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Fusing monotonic decision trees

Yuhua Qian, Member, IEEE, Hang Xu, Jiye Liang, Bing Liu, Fellow, IEEE and Jieting Wang

Abstract—Ordinal classification with a monotonicity constraint is a kind of classification tasks, in which the objects with better attribute
values should not be assigned to a worse decision class. Several learning algorithms have been proposed to handle this kind of
tasks in recent years. The rank entropy-based monotonic decision tree is very representative thanks to its better robustness and
generalization. Ensemble learning is an effective strategy to significantly improve the generalization ability of machine learning systems.
The objective of this work is to develop a method of fusing monotonic decision trees. In order to achieve this goal, we take two factors
into account: attribute reduction and fusing principle. Through introducing variable dominance rough sets, we firstly propose an attribute
reduction approach with rank-preservation for learning base classifiers, which can effectively avoid overfitting and improve classification
performance. Then, we establish a fusing principe based on maximal probability through combining the base classifiers, which is used
to further improve generalization ability of the learning system. The experimental analysis shows that the proposed fusing method can
significantly improve classification performance of the learning system constructed by monotonic decision trees.

Index Terms—Monotonic classification; rough sets; attribute reduction; decision tree; ensemble learning

1 INTRODUCTION

Classification model is one of important research issues
in machine learning and data mining. A classification
task is to learn a classifier from a given trained data
set with class labels, which can be used to predict the
categories of unlabeled objects. From the viewpoint of
constraints among attribute values, classification tasks
can be regarded as two types: nominal classification and
ordinal classification. Unlike no ordinal structure among
different decision values, for an ordinal classification
task, the ordinal relationship between different class
labels should be taken into account [40], [45]. Monotonic
classification is a class of special ordinal classification
tasks, where the decision values are ordinal and discrete,
and there are a monotonic constraint between attributes
and decision classes [32]. A monotonic constraint indi-
cates that the objects with better attribute values should
not be assigned to a worse decision class [19]. Monotonic
classification is a kind of common tasks, which have
attracted increasing attention from domains of data min-
ing, knowledge discovery, pattern recognition, intelligent
decision making, and so on.

For a monotonic classification task, from a given
training set of objects with a monotonic constraint, its
objective is to learn and extract some decision rules
for understanding decisions and building an automatic
decision model. To address this issue, several relative
researches have been reported. These existing works on
monotonic classification can be roughly divided into two
groups. One is to develop a theoretic framework for
monotonic classification, such as the dominance rough
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set model [14]-[16], [21], [24], [37], [38], [42], the qualita-
tive decision theory [10] and the ordinal entropy model
[19], [20], and the other is to construct algorithms for
learning monotonic decision models from objects [1], [2],
(4], [11].

As one of attempts solving monotonic classification,
Greco et al. [14]-[16] proposed a dominance rough set
through introducing dominance relations into rough
sets. Rough sets have been proven to be an effective clas-
sification method, which can be used to extract some de-
cision rules and construct a rule-based classifier [8], [22],
[35], [36], [47], [49]. Unlike other models of rough sets,
the model of dominance rough sets is used to extract
ordinal decision rules for monotonic classification. Since
then, several researches have been reported to generalize
or employ this model in monotonic classification. Shao
et al. [42] extended the dominance rough set to adapt
the context of data sets with missing data. Qian et al.
[37], [38] addressed versions of dominance rough sets
in set-valued ordered information systems and interval
ordered information systems. Hu et al. [21] introduced a
fuzzy preference into rough sets for monotonic classifica-
tion with a fuzzy consistent constraint. As the literature
[16] reported, dominance rough sets often produce much
larger classification boundary on some real-world tasks,
which make the decision algorithm constructed by dom-
inance rough sets as no or few consistent rules could be
extracted from data.

As to monotonic classification algorithms, some effec-
tive results have been reported. Ben-David extended the
classical decision tree algorithm to monotonic classifi-
cation in 1995. Since then, a collection of decision tree
algorithms have been developed for this problem [6], [9],
[12], [23], [33]. In addition, Ben-David [3] also extended
the nearest neighbor classifier to monotonic tasks and
designed an ordinal learning model (OLM). In 2003, Cao-
Van [6] introduced ordinal stochastic dominance learner
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(OSDL) based on associated cumulative distribution.
In 2008, Lievens et al. [28] presented a probabilistic
framework that served as the base of instance-based
algorithms to solve the supervised ranking problems. In
addition, in 2008, Duivesteijn and Feelders [11] proposed
a modified nearest neighbor algorithm for the construc-
tion of monotone classifiers from data by monotonizing
training data. Xia et al. [46] extended the Gini impurity
used in CART to ordinal classification, and called it
ranking impurity. Although the mentioned algorithms
above improve the performance of extracting ordinal
information, they can not ensure a monotonic decision
tree is learned from a training data set with a monotonic
constraint.

