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applied to many hybrid data processing applications for a particular purpose, thus neglect-
ing the issue of selecting an appropriate model. To address this issue, this paper mainly
concerns the relationships among these rough set models. Investigating fuzzy and neigh-
borhood hybrid granules reveals an important relationship between these two granules.
Analyzing the relationships among rough approximations of these models shows that
Hu’s fuzzy rough approximations are special cases of neighborhood and Wang’s fuzzy

Keywords:
Fuzzy rough set
Neighborhood rough set

Hybrid data rough approximations, respectively. Furthermore, one-to-one correspondence relation-
Hybrid information granules ships exist between Wang's fuzzy and neighborhood rough approximations. This study also
Granular computing finds that Wang’s fuzzy and neighborhood rough approximations are cut sets of Dubois’

fuzzy rough approximations and Radzikowska and Kerre’'s fuzzy rough approximations,
respectively.
© 2011 Published by Elsevier Inc.

1. Introduction

In real world databases, data sets usually take on hybrid forms, i.e., the coexistence of categorical and numerical data.
Feature selection, classification and prediction towards hybrid data thus hold great significance. Generally speaking, there
are two strategies in hybrid data processing. One strategy is employing classical numerical data processing methods, includ-
ing PCA [24], neural networks [6,14] and SVM [37]. When using these methods, all categorical data should be coded as inte-
gral numbers in hybrid data. However, processing categorical data in this manner is unreasonable, as the coded values of
categorical data lack practical meanings [11]. Classical categorical data processing methods use the other strategy, including
rough set theory [1,18,20-22,25,28,30-32,36,39,47]. Problems occur when numerical data are processed using traditional
rough set theory. Discretizing numerical data into categorical data is thus necessary; however, this leads to the incurrence
of information loss in the discretization process [11,46]. Both strategies mentioned above have their own limits.

Researchers have recently proposed several hybrid data processing methods [2,7,11,12,15,26,29,34,35,38,40], frequently
using fuzzy and neighborhood rough set models. Fuzzy sets and rough sets are complementary in handling uncertainty
[3,4,8,13,23,27,43]. Dubois and Prade [7] combined rough and fuzzy set theory to define the first fuzzy rough sets. This
model employed the min and max fuzzy operators to describe the fuzzy lower and upper approximations. Radzikowska
and Kerre [33] defined fuzzy rough sets in a more general manner based on the T-equivalence relation. The fuzzy lower
and upper approximations were constructed by an implicator and triangular norm. Mi and Zhang [25] presented a new
fuzzy rough set definition based on a residual implication 0 and its dual ¢. Hu et al. [11] introduced a novel fuzzy rough
model, presented several attribute significance measures and designed a forward greedy algorithm for hybrid attribute
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reduction. Wang et al. [38] defined new lower and upper approximations based on the similarity between two objects and
extended some underlying concepts to the fuzzy environment. Yeung et al. [46] first defined some lower and upper approx-
imations based on arbitrary fuzzy relations from the constructive approach viewpoint. Some of the fuzzy rough set models
mentioned above usually process hybrid data [7,11,35,38]. Furthermore, hybrid data analysis also employed another
traditional rough set generalization: the neighborhood rough set [12,16,41,42,44,45]. Neighborhoods and neighborhood
relations are important concepts in topology. Lin [19] regarded neighborhood spaces as general topological spaces more
than equivalence spaces and introduced neighborhood relations into rough set methodology. The notion of neighborhood
systems provided a convenient and flexible tool for representing similarity and described a hybrid information system with
categorical and numerical attributes. Wu and Zhang [41] explicitly discussed the properties of neighborhood approximation
spaces. Yao [43,45] relaxed the original query with a neighborhood system to conduct approximation retrieval. Hu et al.
[12] constructed a unified theoretical framework for a neighborhood-based classifier using a neighborhood-based rough
set model and a forward feature set selection algorithm towards hybrid data.

