it can be easily verified that O ≤ O + P = Q. Then according

to the result of Lemma 1, we have

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] ≤ Q. (42)

We reformulated the above formulation as:

θ2∥u∥2+

T∑
t=1

2Cθ2ℓ∗t (u)
2 ≥

T∑
t=1

2δtτt [Gt (θ − |qt |) + Ft (θ + |qt |)] − τ 2

t (∥xt ∥
2 +

1

2C
)

=

T∑
t=1

2Gtδtτt (θ −
1 + |qt |

2

) +

T∑
t=1

2Ftδtτt (θ −
1 − |qt |

2

)

(43)

Similarly, plugging θ = (1 + ρ)/2, ρ ≥ 1 into (43), we have

(
ρ + 1

2

)2∥u∥2 +

T∑
t=1

2C(
ρ + 1

2

)2ℓ∗t (u)
2 ≥

T∑
t=1

Ftδtτt (ρ + |qt |). (44)

Note that when Ft = 1, it means FLLS-II made a wrong prediction, then we have yt
(
wt · Πwt xt

)
≤ 0 and ℓt (wt ) ≥ 1.

So τt ≥ R2 + 1

2C when Ft = 1, and we have

(
ρ + 1

2

)2∥u∥2 +

T∑
t=1

2C(
ρ + 1

2

)2ℓ∗t (u)
2 ≥ (

1

R2 + 1/(2C)
)

T∑
t=1

Ftδt (ρ + |qt |). (45)

Taking expectation with the above inequality will conclude theorem 4. □

5 EXPERIMENTS

First, we give an introduction to the datasets and compared methods used in this paper along with the general settings.

Then we present the experimental results on synthetic data sets and real-world applications.
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5.1 Data Sets and General Settings

We conduct our experiments on twelve data sets from UCI Repository
3
and LIBSVM Library

4
, and two real-world data

sets which are rcv1[35] and RFID[3]. The details of the 14 data sets used in our experiments are listed in TABLE 2.

Table 2. The details of experimental data sets.

Dataset # Inst. # Feat. Dataset # Inst. # Feat.

air 210 64 splice 3175 60

vote 435 16 kr-V-kp1 3196 36

wdbc 569 29 spambase 4601 57

dna 949 180 phishing 11055 68

svmguide3 1243 22 a9a 32561 123

PCMAC 1943 3289 rcv1 20242 47236

basehock 1993 4862 RFID 940 150

Our proposed algorithms have the advantage of simultaneously processing label scarcity and feature incremental

learning problems. To verify the above conclusion, we compare our proposed algorithms with PEA, RPEA, RFESL,

and RFLLS algorithms. PEA is only designed for the label scarcity problem, it uses the Perceptron update strategy for

learning, i.e., wt+1 = [wt +ytxst ,ytx
a
t ], and updates the current model only when the model makes a wrong prediction.

RFESL is only designed for the feature incremental learning problem, It is based on the FESL algorithm, the features of

data streams would vanish or occur in the basic setting of FESL. To adapt FESL to our new setting, we query labels

uniformly and randomly for FESL to handle label scarcity and complete the vanished features with true values. By

adding these assumptions, FESL can be applied in our incremental feature spaces learning with label scarcity. The

adjusted FESL is named as RFESL. RPEA is the random version of PEA, which is not designed for any of the above two

problems. RFLLS are the random version of the proposed algorithms, including RFLLS, RFLLS-I, and RFLLS-II. All the

above nine methods are as follows:

• "RFLLS": the Random FLLS algorithms, including RFLLS, RFLLS-I, RFLLS-II, which will uniformly and randomly

query labels;

• "PEA"[24]: the Perceptron-based Active learning algorithm;

• "RPEA"[36]: the Random PEA algorithm, which uniformly and randomly queries labels;

• "RFESL": the Random FESL algorithm[3], which uniformly and randomly queries labels;

• "FLLS": the proposed algorithm, including FLLS, FLLS-I and FLLS-II;

All the nine methods learn a linear binary classifier. Each dataset is randomly divided into two parts with 80% as the

training data and 20% as the testing data, which is non-overlapping. We use the training data to learn a classification

model and the testing data to evaluate the learning performance. We simulate trapezoidal streams as follows, the

training data is split into 10 chunks, the first chunk carries the first 10 percent instances and features. The second chunk

carries the second 10 percent instances with another 10 percent features (20 percent features in total). The testing data

carries all features.