For classification tasks, in fact, we also need to con-
sider robustness of a classification algorithm and sen-
sitivity for noisy data. As we know, noise has great
influence on modeling monotonic classification tasks [5].
If the measures used to evaluate quality of attributes
in monotonic classification are sensitive to noisy objects,
the performance of the trained classifier would be weak.
An effective and robust measure of attribute quality
is required for monotonic classification. To reduce the
influence of noisy data and obtain decision rules with
clear semantics, Hu et al. [19] designed a robust and un-
derstandable algorithm (a rank entropy based monotonic
decision tree, just REMT) for monotonic classification.
The theoretic and experimental analysis showed that the
REMT algorithm can get monotonically consistent deci-
sion rules if objects in a training set are monotonically
consistent and its performance is also good when data
are contaminated with noise.

It is well known that ensemble learning can great
improve the generalization performance of a learning
system. Ensemble learning refers to first training a set
of base classifiers from data sets and then fusing these
classifiers with a fusion strategy for a given classification
task or regression task [50], [51]. In fact, fusing a set of
the same base classifiers will not yield any enhancement.
The improvement comes from the diversity among these
base classifiers, which is because that different base
classifiers potentially offer complementary information
about the objects to be classified. It was reported that
the base classifiers should take both accurate and diverse
into account together for constructing a good ensemble
system [13], [26], [43].

Considering two merits of effectiveness and robust-
ness of REMT algorithm, the objective of this study is
to develop a fusing method of monotonic decision trees
induced by the REMT algorithm for further enhancing
the generalization performance of a monotonic classifi-
cation system. As we know, attribute reduction plays an
important role in improving classification performance
and speeding up training [17], [29]. Based on this consid-
eration, we first propose an attribute reduction method
with rank-preservation property based on the variable
dominance rough sets, which is used to generate some
monotonic attribute reducts and learn base classifiers

depicted by monotonic decision trees. The size of an
monotonic attribute reduct is usually much shorter than
that of the original attribute set, and the corresponding
monotonic decision tree induced by it may have much
better generalization ability. Through adjusting values of
the parameter § in the variable dominance rough set,
various monotonic attribute reducts from the original
data set can be obtained, which are used to learn dif-
ferent base classifiers. This satisfies the diversity among
base classifiers in ensemble learning. Then, we propose a
fusing principe for combining the base classifiers based
on the idea of maximal probability, which is used to
further improve generalization ability of the monotonic
classification system. The results show the effectiveness
of the proposed method from two viewpoints of the
classification accuracy and the mean absolute error. The
contributions of this work is two folds. One is to propose
an attribute reduction method for a monotonic classifi-
cation task. The other is to develop a fusing strategy for
fusing monotonic decision trees induced by the REMT
algorithm. These two folds all can improve the perfor-
mance of a monotonic classification system constructed
by monotonic decision trees.

The rest of the paper is organized as follows. The
preliminaries on dominance rough sets and monotonic
decision trees are introduced in Section 2. In Section 3,
we propose an attribute reduction method for monotonic
classification and discuss some of its properties. In Sec-
tion 4, we first give the algorithm of how to generate
multiple monotonic attribute reducts (be used to learn
multiple base classifiers), and then develop a fusing prin-
ciple based on maximal probability to combine the base
decision trees. Section 5 gives a series of experimental
analyses for showing the performance of the proposed
method in this paper. Finally, Section 6 concludes this
paper with some remarks and discussions.

2 PRELIMINARIES ON DOMINANCE ROUGH
SETS AND MONOTONIC DECISION TREES

Let U = {x1,%2, -+ ,2,} be a set of objects, A a set
of attributes to describe the objects, d is a decision
attribute, and D a finite ordinal set of decisions. With
every attribute a € A, a set of its values V, is associated.
The value of x; under an attribute a € A or d is denoted
by v(z;,a) or v(z;,d), respectively. The ordinal relation
between objects in terms of the attribute a or d is denoted
by >, and z >, y or x >4 y means that z is at least
as good as (outranks) y with respect to the attribute
a or d respectively. In the following, without any loss
of generality, we consider a condition attribute having
a numerical domain, that is, V, € R (R denotes the
set of real numbers) and being of type gain, that is,
T = y & v(z,a) = v(y,a) (according to increasing
preference) or z =, y < v(z,a) < v(y,a) (according
to decreasing preference), where a € A, z,y € U. For
a subset of attributes B C A, we define xz =g y < Va €
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B,v(x,a) > v(y,a). In other words, = is at least as good
as y with respect to all attributes in B.

In a given set of objects, we say that + dominates y
with respect to B C A if + > y, and denoted by xR%y.
That is

R ={(x,y) €U x U |z =5 y}.

Obviously, if (z,y) € R>, then z dominates y with
respect to B. A predicting rule is a function

f:U—D,

which assigns a class label in D to each object in U.
A monotonically ordinal classification function should
satisfy the following constraint

r=y= f(x)= f(y), Vo,y € U.

Definition 1: Let DT = (U, AU{d}) be a decision table,
BCA IfVx,ye U, x =gy, then x =4y, we say DT is
B-monotonically consistent.