Some fuzzy and neighborhood rough set models mentioned above have been used to process hybrid data. However, a user
cannot know which rough set model is appropriate when analyzing a given data set, making it difficult to select the appro-
priate model for a specific case. Solving this problem requires exploring the inherent relationships among the existing mod-
els, which helps researchers identify these generalized rough sets and select a proper model for a given application. This
paper illustrates these relationships from two perspectives: constructing information granules and their rough approxima-
tions. It first discusses the analysis of the relationship between constructing fuzzy and neighborhood hybrid granules, in
which information granules are the basis for rough approximations in rough set models. The paper then explores relation-
ships among these rough approximations in the existing rough set models. This research clarifies the inherent relationships
among these existing models.

The rest of the paper is organized as follows. Section 2 reviews some preliminary concepts. Section 3 analyzes the rela-
tionship between fuzzy hybrid granules and neighborhood hybrid granules. Section 4 introduces five rough set models for
hybrid data. Section 5 investigates the relationships among the models, and the last section concludes the paper.

2. Preliminaries

Several fuzzy rough set models and the neighborhood rough set model are capable of processing hybrid data. To clarify
the relationships among them, this section reviews some basic concepts, which facilitates the understanding of the remain-
der of this paper.

2.1. Hybrid information system

The hybrid information system occurs more frequently in real-world applications than does categorical information. A
hybrid information system can be written as (U,C" = C" U ), where U is the set of objects, C" is a numerical attribute set
and (° is a categorical attribute set. To simplify this, we denote the ith numeric or categorical attribute in C" as ch. If every
object in a hybrid information system belongs to a decision class generated from decision attribute D, the hybrid information
system is a hybrid decision table, denoted as (U,C" U D).

2.2. Neighborhood rough set model

Let U be a finite universe. We associate each element x € U with a subset n(x) C U, called a neighborhood of x. A neigh-
borhood of x may or may not contain x. A neighborhood system NS(x) of x is a family of neighborhoods of x. A neighborhood
operator n : U — 2Y, where 2V denotes the power set of the universe, can describe a neighborhood.

Let n: U — 2Y be a neighborhood operator. n is considered serial if, for all x € U, there exists y € U such that y € n(x), i.e.,
for all x € U, n(x) # 0;n is considered inverse serial if, for all x € U, there exists y € U such that x € n(y), i.e., Uxeyn(x) = U; n is
reflexive if, for all x € U, x € n(x); n is symmetric if, for all x,y € U, x € n(y) implies y € n(x); n is transitive if, for all x,y,z € U,
y en(x) and z € n(y) imply z € n(x); and n is Euclidean if, for all x,y,z € U, y € n(x) and z € n(x) imply y € n(z).

Combining these special properties, we can characterize various neighborhood systems [44]. In generalizing Pawlak’s
approximation operators, we use different neighborhood operators to define distinct approximation operators. For an equiv-
alence relation R, the equivalence class [x]z may be considered a neighborhood of x. Let n denote an arbitrary neighborhood
operator and n(x) the corresponding neighborhood of x. Replacing [X]z with n(x) in Pawlak’s lower and upper approximations
leads to the definition of a pair of approximation operators [44]:

apry(X) = {x|n(x) C X, x € U} and
apra(X) = {xin(x) NX # 0, x € U},

where the subscript n indicates that the approximation operators are based on a particular neighborhood operator n. They
can be viewed as a generalization of Pawlak’s lower and upper approximations.

Please cite this article in press as: W. Wei et al.,, A comparative study of rough sets for hybrid data, Inform. Sci. (2011), doi:10.1016/
j.ins.2011.12.006
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2.3. Fuzzy rough set model

Dubois and Prade first introduced the fuzzy rough set [7], hereafter called Dubois’ fuzzy rough set for simplicity. Accord-
ing to their definition, a universe of objects U = {x1,Xs,. . .,Xn} is described by a fuzzy binary relation R, and the membership of
object x; in a fuzzy rough set (R(A), R(A)) is described as

Iy ) = Inf max{1 — R(x.). 13(1)} and

f= (%) = sup min{R(x;,x,), ft,(%)},
R(A) xeU
where A € 7 (U). #(U) is the class of all fuzzy sets in U.