3
http://archive.ics.uci.edu/ml

4
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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We set λ = 30 and B = 0.5 unless otherwise specified, i.e., 50 percent features are used for learning at each round

t . Cross-validation is used for all the methods and datasets to determine parameter C , which is searched from 2
[−5:5]

.

Parameter ρ, which determines the query ratio, is set as 2
[−20:20]

to examine varied query ratios. After T rounds, we

measure the performance of the learned classifier on test data. Both ACC and AUC are used for evaluating metrics. For

each data set, we run the experiment 20 times, each with a random partition. The results are reported by an average

performance.

5.2 Comparisons with Benchmarks

In this subsection, we present the experimental results of nine methods on 12 benchmark data sets. Fig. 3 and Fig. 4

show the average ACC results of these nine methods with varied ratios of queried instances. Table 3 and Table 4 show

the average AUC values and running time of these nine methods with the query ratio near 10% and 20%, the best AUC

result and its comparable results are highlighted in boldface based on the paired t-tests at 95% significance level.

From Fig. 3 and Fig. 4, Table 3 and Table 4, we can have several conclusions. First, we can observe that all these three

proposed algorithms are better than their corresponding random versions on ACC and AUC results, validating the

effectiveness of the label querying strategy. Second, among FLLS, FLLS-I, and FLLS-II, FLLS-I performs the best on

dna, svmguide3, splice, spambase, phishing, and a9a. FLLS-II performs well on high-dimensional data sets PCMAC and

basehock. FLLS performs the worst on most data sets. There are two reasons, one is the noise contained in these data

sets, the other one is the sensitivity of FLLS to noise since it conducts a more aggressive update. In contrast, FLLS-I

and FLLS-II avoid overfitting to noise by using a "soft" update strategy. Third, these two soft algorithms FLLS-I and

FLLS-II also achieve significantly higher ACC and AUC values than PEA and RPEA algorithms, which indicates that the

proposed model update strategy can effectively exploit the information of labeled data. Forth, on six datasets, i.e., air,

vote, PCMAC, basehock, spambase, a9a, PEA performs better than RPEA, on the rest, their performance is equal. Since

PEA and RPEA only use a simple update strategy to deal with the feature incremental learning problem, it results in a

small performance difference between PEA and RPEA on some datasets. Fifth, RFESL performs better than RPEA and

RFLLS on most datasets, which again validates the importance of using an effective model update strategy to exploit

the information of labeled data with different feature spaces. Sixth, in Fig. 3 and Fig. 4, an abnormal phenomenon is

that when the query ratio exceeds some thresholds, some curves could decrease as the query ratio increases. We think

this is mainly caused by over-fitting on the noisy training data because FLLS-I and FLLS-II have fewer such phenomena

than FLLS. Finally, we find that most curves of the proposed methods tend to be stable quickly after the query ratio

exceeds some thresholds, which indicates the effectiveness of the proposed algorithms in alleviating the problem of

label scarcity.

We can also observe from Table 3 and Table 4 that the running time of the proposed algorithms is consistently

higher than the versions with random queries and PEA algorithms, the reasons are as follows. First, compared with

the versions with random queries, the proposed algorithms decide whether to query the label of the current instance

by a Bernoulli random variable δt ∈ {0, 1} with probability ρ/(ρ + |qt |), ρ ≥ 1, which guarantees the superior to the

versions with random queries. Thus, the proposed algorithms would cost more time. Second, compared with the PEA

algorithm, the model update strategy of the proposed algorithms is more complicated. PEA updates the current model

only when the model makes a wrong prediction, however, the proposed algorithms aggressively update the current

model whenever the loss is nonzero (even if the prediction is correct) to use more instances for model updating and

getting better results than the PEA algorithm. Besides, as can be seen from the numerical results in Table 3 and Table 4,

we think that the additional computational cost is not so large and it is affordable for real applications.
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Fig. 3. The ACC results for the 6 data sets: air, vote, wdbc, dna, svmguide3, and PCMAC. The curve shows the average learning
accuracy over the fraction of queried labels.
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Fig. 4. The ACC results for the 6 data sets: basehock, splice, kr-V-kp1, spambase, phishing, and a9a. The curve shows the average
learning accuracy over the fraction of queried labels.
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Table 3. AUC results of algorithms with the query ratio fixed to about 10%.