Dominance rough set is an effective method to deal
with monotonic classification, which can extract a family
of ordinal decision rules from a given ordinal data set.
In the following, we review several notations to be used
throughout this paper.

Let DT = (U, AU {d}) be a decision table, B C A,
B = By U B;, where By be the attribute set according to
increasing preference, and B, the attribute set according
to decreasing preference. The granules of knowledge
[31], [39], [48] induced by the dominance relation Rﬁ
are the set of objects dominating z, i.e.,

]2 = {y € U | v(y,a1) > v(z,a1)(Ya; € By) and
v(y, az) < v(x,as)(Vag € Ba)}
={y €U | (y,2) € R5}
and the set of objects dominated by z,
)5 = {y € U | v(y,a1) < v(z,a1)(Va; € By) and
v(y, az) = v(x,az)(Vag € Ba)}
={yeU]|(x,y) € R3},
which are called the B-dominating set and the B-
dominated set with respect to = € U, respectively.

For simplicity and without any loss of generality, in
the following we only consider condition attributes with
an increasing preference.

The following property can be easily concluded [14],
[15], [37], [38].

Property 1: Let R7 be a dominance relation, then

e RZ, Z is reﬂexwe, transitive and unsymmetric, so it
is not an equivalence relation;

(2) if C C B C A, then R C R7 C RZ;

(3) if C C B C A, then [z]5 C [2]7 C [2]Z;

@) if z; € [z]Z, then [z;]7 C [z:]7 and [z)]7 =
Ulle;]5 : 25 € [e)3);

(5) 2117 = [a]7 iff v(i, a) = v(e;,a)(Va € B);

(6) F = {[z]5 | z € U} constitutes a covering of U.

For any X C U and B C A, the lower and upper
approximations of X with respect to the dominance
relation R7, are defined as follows

Rp(X)={ze U]z C X},

RZ(X)={zeU|Rl3nX #0}.

The model defined above is called a dominance rough
set, introduced by the literature [14]. This model was
widely discussed and applied in recent years [21], [37],
[38], [42]. Let d; be a subset of objects whose decisions
are equal to or better than d;, then we say that each object
of R7(d7) is consistently equal to or better than d;.

However, the decision boundary regions in some of
real applications are often so large that an effective deci-
sion model can not be constructed by dominance rough
sets, in which there exist too many inconsistent samples
in a given data set. In addition, dominance rough sets
are heavily sensitive to noisy samples, in which several
mislabeled objects might completely change the trained
decision models as Hu et al. pointed out in the literature
[19]. To address this issue, Hu et al. proposed [19] a rank
entropy-based decision tree for monotonic classification.
This rank entropy has better robustness than Shannon’s
information entropy [41] for monotonic classification. In
what follows, we review some of its relative concepts.

To characterize the ordinal structure in monotonic
classification, Hu et al. [19] introduced a rank entropy
method to measure the ordinal consistency between
random variables, which includes the following four
definitions.

Definition 2: Given DT = (U,AU{d}), B C A. The
rank entropy of the system with respect to B is defined

as >
RH Zl | ©)
Definition 3: Given DT = (U,AU{d}), BC A, C C A.

The rank joint entropy of the set U with respect to B
and C is defined as

n

1
>
RHp,c(U) = n Z:llog
Definition 4: Given DT = (U, AU {d}), BC A, C C A.
If C is known, the rank conditional entropy of the set U
with respect to B is defined as
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Definition 5: Let DT = (U, AU{d}) be a decision table,
B an arbitrary attribute. The rank mutual information of
the set U with respect to B and {d} is defined as
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Monotonic decision trees are a class of specific de-
cision trees which assign dominating decision to the
objects characterized by better feature values in the case
of monotonic classification [4]. Through combining the
above rank mutual information and the diagram of the
classical decision tree, Hu et al. [19] proposed a rank
entropy-based decision tree for monotonic classification,
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which is better than existing monotonic decision trees in
most cases in terms of mean absolute error. The entropy-
based decision tree is constructed by the following algo-
rithm.
Algorithm 1. Rank entropy based monotonic decision
tree (REMT) [19]
Input: criteria: attributes of objects;
decision: class labels of objects;
e: stopping criterion;
Output: a monotonic decision tree 7.
(1) generate the root node.
(2) if the number of objects is 1 or all objects are from
the same class, the branch stops growing.
(3) otherwise,
for each attribute a;,
for each ¢; € V,,,
divide objects into two subsets according to c;
if v(a;, ) < ¢;, then put = into one subset,
else put x into the other subset.
denote a; with respect to ¢; by a;(c;).
compute RMI.;, = RMI=({a;(c;)}, {d}).
end j.
¢; = argmax; RMI.,.
end i.
(4) select the best attribute a and the corresponding
point: ¢* = arg max mjax RMIZ=({ai(cj)}, {d}).

(5) if RMI=({a},{d}) < ¢, then stop.

(6) build a new node and split objects with ¢ and c*.

(7) Recursively produce new splits according to the

above procedure until stopping criterion is satisfied.