If U/R = {F;,F,,...,F} is a fuzzy partition of U by a fuzzy binary relation R, then the above expressions are equivalent to
the following formulas [7]:

H;m)(Ff) = irelg max{1 — i (x), 4, (x)} and

e (F) = sup min{ i, (), 4,0}
(A) xeU

Furthermore, a collection of input fuzzy attributes C;,C,, . ., Cm, i.€., a set of fuzzy attributes, describes a universe of objects
U ={X1,X2, . .Xn} [11]. Each fuzzy attribute contains a set oflmgulstlc terms F(C;) = {Fi|k =1,...,Pc}, where P, is the num-
ber of lingmstlc terms with respect to G;. The set U/C = {Fy|i=1,...,m;k=1,...,P¢} can be regarded as fuzzy partitions of
U by a set of fuzzy attributes C. For an arbitrary fuzzy set X, the membership degree of F;, in the lower and upper approx-
imations is

My (Fre) = inf max{1 — p, (x), py(x)} and

p=  (Fie) = sup min{pi, (X), [t (x)}.
R(A) xeU

Radzikowska and Kerre presented a more general approach to the fuzzification of rough sets [33]. Furthermore, they
introduced a broad family of fuzzy rough sets, each called an (.7, 7)-fuzzy rough set, determined by an implicator .# and
triangular norm 7. The corresponding fuzzy approximation space and fuzzy rough approximations are defined below.

For a nonempty universe U and similarity relation R on U, a pair S = (U, R) is called a fuzzy approximation space.

Let S = (U, }Ni) be a fuzzy approximation space and let .# and .7 be a border implicator and a t-norm, respectively. The
(#,7)-fuzzy rough approximation in S is a mapping Apr;” : #(U) — Z (U) x # (U) defined by

for every A € # (U)

Apr{” = ((R | A),(x), (R 1 A (x)

and for every x e U
(RLA),(x) = Inf 7 (R(x.Y), pa (X)),
(RTA)” (x) =sup 7 (R(x,y), s (x)),

yeU
where 7 (U) is the class of all fuzzy sets of U.
The implicator and ‘t-norm notations are explained below.
A triangular norm, or t-norm, is an increasing, associative and commutative mapping .7 : [0,1]> — [0, 1] that satisfies the
boundary condition (Vx eLO, 1], T(xLl) = x). The most popular continuous t-norms are

o the standard min operator 7 y(x,y) = min{x,y},
o the algebraic product 7p(x,y) = x Y,
e the bold intersection (also called the Lukasiewicz t-norm) 7 (x,y) = max{0,x +y — 1}.

A triangular conorm, or ‘t-conorm, is an increasing, associative and commutative mapping .# : [0,1]* — [0, 1] that satisfies
the boundary condition (Vx € [0,1], &(x,0) = x). Three well-known continuous conorms are

o the standard max operator &y (x,y) = max{x,y} (the smallest t conorm),
o the probabilistic sum %p(x,y) =x+y —xx}Y,
e the bounded sum ¥, (x;y) = min{1,x + y}.

A negator ./ is a decreasing [0,1] — [O 1] mapping satisfying .4#"(0) = 1 and .#°(1) = 0. The negator 4" = 1 — x is usually
referred to as the standard neg.’ftor A negator A" is involutive if 47(A7(x)) = x for all x € [0 1], and it is weakly involutive if
N (N (x)) = xforall xe [O 1]. Every involutive negator is continuous [17,33].

Please cite this article in press as: W. Wei et al.,, A comparative study of rough sets for hybrid data, Inform. Sci. (2011), doi:10.1016/
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Let 7, and ./" be a {-norm, t-conorm and negator, respectively. An implicator .# is called an S-implicator based on .~
and A" if #(x,y) = 7 (N (x),y) for all xy € [0,1].
Three most popular S-implicators are

o the tukasiewicz implicator .;(x,y) = min{1,1 — x + y}, based on %, and /7,
o the Kleene-Dienes implicator .#xp(x,y) = max{1 —x,y}, based on .¥y and .47,
o the Kleene-Dienes-Lukasiewicz implicator .7 (x,y) = 1 —x +x* y, based on .¥p and /7.

Hu presented another fuzzy rough set model [11], hereafter called Hu’s fuzzy rough set, which specially processes hybrid
data. The lower and upper approximations are based on the fuzzy hybrid granules, and they are given as follows.
Let S = (U,C") be a hybrid information system and X C U a crisp set of objects. The lower and upper approximations of X are

HC"(X) = {xi|[x]» CX, x; € U} and

HC'(X) = {xi|[x] N X # 0, x; € U},

where [x;] is a hybrid granule with respect to ch.