Algorithm

air vote wdbc

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .917(.041) .0014 10.00(.00) .877(.041) .0015 10.00(.00) .913(.032) .0017 10.00(.00)

RFESL .979(.018) .0030 10.00(.00) .930(.021) .0042 10.00(.00) .948(.019) .0053 10.00(.00)

RFLLS .875(.077) .0014 10.00(.00) .876(.070) .0016 10.00(.00) .913(.043) .0017 10.00(.00)

RFLLS-I .959(.029) .0015 10.00(.00) .911(.036) .0018 10.00(.00) .931(.022) .0018 10.00(.00)

RFLLS-II .918(.051) .0017 10.00(.00) .917(.036) .0018 10.00(.00) .931(.024) .0018 10.00(.00)

PEA .898(.075) .0042 10.06(.47) .905(.041) .0056 10.13(.56) .913(.029) .0072 10.18(.31)

FLLS .978(.015) .0044 9.97(.36) .956(.017) .0066 10.06(.65) .950(.023) .0073 9.77(.40)

FLLS-I .963(.025) .0045 10.09(.46) .940(.026) .0066 9.77(.77) .939(.018) .0074 10.11(.54)

FLLS-II .975(.022) .0045 9.97(.65) .950(.021) .0067 10.10(.51) .949(.015) .0078 10.02(.36)

Algorithm

dna svmguide3 PCMAC

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .884(.030) .0033 10.00(.00) .581(.051) .0026 10.00(.00) .717(.047) .0433 10.00(.00)

RFESL .941(.015) .0113 10.00(.00) .689(.036) .0129 10.00(.00) .792(.036) .0636 10.00(.00)

RFLLS .874(.024) .0041 10.00(.00) .557(.090) .0029 10.00(.00) .631(.041) .0450 10.00(.00)

RFLLS-I .910(.015) .0046 10.00(.00) .639(.043) .0032 10.00(.00) .748(.039) .0460 10.00(.00)

RFLLS-II .904(.023) .0050 10.00(.00) .594(.070) .0033 10.00(.00) .723(.050) .0476 10.00(.00)

PEA .876(.031) .0186 10.13(.24) .576(.065) .0148 9.69(.42) .793(.061) .2995 9.86(.36)

FLLS .920(.020) .0191 9.89(.27) .659(.028) .0155 10.31(.36) .692(.028) .3007 10.10(.15)

FLLS-I .898(.019) .0191 10.26(.91) .667(.040) .0159 9.80(.50) .820(.020) .3011 9.74(.23)

FLLS-II .914(.016) .0201 9.99(.27) .662(.024) .0181 10.31(.39) .843(.014) .3012 10.02(.70)

Algorithm

basehock splice kr-V-kp

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .838(.039) .0704 10.00(.00) .781(.020) .0064 10.00(.00) .772(.045) .0064 10.00(.00)

RFESL .888(.016) .0954 10.00(.00) .799(.018) .0234 10.00(.00) .773(.026) .0217 10.00(.00)

RFLLS .666(.058) .0724 10.00(.00) .759(.035) .0065 10.00(.00) .768(.052) .0064 10.00(.00)

RFLLS-I .842(.040) .0742 10.00(.00) .788(.022) .0069 10.00(.00) .818(.044) .0067 10.00(.00)

RFLLS-II .849(.052) .0751 10.00(.00) .801(.024) .0079 10.00(.00) .827(.037) .0072 10.00(.00)

PEA .925(.021) .4886 9.97(.24) .765(.032) .0437 10.11(.18) .750(.030) .0404 10.15(.45)

FLLS .762(.031) .4994 10.34(.18) .808(.014) .0439 9.81(.27) .831(.018) .0426 10.10(.36)

FLLS-I .936(.014) .5071 9.85(.36) .782(.026) .0463 10.09(.57) .765(.025) .0426 9.91(.96)

FLLS-II .948(.009) .5071 10.10(.15) .812(.012) .0469 10.23(.24) .809(.016) .0441 9.86(.45)