(8) end.

Regarding labeling rule L, for an unseen object, ac-
cording to its attribute values, we can match a path from
the root node of the monotonic decision tree to a certain
leaf node. Through this leaf node, the label of the unseen
object can be determined by the following rule [19]:

(1) if all of samples in a leaf node belong to the same
class, we give the class label of this leaf node to the
object;

(2) otherwise, if the samples in the leaf node belong
to multiple classes, there are the following two cases:

(2.1) if the number of classes in the leaf node is an
odd number, we assign the median class to the object.
For example, if the samples in an leaf node come from
Classes 1, 2 and 3, respectively, we label the unseen
object with Class 2 if it belongs to this leaf node.

(2.2) if the number of classes in the leaf node is an even
number, there are two median classes in this leaf node.
Then if the current node is a left branch of its parent
node, we assign the worse class to this node; otherwise,
we assign the better class to it.

3 ATTRIBUTE REDUCTION FOR MONOTONIC
CLASSIFICATION
In machine learning, attribute reduction (feature selec-

tion) is an effective method for improving classification
performance and avoiding overfitting [7], [20], [27], [34],

[44]. For a monotonic classification task, monotonicity
constraints between attributes and decisions should be
taken into account. However, most of existing techniques
are not able to discover and represent the ordinal struc-
tures in monotonic data sets. Hence, they can not be
well applied for monotonic classification. In this section,
we aim to develop an attribute reduction approach to
monotonic classification, which will be used to train base
monotonic decision trees in next section.

Attribute reduction aims to retain the discriminatory
power of original features in rough set theory, which
has been proven effective for improving the classification
performance of a rough classifier. From this point of
view, we want to develop the corresponding attribute
reduction method. An ordinal attribute reduct should
satisfy the same monotonic constraint as the original set
of attributes, with which the rank among objects can be
kept unchanged.

Let DT = (U, A U {d}) be an ordinal decision table,
where d a decision attribute with an overall preference
of objects. Denoted by

RZ)y = {(2.9) : vz, d) > v(y,d)},

R{2 4} is a dominance relation determined by the decision

attribute d. If Ri C R?d}, then DT is called monotonic
consistent; otherwise it is monotonic inconsistent. In the
following, we give the formal definition of a monotonic
attribute reduct.

Definition 6: Let DT = (U, A U {d}) be an ordinal
decision table and B C A. If Ri - R?d} and Rg z R{}d}
for any C C B, then we call B a monotonic attribute
reduct of DT.

We denote by D* = {(z,y) : v(z,d) < v(y,d)}, and

{a €A: (5C7 y) ¢ R?a}}> (m,y) ¢ D*;

Dis*(z,y) = { 0, (z,y) € D*.

Dis*(z,y) is called an ordinal discernibility set between
z and y, and Dis* = (Dis*(z,y) : =,y € U) is called an
ordinal discernibility matrix for the decision table.

Similarly to the classical attribute reduction [30, 42],
the discernibility matrix based can be employed for
obtaining all of ordered attribute reducts from an ordinal
decision table.

Although the above method can obtain all monotonic
attribute reducts of an ordinal decision table, its time
complexity is exponential, which can not be used to learn
from large-scale data sets. To solve this problem, in what
follows, we develop another ordinal attribute reduction
with a heuristic strategy although a reduct obtained by
it may be a pseudo monotonic attribute reduct [34].

We continue to use the framework of dominance
rough sets in this part. We first introduce a variable
parameter § to loosen the condition of a dominance
rough set, such that the rough set is less sensitive to
noisy objects. Based on this view, for a monotonic classi-
fication task, we give an updated version of a dominance
rough set, in which a set to be approximated is an
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upward union dZ = U,<; Dj, where D; € U/{d} =
{Dy,Ds,---,D,} that are ordered, that is, for all 4,7 <r
if i > j, then the objects from D; are preferred to the
objects from D;.

Definition 7: Given DT = (U, AU{d}) and B C A4, d; is
a decision value of d. As to monotonic classification, the
variable upward lower and upper approximations of di2
are defined as

E@fﬁ#ﬁUﬁ%%H>lﬂk

— g
R3(d7) = {x ezfﬂzb”d'>zﬂ
where 0 < 3 < 0.5.
The following region

BNDp(d;') = Ry (d7) — Ry (dy),

is called the upward boundary region of d; in terms of
attribute set B. The monotonic dependency of d with
respect to B is formally defined as

5 l=U BNDG )]
7B(d) = —=77

If the decision table DT is monotomcally consistent in
terms of B, then BND” P (dZ) = 0.

Based on the above monotonic dependency, we can
define a coefficient as the significance of attribute a in B
relative to the decision attribute d. Given DT = (U, AU
{d}), Va € B C A, and d; a decision value of d, the inner
significance of a in B relative to d is formally defined by

Sighmer(@s By d) = ¥5(d) = V5 _ 4y (). 5)

This measure can be used to determine the core at-
tributes of A. When Sig?  (a,B,d) > 0, as the rough
set area classical defined [34], we say a is a core attribute
in this decision table. Accordingly, Va € A— B, we define
the outer significance of a with respect to B as

Sigter(@ B d) = Vg 0y (d) — 75 (d). (6)

This measure is used to select an attribute in a forward
attribute reduction.