Wang proposed a new fuzzy rough set model [38], hereafter called Wang’s fuzzy rough set, which is explicitly expressed
thus:

Let S=(U,C) be a fuzzy information system and X C U a crisp subset of objects. Wang’s fuzzy lower and upper approx-
imations of X are

M/;(X) = {Xi (S XlSC(Xi7Xj) <1- ﬁ,VXj el —X}7

WCy(X) = {x; € U|3x; € X, such that s¢(x;,%) > S}

where s(x; ;) is the similarity degree between x; and x; with respect to C.

As seen above, the neighborhood and fuzzy rough set models can process hybrid data. However, the inherent relation-
ships among these existing models, which can help a researcher select a suitable model for a special case, have not yet been
investigated. The following sections thus explore the relationships from two viewpoints: constructing information granules
and their hybrid rough approximations.

3. Comparison of hybrid information granules

In this section, hybrid information granules are divided into two types: crisp and fuzzy hybrid granules. The following
subsections explicitly investigate the relationship between them.

3.1. Construction of a crisp hybrid granule

The hybrid data can be divided into two parts: categorical and numerical. To construct the crisp hybrid granule, research-
ers introduced discretization algorithms to process the numerical part of the hybrid data. However, at least two structures
are lost in the discretization process: the neighborhood and order structures in the numerical part. To solve the problem, Hu
et al. introduced a neighborhood rough set model for hybrid attribute reduction [12].

Hybrid neighborhood granules can generally be constructed through the following three steps:

(1) constructing numerical neighborhood granules derived from a numerical attribute set;
(2) constructing categorical granules derived from a categorical attribute set;
(3) merging numerical and categorical neighborhood granules into hybrid neighborhood granules.

Hu et al. presented the following concrete method for constructing neighborhood granules [11,12].
Let S =(U,C") be a hybrid information system, C" C C" the numerical attribute set and C¢ C C" the categorical attribute
set; the numerical, categorical and hybrid neighborhood granules with respect to object x € U are defined as follows:

(1) ocn (xi) = {Xj|dcn (%, %;) < 6, X € U},
(2) O (xi) = {xjldce (xi,%;) = 0, x; € U},
(3) 56" (X,‘) = {Xj|dcn(x,‘,Xj) <OA dcr(Xi,Xj) = 07 Xj € U}

where den (x,x;) is a distance function with respect to the numerical attribute subset, d(x,x;) is a distance function with
respect to the categorical attribute subset and ¢ is a threshold.

Please cite this article in press as: W. Wei et al.,, A comparative study of rough sets for hybrid data, Inform. Sci. (2011), doi:10.1016/
j.ins.2011.12.006
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3.2. Construction of a fuzzy hybrid granule
Whether objects are described in hybrid data by categorical or numeric attributes, a relation matrix can denote the rela-

tions between the objects. To construct a fuzzy hybrid granule, a fuzzy equivalence relation derived from each attribute
cf e C" is introduced, and the relation matrix is indicated as follows.

rn T2 T'1n

21 T2 Ton
M(R.) =

Tmi Tn2 -+ Tm

where 1 € [0,1] is the relation value of x; and x; with respect to c}.
REQ should satisfy:

(1) reflectivity: Rch (Xi,x%) =1, Vx; € X;

(2) symmetry: R (x,,xj) = RCE(xj,x,-), xi, Xj € X;

(3) transitivity: R (xi,xw) > miny{RCZ (xi,xj),Rct (X, Xw)}, VXi, X, Xy € X.
The relation R,

o partitions U into many fuzzy hybrid granules (i.e., fuzzy equivalence classes) given by U/RC? = {[xilg, jH
k cl:

as U/ch = {[Xi]cg}?:p where [x;], and [Xi]cg denote the fuzzy equivalence classes determined by x; with respect to a hybrid
%

attribute cfl.

Hu et al. presented a concrete method for constructing fuzzy granules [11]. As with constructing crisp granules, generat-
ing numerical granules, creating categorical granules and merging numerical and categorical granules are necessary when
constructing fuzzy hybrid granules, indicated as follows.