Algorithm

spambase phishing a9a

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .856(.015) .0080 10.00(.00) .907(.007) .0176 10.00(.00) .587(.077) .0611 10.00(.00)

RFESL .868(.005) .0315 10.00(.00) .913(.006) .1036 10.00(.00) .780(.005) .3058 10.00(.00)

RFLLS .835(.027) .0086 10.00(.00) .898(.018) .0186 10.00(.00) .587(.081) .0627 10.00(.00)

RFLLS-I .862(.018) .0086 10.00(.00) .917(.006) .0189 10.00(.00) .732(.041) .0655 10.00(.00)

RFLLS-II .870(.018) .0099 10.00(.00) .917(.005) .0199 10.00(.00) .611(.079) .0656 10.00(.00)

PEA .866(.019) .0542 9.68(.22) .909(.007) .1234 9.93(.31) .523(.059) .3505 9.91(.72)

FLLS .889(.014) .0589 10.01(.23) .922(.005) .1371 10.07(.35) .732(.028) .3618 10.20(.16)

FLLS-I .882(.013) .0595 9.98(.33) .919(.006) .1375 9.78(.60) .765(.021) .3719 9.75(.37)

FLLS-II .884(.011) .0601 10.16(.46) .921(.005) .1418 10.16(.58) .682(.070) .3747 10.11(.26)
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Table 4. AUC results of algorithms with the query ratio fixed to about 20%.

Algorithm

air vote wdbc

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .904(.049) .0015 20.00(.00) .894(.046) .0016 20.00(.00) .920(.026) .0019 20.00(.00)

RFESL .985(.018) .0047 20.00(.00) .925(.023) .0051 20.00(.00) .941(.019) .0062 20.00(.00)

RFLLS .931(.035) .0018 20.00(.00) .889(.045) .0019 20.00(.00) .915(.028) .0025 20.00(.00)

RFLLS-I .961(.026) .0018 20.00(.00) .931(.031) .0021 20.00(.00) .935(.019) .0025 20.00(.00)

RFLLS-II .970(.013) .0019 20.00(.00) .927(.038) .0021 20.00(.00) .934(.023) .0023 20.00(.00)

PEA .937(.030) .0052 20.21(.54) .896(.053) .0057 19.76(.65) .923(.026) .0084 19.93(.61)

FLLS .992(.006) .0057 19.97(.73) .955(.019) .0063 20.52(.61) .951(.017) .0086 19.52(.53)

FLLS-I .978(.012) .0058 19.76(.98) .954(.022) .0067 20.30(.77) .946(.015) .0089 19.75(.39)

FLLS-II .986(.010) .0061 20.03(.68) .955(.019) .0079 20.06(.94) .950(.019) .0093 20.62(.71)

Algorithm

dna svmguide3 PCMAC

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .896(.030) .0040 20.00(.00) .584(.075) .0042 20.00(.00) .718(.045) .0693 20.00(.00)

RFESL .952(.014) .0126 20.00(.00) .688(.029) .0137 20.00(.00) .799(.024) .0820 20.00(.00)

RFLLS .918(.024) .0044 20.00(.00) .529(.073) .0045 20.00(.00) .650(.048) .0700 20.00(.00)

RFLLS-I .941(.015) .0047 20.00(.00) .665(.032) .0046 20.00(.00) .763(.034) .0706 20.00(.00)

RFLLS-II .934(.018) .0052 20.00(.00) .598(.071) .0046 20.00(.00) .765(.033) .0754 20.00(.00)

PEA .895(.024) .0215 19.76(.43) .576(.055) .0172 19.72(.41) .839(.021) .3112 20.21(.67)

FLLS .943(.009) .0236 19.80(.35) .665(.034) .0175 19.46(.58) .688(.023) .3143 19.82(.23)

FLLS-I .921(.018) .0241 19.82(.83) .677(.025) .0179 20.42(.92) .851(.016) .3156 19.93(.49)

FLLS-II .937(.012) .0246 19.82(.51) .653(.034) .0191 19.55(.19) .866(.016) .3166 19.84(.13)

Algorithm

basehock splice kr-V-kp

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .837(.055) .1148 20.00(.00) .796(.019) .0072 20.00(.00) .812(.040) .0070 20.00(.00)