Through using these two attribute significance mea-
sures, one can design a monotonic attribute reduction
approach with a heuristic strategy as follows.

Algorithm 2. Computing a monotonic attribute reduct
with a forward searching strategy

Input: a decision table DT =
parameter [3;

Output: a monotonic attribute reduct B of A.

(1) Compute core Core of A using Sig?  [34].

(2) B < Core.

(8) Ya € A — B, compute SI GP

if S1IG?,,..(aj, B, d) =

(U,AU {d}) and the

outer (a B d)/
max{SIG a;, B,d)},

outer ( outer (

B — BU{a},

until Va;, ST szuter

(4) return B and end.
In this algorithm, through introducing a variable pa-
rameter § to loosen the condition of a monotonic at-
tribute reduct, such that the searched monotonic at-

tribute reduct has better robustness for noisy objects. In

(ai,B,d) =0.

addition, due to the size of a monotonic attribute reduct
is much shorter than that of the original attribute set,
and hence the base monotonic decision tree induced by
the monotonic attribute reduct will have much smaller
length and much fewer nodes, which usually possesses
much better generalization ability.

4 FUSING MONOTONIC DECISION TREES

The studies have shown that ensemble learning can sig-
nificantly improve the generalization ability of machine
learning systems. In this section, we propose an en-
semble strategy by fusing multiple different monotonic
decision trees.

In ensemble learning, there are two basic issues [50],
[51]: learning multiple classifiers and a fusing strategy,
where the former aims to provide some different base
classifiers, and the latter is to give an effective ensemble
method for obtaining much better generalization perfor-
mance. In general, diversity among the base classifiers
is known to be an important factor for improving gen-
eralization performance in ensemble learning.

For fusing monotonic decision trees, we need to learn
various base classifiers with much bigger diversity. To
solve this problem, we select multiple attribute subsets
from the original attribute set of a given data set, in
which each attribute subset should be an attribute reduct
that preserves the monotonic consistent of the original
data set. The diversity in ensemble learning can be
satisfied by the corresponding base monotonic decision
trees induced by different monotonic attribute reducts.

To obtain multiple monotonic attribute reducts,
through loosening the condition of maximal significance
in each loop, we can continue to use Algorithm 2 with
the second maximal significance. For a given parameter
B in variable dominance rough sets, we can generate
multiple monotonic attribute reducts from a given date
set. Based on the idea of Algorithm 3 in the literature
[18], the algorithm can be similarly depicted as follows.

Algorithm 3. Backward reduction for searching mul-
tiple ordinal reducts

Input: a decision table DT =
of parameter [3;

Output: a set of ordinal reducts.

(1) compute core attributes Core of A using Sig;ﬁmm,.

(2) B— A—Core.

(8) B* < sorted B in the ascending order in terms of

g(a) = v5(d) + ‘U/é‘ll}‘, where U/{a} is a partition
of U induced by the attribute a.

(4) P* +— B*UCCore.

(5) find a reduct RED, from P* with Algorithm 2.
(6) K — REDy — Core.
)
)

(U,AU{d}) and a value

(7) RED « Q.

(8) for i =1 to |K|
P* — P* —{a;};
find a reduct RED; from P* by Algorithm 2;
if RED; ¢ RED, then RED « RED + RED;;
P* — P*U{a;}.
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(9) return RED = {REDy, RED;,--- ,REDnN}.

The algorithm can produce a set of monotonic at-
tribute reducts satisfying monotonic consistent with re-
spect to the parameter . These different ordinal reducts
lay a foundation for constructing complementary mono-
tonic decision trees.

Let F = {T1,T»,---, Ty} be a monotonic decision
forest learned by RED = {RED;,RED,,--- ,REDN} in
the training set, and decisions w = {wy, ws, -+, ws}. De-
note the label of an object = obtained by the monotonic
decision tree T; by T;(z). Given an object = in the test
set, we determine the class label of z by the following
fusing principle.

Fusing principle based on maximal probability
(FPBMP):

(1) for every T; in F,

given an object z, if the label T;(x) is the same
decisions w; for each %, then give x the label w;, other-
wise compute the probability P;; of x belonging to the
decision class wj;

N
(2) compute P;(z) = + > P;; as the probability of z
i=1
belonging to the decision class w;;
(3) give x the label w,, where

wo : Po(xz) =max{Pj(z), 1 <j < s}

Based on the above fusing principle FPBMP, we give
an algorithm of fusing monotonic decision trees, which
is as follows. Algorithm 4. Fusing rank entropy based
monotonic decision trees (FREMT)

Input: a decision table DT = (U, AU {d}), the param-
eters 0 = {f1,02, - ,Bm} and an object = depicted by
A;

Output: a decision of object x.