The fuzzy granule induced by a numerical attribute set is a fuzzy set in U, denoted as [x;].» = < (:‘ Xy o (X' %) g e (:,[ ),
where ren (x;, X)) = NerecnTer (X, X;)3 the fuzzy granule derived from a categorical attribute set is a fuzzy setin U (in fact, it is a

crisp set because the membership function belongs to {0,1}), denoted as [xi]c :rff(x"l"‘”+’f‘(:z‘x2>+-~+ , where

Tee (X, X)) = ﬂcngccrch (xi,x;); and a hybrid granule is generated by mixing numerical and categorical granules, denoted as

T'ee (XiXn)
Xn

T'en (%iX1) X; X1) (X( X2)

+ (-h + + (-h

X( Xn)

Xi]on = , where 1 (X;, X)) = ren(Xi, X;) N Tee (X3, X;).

3.3. Comparing a neighborhood hybrid granule and a fuzzy hybrid granule

In a hybrid information system, the neighborhood hybrid granule with respect to a hybrid attribute set is a crisp object
set, but the fuzzy hybrid granule (fuzzy equivalence class) induced by a hybrid attribute set is a fuzzy object set. These hybrid
granules obviously differ. However, the above analyses &Sections 3.1 and 3.2) show that neighborhood and fuzzy hybrid
granules are constructed based on the distance between objects. A relationship thus exists between a neighborhood hybrid
granule and a fuzzy hybrid granule, given by the following theorem.

Theorem 3.1. LetS = iU, C") be a hybrid information system,C" U C° = C", C" a numerical attribute set and C¢ a categorical attribute

1, de(x,x)=0
set. If ren (i, %)) = f(den (%1, X)), Tee (%, X)) = {07 oghgz;wijs)e
(Ki ), = Oen (Xi)lszp-13y»

where f(0) =1, f(1) =0,f(-) € [0,1], f(x) <f(y) if x>y, fX) =f(y) if x=y, 2€(0,1], dnls_p1;(x:) indicates the neighbor-
hood granule in which the parameter ¢ is equal to 4, and de (x;,x;) and dc<(x;,x;) are normalized distances, respectively.

and e (x;,X;) = min{res (X;,X;), Tee (X4, %7) }, then

Proof. According to the existing conditions, we have

f(dC”(Xivxj))v dCC(Xivxj) = 07

e (Xi, X)) = min{ren (X;, X;), ree (X, X))} = !
oo 53) = min{res (5. 9). e () = { o)

Therefore,
(i), = Xjlren (xi, %) = A,%; € U}
= {X|(f(den (xi,%))) = 2) A (dee (xi,X;) = 0),x; € U}
= {ledcn(Xj,Xj) <f7] (2) A dcr(Xi,Xj) = 0./Xj S U}
= Oen (%) |51 u

Please cite this article in press as: W. Wei et al.,, A comparative study of rough sets for hybrid data, Inform. Sci. (2011), doi:10.1016/
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h-cut Neighbor-
of fuzzy hood
granules granules

Fig. 1. Relationship between fuzzy granules and neighborhood granules.

Theorem 3.1 shows that the cut set of fuzzy hybrid granules is a neighborhood granule. Fig. 1 illustrates the relationship.
Hu et al. presented a special case [11], in which the similarity between two objects is defined as

Ten (X, Xj) = min{ren (i, X;), Tee (Xi, X))}
B {min{f(dcn (%i,%;)), 1}, den(Xi, %) < oc and dee(x;, %) =0

0, otherwise
. 1 —% X dcn (X,‘,Xj)7 d(_—n (Xi,Xj) < o and dCC(X,‘7Xj) = O7
"o, otherwise,

where
1, dcc(xi,xj) =0

1
Ten (Xi,Xj) :f(dcn (X,‘7Xj)) =1 —& X dcn (X,*7Xj) and Tce (Xi7Xj) = {07 otherwise

According to Theorem 3.1, we get ([Xi|1), = e (Xi)|(1_),- Furthermore, when the parameter o = 0.25, the following equation

can be obtained, ([Xi]x), = e (i) 5.2 where § (i) 5-rz indicates the neighborhood granule in which the threshold § = 132

4. Rough approximations for hybrid data

Defining rough approximations (lower and upper approximations) is a key problem for a rough set model. In this section,
we review several common rough approximations for hybrid data.