RFESL .892(.025) .3481 20.00(.00) .801(.013) .0279 20.00(.00) .781(.011) .0280 20.00(.00)

RFLLS .664(.065) .1161 20.00(.00) .785(.021) .0078 20.00(.00) .839(.040) .0073 20.00(.00)

RFLLS-I .867(.033) .1163 20.00(.00) .821(.014) .0080 20.00(.00) .868(.037) .0074 20.00(.00)

RFLLS-II .884(.021) .1187 20.00(.00) .812(.018) .0088 20.00(.00) .875(.029) .0082 20.00(.00)

PEA .946(.015) .5014 19.96(.08) .792(.018) .0440 19.98(.35) .782(.028) .0450 19.77(.42)

FLLS .747(.046) .5148 19.79(.37) .820(.012) .0465 20.34(.07) .897(.020) .0454 20.41(.24)

FLLS-I .955(.010) .5159 19.87(.60) .819(.019) .0458 20.31(.49) .805(.027) .0455 19.98(.35)

FLLS-II .963(.009) .5164 20.19(.10) .822(.012) .0487 19.58(.30) .879(.028) .0458 19.66(.25)

Algorithm

spambase phishing a9a

AUC Time(s) Query(%) AUC Time(s) Query(%) AUC Time(s) Query(%)

RPEA .862(.022) .0094 20.00(.00) .907(.013) .0201 20.00(.00) .570(.079) .0848 20.00(.00)

RFESL .865(.005) .0410 20.00(.00) .912(.006) .1129 20.00(.00) .778(.004) .3305 20.00(.00)

RFLLS .853(.033) .0102 20.00(.00) .900(.015) .0217 20.00(.00) .571(.083) .0895 20.00(.00)

RFLLS-I .877(.015) .0107 20.00(.00) .920(.005) .0217 20.00(.00) .749(.054) .0956 20.00(.00)

RFLLS-II .875(.019) .0113 20.00(.00) .920(.007) .0232 20.00(.00) .618(.082) .0960 20.00(.00)

PEA .875(.017) .0565 20.23(.27) .907(.010) .1250 20.15(.42) .544(.074) .3604 20.39(.09)

FLLS .896(.013) .0617 19.73(.31) .921(.005) .1394 19.76(.53) .726(.045) .3730 20.39(.65)

FLLS-I .893(.013) .0638 19.72(.33) .923(.005) .1416 19.71(.53) .757(.024) .3818 19.69(.65)

FLLS-II .892(.011) .0638 19.63(.38) .922(.005) .1437 20.28(.83) .654(.085) .3881 19.76(.27)
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5.3 Comparisons with Simple and Direct Approaches

To verify the necessity of using all the information of the data streams as much as possible, in this subsection, we take

FLLS-I as an example and compare it with its two simplified versions, FLLS -ISN and FLLS -ISI on six data sets. FLLS

-ISN simply takes advantage of the newly obtained labeled instance to learn a new model for classification when the

feature dimension of instance increases. FLLS -ISI only uses the initial features to update its model, that is, the data

streams in FLLS -ISI is xt ∈ Rd1
.

Table 5. AUC values of FLLS-I and its two simplified versions on six datasets with the query ratio fixed to about 10%.

Dataset

FLLS -ISN FLLS -ISI FLLS-I

AUC Query(%) AUC Query(%) AUC Query(%)

air .712(.141) 10.11(.09) .760(.054) 10.33(.56) .951(.039) 10.00(.39)

vote .678(.208) 10.01(.03) .682(.049) 10.04(.25) .937(.028) 10.01(.76)

basehock .546(.078) 9.97(.07) .929(.018) 9.97(.23) .934(.015) 9.99(.19)

spambase .604(.065) 9.94(.07) .727(.013) 9.95(.52) .897(.006) 10.11(.41)

phishing .582(.083) 9.98(.08) .618(.007) 10.08(.71) .925(.005) 10.00(.26)

a9a .751(.030) 10.07(.09) .765(.006) 10.50(.17) .837(.008) 9.92(.80)

We set B = 1, i.e., all features are used for learning at each round t . We adjust ρ to make the query ratio near 10%.