(1) fromi=1tom

finding all ordinal reducts with Algorithm 3
RED; = {REDy, RED;,--- ,REDy,}

) RED «— \J RED;

(3) for RED; é RED, learn a tree T; with REMT.

4) F—{T\,To,--- ,Tn}.

(5) determine the class label of z by F with FPBMP.

(6) end.

Now, we explain the working mechanism of the fusing
principle for fusing monotonic decision trees. It can be
understood by an illustrative example. We generate an
artificial data set with 3 classes, in which there are 39
objects and 12 attributes, as shown in Table 1.

In this data set, objects z; to xp7 are treated as the
training set of constructing a monotonic decision tree,
and objects z25 to x39 are looked forward as the test set
of evaluating the performance of a monotonic decision
tree.

To show the difference between method of signing
class labels in REMT and that in monotonic decision
trees used in the proposed fusing principle, we first
construct a monotonic decision tree using REMT with
the parameter € = 0.01 as Fig. 1.

TABLE 1: An artificial data set with 12 features, where

39 objects are divided into 3 classes
g 1

Data sets
1
T2
T3
T4
x5
X6
7
xrg
x9
10
11
12
13
T14
15
T16
17
18
T19
20
21
22
23
T24
25
26
27
28
29
30
31
T32
33
T34
35
36
37
38
39
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Now, we learn monotonic decision trees used in the
proposed fusing principle. Through Algorithm 3, one can
obtain two ordinal attribute reducts:

REDl = {9727630’} and RED2 = {h7j7g7f7c’7’}'

Using these two monotonic attribute reducts, we can
learn two monotonic decision trees with REMT (¢ =
0.01), in which the decision of each leaf node is labeled
by a family of probabilities of the node belonging to
every class. These two ordinal decision trees are shown
as sub-figures (a) and (b) in Fig. 2.

In what follows, we consider the decision of each of
objects x2s, x33 and w39 in the test set. Their decisions
induced by the monotonic decision tree in Fig. 1 and
those induced by the proposed method in this study are
listed in Table 2, respectively.

Through computing, we have that:

(1) for xog, the output of T} and that of T5 are all L3,
it is labeled as class L3;

(2) for xs3g, P, = (Pn + Pgl)/Q = (06 + O)/2 =0.3 and
Py = (Pia + Ps2)/2 = (0.4 +1)/2 = 0.7, it is labeled as
class L2;

(3) for x39, the output of T} and that of T are all L2,
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Fig. 1: Monotonic decision tree trained with REMT
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(a) Monotonic decision tree T trained with features {g,1%,c,a}
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(b) Monotonic decision tree T% trained with features {h, j, g, f, c,i}

Fig. 2: Monotonic decision trees trained with two feature subsets obtained by feature selection algorithm

jects Rea
228 L3 L2 L3
38 L2 L3 L1
39 L2 L1 L2

Decisons with 77  Decisons with T5 Decisons with FRE
L3 L3 L3
P11 =0.6,P12 =04 Poo = L2
L2 L2 L2

it is labeled as class L2;

The corresponding decisions of a5, %38, 239 are equiva-
lent to their real decisions L3, L2 and L2. However, their
decisions induced by REMT are L2, L3 and L1, respec-
tively. This means that the proposed FREMT has better
decision performance than REMT for these two objects.
It deserves to point out that decisions of xag,z3s, %39
induced by Reduct2 with REMT are respectively L3, L1
and L2, which are also much closer to real decisions than
REMT.

From the above example, we can say that the proposed
FREMT may effectively improve the decision perfor-
mance of the REMT algorithm for monotonic classifi-
cation. Even if only one ordinal attribute reduct, the
monotonic decision tree induced by it with REMT also
may have much better generalization.

5 EXPERIMENTAL ANALYSIS

The rank entropy-based decision tree is an effective
decision model for monotonic classification. In order to
show the effectiveness of the proposed fusing algorithm,

in this section, we will compare the proposed algorithm
with the rank entropy-based ordinal decision tree on
real-world classification tasks.

In order to test how our fusing approach behaves
in real-world applications, we employed 10 data sets,
which are shown as Table 3. In this table, Student score
is a real-world data set including 512 students coming
from Software Engineering (the class of 2010) in Shanxi
University and their scores of 25 courses (features),
where 122, 269 and 121 students are evaluated as ex-
cellent, good and bad, respectively. Its label distribution
is shown as Figure 5(a).