4.1. Neighborhood rough approximations

Hu et al. [11,12] applied the neighborhood rough set model to process hybrid information data, and the corresponding
lower and upper approximations are defined thus:

Let S = (U,C") be a hybrid information system and X C U a crisp set of objects. The neighborhood lower and upper approx-
imations of X can be defined as

NC"5(X) = {x:|d0 (%)) CX, x; € U},
NC'5(X) = {xi[d (x) N X # 0, x; € U}.
Furthermore, the lower and upper approximations of a hybrid decision table are thus:

Let S=(U,C"uD) be a hybrid decision table, C" a hybrid condition attribute set, D a decision attribute, and U/
D= {Y1,Y2,AL. ., Yy} a partition of discoursed universe U; the neighborhood lower and upper approximations for decision D are

NC"D = U NC"5(Y5),
NC"D = UY  NC"5(Y).

4.2. Hu's fuzzy rough approximations

Hu’s fuzzy rough set model is another rough set model for processing hybrid data. SubSection 2.3 introduced the defini-
tion of lower and upper approximations for the model.

Furthermore, for a given hybrid decision table S = (U,C" U D), U/D = {Y,Y»,..., Yy} is a partition of discoursed universe U.
The lower and upper approximations with respect to the decision D are -

HC'D = UY |HC"(Y),
HC'D = UY | HC"(Y)).

4.3. Wang'’s fuzzy rough approximations

In hybrid information systems, the similarity degree between two objects with respect to a fuzzy attribute set C" is s(x;, X;),
and Wang's fuzzy lower and upper approximations can be rewritten as

Please cite this article in press as: W. Wei et al.,, A comparative study of rough sets for hybrid data, Inform. Sci. (2011), doi:10.1016/
j.ins.2011.12.006
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WC",(X) = {xi € X|s(xi,x,) < 1— B, Vx € U—X},
WC";(X) = {x; € U|3x; € X, such that s(x;,x;) > f}.

For processing hybrid data using Wang'’s fuzzy rough set model, the similarity degree r(x;,x;) is employed to measure
the similarity between two objects. Thus, Wang’s fuzzy lower and upper approximation can be rewritten as

W_Ch/;(X) ={x e X|[ra (X, %) <1-p,Vx € U—-X},
WC"(X) = {x; € U|3x; € X, such that ra(x;, %) > f}.

Furthermore, let S = (U,C* U D) be a hybrid decision table and U/D = {Y1,Y2,,. ., Yy} a partition of discoursed universe U. The
neighborhood lower and upper approximations for decision D are

wch,D = Y WCh(v)),
WCh,D = U, W (v,).
The similarity between two objects in Wang’s fuzzy lower and upper approximation can also apply to other similarity
measures.

4.4. Dubois’ fuzzy rough approximations

Hu et al. simplified Dubois’ fuzzy rough approximations [9], where, for a given hybrid information system S = (U,C"), X is a
crisp subset of U, and r(x;,X;) measures the similarity between two objects, thus:

) (i) = r&i}p{] = Ten(Xi %)}
]

X)) = r)r(})g?({rch (Xi, %))}

4.5. Radzikowska and Kerre’s fuzzy rough approximations

Cornelis et al. [5] used the model proposed by Radzikowska and Kerre [33] to obtain attribute reductions in hybrid data,
using the Lukasievicz connectives (7, .#;) and (J y, #xp). Let S = (U,C") be a hybrid information system and X a crisp subset
of U. r (x;,X;) measures the similarity between two objects, rewriting Radzikowska and Kerre’s fuzzy rough approximations
as

(R LX), (x) = inf 7u(ren(x,%), fy (%),

(R1X)7(X;) = sup 71 (ren (Xi, X)), fy (%3)),

xjeU
(R LX), X) = inf o (ron (%i, X;), i (Xi),
(R1X)7"(xi) = sup 7 m(ren (X, X;). fix ().

xeU

5. Comparing rough approximations for hybrid data

Hu’s fuzzy, neighborhood and Wang’s fuzzy rough approximations for hybrid data are all crisp object sets, whereas Du-
bois’ and Radzikowska and Kerre’s fuzzy rough approximations for hybrid data are fuzzy object sets. These rough approxi-
mations are divided into two types: crisp and fuzzy hybrid rough approximations. This section investigates the relationships
among them.