From Table 5 we can observe that FLLS-I achieves significantly better results than FLLS -ISN and FLLS -ISI , which

indicates that the abandonment of data information will lead to a significant degeneration of model performance. The

above results further reveal the necessity of our methods to make full use of data information.

5.4 Comparisons with all Features Accessed FLLS-I

In this subsection, we take FLLS-I as an example and conduct experiments on a special case of FLLS-I, marked as FLLS

-If . Specifically, we assume that FLLS -If can access the full features at each round for training, i.e., the data streams in

FLLS -If is xt ∈ RdT . We try to explore how close the performance between FLLS-I and FLLS -If .

We conduct experiments on four data sets, i.e., vote, basehock, phishing, a9a. As can be seen from Fig. 5, the difference

in experimental results between FLLS-I and FLLS -If is relatively small. FLLS-I is even comparable to FLLS -If on

some data sets, such as basehock and a9a. Fig. 5 again proves that our proposed methods can effectively extract the

information in the data streams, and it can achieve satisfying results even if some features are missing.

5.5 Analysis of Sparsity Strategy

In this subsection, we conduct experiments to test the effectiveness of model sparseness in our algorithms. We replicate

different proportions of the original features as the additional features. Thus, the redundancy relative to the features

already included is increasing gradually. Then, we test the performance of the proposed algorithms on the original

features and redundant features, respectively.

We conduct experiments on four datasets, i.e., vote, svmguide3, PCMAC, a9a. The ACC results with varied query

ratios (10%, 50%, 90%) are displayed in Fig. 6. We use the stacked bar to show the results. In each group, from left to right,

the algorithms are FLLS, FLLS-I, and FLLS-II. The ACC results on redundant features are plotted by green face. If the

results on original features are better than the results on redundant features, we add a yellow bar on the green face. It

can be observed that the performances of our algorithms on the original dataset, with and without additional redundant

features, are similar, which indicates the effectiveness of the model sparseness part in our proposed algorithms.
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Fig. 5. ACC Performance of algorithms FLLS -If and FLLS-I on four different datasets.
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Fig. 6. ACC Performance of the proposed algorithms on original features and redundant features, respectively. Each group corresponds
to the results on a data set (vo, sv, pc and a9 represent the abbreviations for data sets vote, svmguide3, PCMAC, and a9a, respectively)
with query ratio (10%, 50%, 90%). In each group, the results on redundant features are plotted by green face and the yellow face
represents the decrease of the results on original datasets compared to the results on redundant features. In each group, from left to
right, the algorithms are FLLS, FLLS-I, and FLLS-II.
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5.6 Parameter Analysis

Here we study the parameter sensitivity of our algorithms on two data sets, dna and splice. There are two important

parameters in proposed algorithms, i.e., penalty cost parameter C and ratio of selected features B. First we fix B = 0.5

and tune C in 2
[−5:5]

, then we fix C = 1 and tune B in {0.04, 0.08, 0.16, 0.32, 0.64} . All these experiments are conducted

under the query ratio fixed to about 50%.
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Fig. 7. The ACC results on two data sets with respect to parameter C and B .

As can be seen from Fig. 7, (a) and (b) show the performance of FLLS-I and FLLS-II under different values ofC . FLLS-I

and FLLS-II are not very sensitive to parameter C in a wide range. Besides, the larger the value of C , the closer the

performance of FLLS-I and FLLS-II. This is because the value of τt in FLLS-I and FLLS-II is getting closer and closer

as C increases, resulting in their models tending to be consistent. When the value of C is large enough, FLLS-I and

FLLS-II degenerate to FLLS. (c) and (d) show the performance of the proposed algorithms on different values of B. We

can see that a larger value of B may not necessarily lead to better performance, indicating that the sparsity strategy can

not only improve the memory usage and running time efficiency, but also ensure that the proposed algorithms have

superior performance.
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5.7 Real-World Applications

In this subsection, we apply FLLS and its two variants on two real-world datasets, i.e., rcv1 and RFID. rcv1
5
is a text

classification dataset, which aims to classify the JMLR articles into different groups. Generally, new articles are published

continuously with new research topics, so this setting can be regarded as trapezoidal data streams learning. The "RFID"

data stream
6
is collected by Hou et al[3] using the RFID technique. Each RFID aerial keeps receiving the tag signals

on each round. To ensure continuous signal reception, new aerials are deployed beside the old ones before the aerials

expired. During this overlapping period, we achieve data streams from both historical and augmented feature spaces,

which indicates that the volume and dimension of data streams increase over time. Therefore, the RFID data collected

by Hou also satisfies our assumptions.