For the student score data set, it is a natural monotonic
classification problem. For the first nine data sets, before
training the base monotonic decision trees, we need to
preprocess these data sets to suit the proposed fusing
ordinal decision tree algorithm. As Hu et al. said [19],
because we use ascending rank mutual information as
the splitting rule, we assume that larger rank value
should come from larger feature values, called increasing
monotonicity. In practice, we may confront the case that
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TABLE 3: Nine data sets in the experimental analysis

Data sets ~ Num. of objects Num. of features Num. of classes
Adult 500 15 2
Bankruptyrisk 39 13 3
Wine 1599 12 2
Squash 50 25 3
Car 1727 7 4
German 1000 21 2
Australian 690 15 2
Autompg 392 8 4
Swd 3240 11 3
Student score 512 25 3

the worse feature value should get the better ranks.
This called decreasing monotonicity. To uniformly deal
with, we have to transform the problem of decreasing
monotonicity to an increasing monotonicity classification
task. There are several solutions to this objective. In
this experimental analysis, if decreasing monotonicity
happens, we will compute reciprocal of attribute values.
In order to compare the performance when data sets are
monotonic, we relabeled the objects so as to generate
monotonic training sets. In this experiment, we revised
the labels of some objects and generated monotone
training data sets by the monotonization algorithm in
the literature [25].

Firstly, we observe the performance of a base mono-
tonic decision tree induced by the proposed attribute
reduction algorithm. For each data set, we used 10-fold
cross validation technique, in which 90% of the data set
is used as the training set and the remained objects are
used as the test set.

We here use the classification accuracy and the mean
absolute loss to verify the performance of the trained
model of each base ordinal decision tree. The classi-
fication accuracy for evaluating the performance of a
classifier is computed as

n

AC= 13 Gie ), )

i=1

in which if y; = y;, then 3j; ®y; = 1, otherwise y; ®y; = 0.
And, the mean absolute error is calculated as

1 n
MAE = =) |yi —vil, ®)
- Z:; 5 = i
where n is the number of objects in the test set, y; is the
output of the algorithm and y; is the real output of the
i-th object.

In the experimental analysis, let ¢ = 0.01 and g vary
from 0.00 to 0.16 with a step length 0.02. Based on 10-fold
cross validation technique, the average performances of
the classification accuracy and the mean absolute loss are
computed and shown in Figures 3 and 4, respectively.

From the curves in Fig. 3, we see that most of base
ordinal decision trees possess much higher classification
accuracies than REMT in most cases, except the data
set Autompg. Moreover, regarding the curves in Fig. 4,
it can be seen that most of base ordinal decision trees

have much lower mean absolute loss than REMT in
most cases, except the data set Swd. In addition, we
also can see the classification accuracies (or the mean
absolute loss) of these base monotonic decision trees are
often different each other, which can satisfy the diversity
constraint in ensemble learning.

In what follows, we verify the performance of the
fusing ordinal decision trees induced by sub monotonic
decision trees. Given [ varying from 0.00 to 0.16 with
a step length 0.02, we firstly compute attribute reducts
from original data sets, then use these attribute reducts
to learn every sub monotonic decision tree with REMT,
where € = 0.01, and finally fusing these decision trees
according to Algorithm 4.

For each data set, we still used 10-fold cross val-
idation technique. The classification accuracy and the
mean absolute loss are used to verify the performance
of the fusing monotonic decision trees. The experimental
results are listed in Table 4.

Table 4 presents the classification accuracy and the
mean absolute loss yielded with two learning algorithms
FREMT and REMT. It can be seen from Table 4 that
for each data set, FREMT are consistently better than
REMT for both AC and MAE. It deserves to point out
that FREMT can significantly improve the generalization
ability of REMT for these nine monotonic classification
tasks. If we adopt a selective ensemble strategy, the
fusing monotonic decision forest will possess much bet-
ter generalization performance. We will follow it with
interest in further work.

Remark 1. In fact, the parameter § also plays an
important role in terms of tuning the performances of the
FREMT algorithm. Different choices of 3 might produce
different trees to combine in the ensemble. This can be
induced to two reasons: the value of the parameter 3
itself and its step length. The latter is used to determine
the number of different decision trees to fuse. The former
is used to loose the condition of a monotonic attribute
reduct. For a fixed step, bigger / may mean more
decision trees and much better diversity among them.
In fact, it is difficult to specify optimal values of 3,
which might be chosen by cross-validation. However, it
is beyond the scope of this paper. We omit its detailed
discussion here.

In what follows, we conclude the advantages of the
proposed fusing principle FPBMP and analyze their
reasons.

e Most of base monotonic decision trees induced by
ordinal attribute reducts have better generalization abil-
ity themselves.

As we know, attribute reduction has been proven
effective in improving classification performance and
avoiding overfitting. A monotonic attribute reduct can
satisfy the same monotonic constraint as the original
set of attributes, which can preserve the rank among
objects unchanged. The size of an obtained monotonic
attribute reduct is much smaller than that of the original
attribute set, and hence the base monotonic decision tree
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TABLE 4: Comparison on classification accuracy and mean absolute loss