5.1. Relationships among crisp hybrid rough approximations

Neighborhood rough approximations are defined based on neighborhood hybrid granules, and Hu'’s fuzzy rough approx-
imations are defined by constructing fuzzy hybrid granules. Furthermore, because the cut sets of a fuzzy hybrid granule is a
neighborhood hybrid granule, neighborhood rough approximations are more general than Hu's fuzzy ones. The following
theorem offers a concrete explanation.

Theorem 5.1. Let S = (U,C") be a hybrid information system and let X C U be a crisp set. If rc» (*%i,%) = f(den (X3, %)), Tee (X3, X)) =

1, de(x,%x)=0 .
{O; oghserlwijs)e and 1 (X;,X;) = min{ren (X;, X)), e (X;, %) }, then

Please cite this article in press as: W. Wei et al.,, A comparative study of rough sets for hybrid data, Inform. Sci. (2011), doi:10.1016/
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NC"(X) = HC"(X) and NC":(X) = HC"(X),

where ¢ is a constant that satisfies o (Xi)|s_; = dcn (Xi)|s=y — {Xilden (X1, %) = 1}

Proof. From Theorem 3.1 and the existing conditions, we have
Oen (Xi)ls1 = ([Xi]n)o-
Furthermore, because {x;|dq (x;, X)) = 1} = {Xj|rq (X;, X;) = 0},
Ien (Xi)ls—e = On (Xi) |5y — {Xildn (%, %) = 1} = ([Ki]w ) — {Xj|Ten (%1, %;) = O}
Therefore,
NC":(X) = {xi[600 (%)), © X, % € U}
= {xil(([Xi]cn)o — {Xren (%i, %;) = 0}) € X, x € U}
= {xi|[Xi]c CX,x; € U}
= HC"(X) and

NC.(X) = {x:[8c (%), N X # 0, % € U}
= {xi| (i) — {Xlren(. ;) = 0}) NX # 0.% € U}
= {XiHXi]C" nX# @,Xi € U}
— HC"(X).
Theorem 5.1 shows that, in essence, neighborhood rough approximations are identical to Hu’s if the parameter satisfies a

special condition. Neighborhood lower and upper approximations are the generalizations of Hu's fuzzy ones. It can be spe-
cifically indicated by Fig. 2.

Furthermore, the definitions indicate that Wang’s fuzzy rough approximations are generated using the similarity between
two objects, and fuzzy hybrid granules construct Hu's fuzzy rough approximations, which also rely on the similarity between
two objects. Some relationships among Wang's and Hu’s fuzzy rough approximations may therefore exist. The following two
theorems investigate these relationships.

Theorem 5.2. LetS = (U, C") be a hybrid information system, and X C U. If I (Xi, X;) measures the similarity between two objects. If

dee(x,%) =0
(%) = F(den (%3, T (31, ) = {1’ (% %)

: and 1.4 (X;, X)) = Min{re (X, X;), T (X1, %) },
0 othermise 0 0, %) = minre (%,%). e (. )

then
WC";(X) = HC"(X).

Proof. From the definition of Wang’s lower and upper approximations, we have
WC" (X) = {x € X|ran(xi,%) <11, V¥ ¢ X}
={x e X[ra(x, %) =0, Vx; ¢ X}
= {x; € X|x; € X if rau(x;, %) > 0}
= {X,‘HX,‘}C»] CX,xi € U}
=HC"X). O

, s . e 4 .
SN \, / Hu’s
Neighbor- "\ + [ fuzzylower \
hood lower | 875 U U0
approxima- | |,
? /

\

\ ; / \ tion o/
N tion e s
e S P . R

Tai \ u’s \
Neighbor- o
5=5 [ fuzzy upper

hood upper | o=5 S

approzimas <> approxima-

< : / \ q

\. 3 / b tion
tion S o

Fig. 2. Relationships between neighborhood rough approximations and Hu's fuzzy rough approximations.
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Theorem 5.2 shows that Wang’s fuzzy lower approximation is the same as Hu'’s if the parameter =1 in Wang’s lower
approximation. Therefore, we conclude that Wang’s fuzzy lower approximation is more general than Hu’s.