Table 6 shows the average AUC values and running time of these nine methods with the query ratio near 10% and

20%, the best AUC result and its comparable results are highlighted in boldface based on the paired t-tests at 95%

significance level. Fig. 8 show the average ACC results of these nine methods with varied ratios of queried instances. We

can observe from Table 6 and Fig. 8 that the proposed methods achieve significantly better results than the compared

methods, which indicates that our proposed methods can also achieve good performance in real-world applications.

Table 6. AUC Performance of algorithms on two real-world data sets with the query ratio fixed to about 10% and 20%.

Dataset Algorithm

Request 10% labels Request 20% labels

AUC Time(s) Query(%) AUC Time(s) Query(%)

RFID RPEA .721(.060) 0.0031 10.00(.00) .746(.049) 0.0035 20.00(.00)

RFESL .752(.065) 0.0101 10.00(.00) .778(.038) 0.0118 20.00(.00)

RFLLS .729(.037) 0.0039 10.00(.00) .750(.048) 0.0042 20.00(.00)

RFLLS-I .749(.040) 0.0042 10.00(.00) .775(.029) 0.0045 20.00(.00)

RFLLS-II .740(.035) 0.0048 10.00(.00) .787(.037) 0.0051 20.00(.00)

PEA .705(.051) 0.0167 9.93(.10) .763(.041) 0.0192 20.21(.16)

FLLS .785(.022) 0.0183 9.96(.15) .809(.020) 0.0203 19.52(.18)

FLLS-I .759(.030) 0.0185 10.06(.46) .777(.021) 0.0213 19.57(.72)

FLLS-II .789(.029) 0.0190 10.09(.08) .806(.016) 0.0235 20.27(.16)

rcv RPEA .835(.044) 0.3495 10.00(.00) .853(.034) 0.3520 20.00(.00)

RFESL .912(.004) 0.5575 10.00(.00) .912(.048) 0.5844 20.00(.00)

RFLLS .797(.034) 0.3496 10.00(.00) .794(.048) 0.3521 20.00(.00)

RFLLS-I .919(.006) 0.3506 10.00(.00) .920(.006) 0.3533 20.00(.00)

RFLLS-II .891(.022) 0.3512 10.00(.00) .894(.017) 0.3542 20.00(.00)

PEA .890(.011) 1.3259 10.06(.03) .886(.017) 1.3516 19.88(.03)

FLLS .848(.014) 1.3407 9.87(.03) .843(.021) 1.3763 20.40(.03)

FLLS-I .937(.003) 1.3626 9.82(.23) .937(.004) 1.3778 19.87(.16)

FLLS-II .912(.007) 1.3712 9.96(.04) .910(.005) 1.3799 20.42(.06)

6 CONCLUSION

In this paper, we aim to learn a highly dynamic model from trapezoidal data streams with label scarcity and propose

a new algorithm called incremental feature spaces learning with label scarcity (FLLS), together with its two variants

5
http://www.csie.ntu.edu.tw/~cjlin/libsvm

6
http://www.lamda.nju.edu.cn/data_RFID.ashx
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Fig. 8. The ACC results on two real-world data sets.

FLLS-I and FLLS-II. Our approaches are particularly useful when labels are scarce and feature spaces are increasing.

We first leverage the margin-based online active learning to annotate the most valuable instances and thus a build

superior model with minimal supervision. After receiving the label, we combine the passive-aggressive update rule

and margin-maximum principle to jointly update the dynamic classifier in the shared and augmented feature space.

Theoretical and empirical studies demonstrate the effectiveness of our proposed algorithms.

Since our proposed algorithms are designed for linear tasks, we think it is an interesting and vital work to extend

our proposal into a nonlinear case. How to design a nonlinear classifier in the setting of incremental feature spaces

learning is one of our future works. In addition, how to exploit more valuable information within the data streams,

such as second-order information, distribution information, and how to conduct clustering with evolving feature space

are also interesting works. These works are quite useful in practice and we will do further study on them.
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