Data sets Number of base decision trees AC of FREMT AC of REMT MAE of FREMT MAE of REMT
Adult 36 0.774 + 0.001 0.604 + 0.016 0.226 4+ 0.001 0.396 + 0.016
Bankruptyrisk 27 0.858 + 0.025 0.650 + 0.036 0.142 4+ 0.025 0.350 4+ 0.036
Wine 14 0.626 4+ 0.001 0.465 £+ 0.004 0.374 4+ 0.001 0.535 4+ 0.004
Squash 68 0.740 4+ 0.008 0.580 + 0.060 0.260 4+ 0.008 0.480 4+ 0.066
Car 12 0.871 4+ 0.000 0.817 + 0.001 0.148 4 0.000 0.203 4+ 0.001
German 45 0.711 +0.001 0.529 + 0.001 0.289 4+ 0.001 0.471 4+ 0.001
Australian 47 0.735 4+ 0.002 0.586 + 0.003 0.265 4+ 0.002 0.414 4+ 0.003
Autompg 27 0.594 4+ 0.005 0.528 + 0.003 0.431 4 0.008 0.513 4+ 0.004
Swd 14 0.683 4+ 0.001 0.581 + 0.001 0.341 4+ 0.001 0.451 4+ 0.001
Student score 77 0.851 4+ 0.003 0.752 4+ 0.002 0.149 4+ 0.003 0.248 4+ 0.002
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induced by the ordinal attribute reduct will have much
smaller length and much fewer nodes, which usually
possesses much better generalization ability. In addition,
we set a variable parameter  to loosen the condition of
a monotonic attribute reduct, such that the sensitivity
of the learned base monotonic decision tree is reduced
for noise. Therefore, most of base monotonic decision
trees will have better generalization ability than the
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monotonic decision tree induced by the original attribute
set in a given data set.

e The base monotonic decision trees satisfy the diver-
sity requirements in ensemble learning.

Diversity among the individual learners is deemed
to be a key issue in ensemble learning, which can sig-
nificantly improve the generalization ability of machine
learning systems. In this study, the diversity among
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Fig. 5: Label distribution and base monotonic decision trees on the student score data set

base monotonic decision trees can be guaranteed by decision rules from the different ordinal decision trees,
the diversity among monotonic attribute reducts from which would provide much better predictive ability for
the original attribute set. In general, different monotonic unlabeled objects.

attribute reducts would learn different monotonic deci- e The learning system fused by FPBMP significantly
sion trees. This implies that one can learn much more improve the generalization ability of monotonic decision
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trees.

The success of the fusing principle is attributed to two
factors. On one hand, when the outputs of a tested object
in different base monotonic decision trees are equal to
each other, its final label will be assigned as this output.
On the other hand, when these outputs of the object
are inconsistent each other, we accumulate the evidences
that it belongs to different classes in all base ordinal
decision trees, and assign it to the class with the maximal
probability. In fact, its rationality also can be understood
by Example 1. This may be a more reasonable ensemble
solution than a simple majority vote strategy, which can
be safely used to fuse monotonic decision trees.

Remark 2. From the above discussions, we know that
each of base monotonic decision trees is induced on a
different subset of features. When the number of features
is small, the number of possible different base trees
in the forest may be small too. This would affect the
performance of the FPBMP algorithm. Nonetheless, this
problem might be solved through adding randomness
in the decision tree induction procedure. However, it is
beyond the scope of this paper, which can be followed
with interest in further work.

6 CONCLUSIONS AND FURTHER WORK

Ordinal classification is a kind of special classification
tasks, in which a monotonicity constraint is considered
as the fundamental assumption. This assumption argues
that the objects with better attribute values should not be
assigned to a worse decision class. In recent years, sev-
eral learning algorithms have been proposed to handle
this kind of special tasks. The rank entropy-based ordinal
decision tree is very representative thanks to its better
ability of robust and generalization. To further improve
the generalization ability of a machine learning system
based on ordinal decision trees, in this paper, we aim to
investigate how to fuse ordinal decision trees from the
viewpoint of ensemble learning. To address this issue,
we have taken two factors into account: attribute reduc-
tion and fusing principle. Firstly, we have introduced an
attribute reduction method with rank-preservation prop-
erty based on the variable dominance rough sets, which
is used to generate some monotonic attribute reducts
and learn base classifiers depicted by monotonic decision
trees. In general, the size of an ordinal attribute reduct is
much shorter than that of the original attribute set, and
the corresponding monotonic decision tree induced by
it may have much better generalization ability. This may
ensure that each of these base classifiers is a stronger
learner. Through adjusting values of the parameter 3 in
variable dominance rough sets, we can obtain various
monotonic attribute reducts from the original data set,
which can be used to learn different base classifiers.
This can satisfy the diversity among base classifiers in
ensemble learning. Then, based on the idea of maximal
probability, we have established a fusing principe for
combining the base classifiers, which is used to further

improve generalization ability of the learning system.
Finally, we have verified the performance of the method
proposed in this study through employing nine real data
sets. The experimental analysis shows that the proposed
fusing method can significantly improve classification
performance of monotonic decision trees.

It deserves to point out that sometimes the learning
system fusing all trained base classifiers may cause
overfitting. Selective ensemble learning could further
enhance the performance of the learning system. Hence,
it is an important problem that how to select base mono-
tonic decision trees so that the fused learning system
possesses as well performance as possible. We will work
on this problem in the future.
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