Theorem 5.3. Let S = (U, C") be a hybrid information system, and X C U. If T (X;, X;) evaluates the similarity between two objects
in Wang’s and Hu’s fuzzy upper approximations, then

W', (X) = HC"(X),

where { is a  constant  that  satisfies  {x; € Ulra(xi, %) = ¢, 3 € X} = {x; € Ulra(x;,%;) = 0, Ix; € X} —
{xi e Ulra(xi,%) = 0, 3x; € X}.

Proof. From the existing condition, we have

WC".(X) = {x € Ulra(xi, %) = {,3x € X}
= {xi|ren (Xi, %) > 0,3x; € X}
= {X,‘HX;‘}Cn NnX # (0,Elxj S X}
—HC"X). O

Theorem 5.3 indicates that Hu’s fuzzy upper approximation is identical to Wang’s if the parameter $ is an infinitesimal.
Therefore, in some sense, Hu's fuzzy upper approximation is a special case of Wang’s. Fig. 3 specifically indicates the results
from Theorems 5.2 and 5.3.

The following two theorems examine the relationships among Wang’s fuzzy rough approximations and neighborhood
rough approximations.

Theorem 5.4. Let S=(U,C") be a hybrid information system and X C U a crisp set. If ren (*%i,%) = f(den (X3, %)), Tee (X3, X)) =

{17 dCC(Xl‘7Xj):O

0 otherwise and 1 (X;, X)) = min{ren (x;, X;), Tee (X;,X;) }, then

W_Ch,,(X) = N_Chffl(l—/i)(x) —{xi e X|x; € X if (den (%, %)) =f1(1-p)},
where f(0)=1, f(1)=0, f(-) € [0,1], fix) <fly) if x>y, and fix) =fy) if x = y.

Proof. From the existing conditions, we have

WC"(X) = {xi € X|ron (%, %) < 1= B,V ¢ X}

= {x; € X|den (X, %;) > f (1—pB) Adee(xi,%5) =0, Vx; ¢ X}

= (% € X € X if den(,%) <f (1~ ) A dee(i, %) = 0}

= {3 € X[x; € X if(der (%, %) <f1(1 = ) A dee (1, %)) = 0}
—{x; € X|x; € X if (den (%, %) = f71(1 = B)) Adee (X1, %)) = 0}

= {Xilocn (X)) |11 € X, X € U}
—{xi € Xlx; € X if (dev (%1, %;) = f1(1 = ) Ade (i, X;) = O}

= NC'y-11y (X) = {xi € Xlxj € X if (den(xi,%) =f'(1 =)} O

Theorem 5.4 indicates a one to one correspondence between Wang’s fuzzy lower approximation and neighborhood lower
approximation.

[ fuzzylower | P=1 [ fuzzylower
\ |)p1 it fe——>| 1ppro\|m1 J
twn \ tion

/\\ nng\ /l Tu’s
( fuzzy uppe = fuzzy upper \

ppm\lma- approxima- |
\ tion \ llon/

Fig. 3. Relationships between Wang’s rough approximations and Hu's fuzzy rough approximations.
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Theorem 5.5. Let S = (U,C") be a hybrid information system and let X C U be a crisp set, and rcn (i, X;) measures the similarity
1, de(x,%)=0

0. otherwise and e (x;,X;) = min{ren (x;,X;), ree (X, %;) }, then

between two objects. If ren (X;, Xj) = f(den (Xi, X)), Te (%3, X)) = {

WC5(X) = N1 (X),
where f(0)= 1, f(1) =0, f(-) € [0.1], f(x) < f{y) if x > y, and f(x) = f(y) if x =.

Proof. According to the existing condition, we have
WC"y(X) = {x; € Ulros(x,%) = B, 3 € X}
= {xilden (%, %)) < f71(B),3x; € X}
= {XilScn (Xi) 5515y N X # 0}
=NC" ) (X). O

As in Theorems 5.4 and 5.5 suggests that there is a one to one correspondence between Wang's fuzzy upper approxima-
tion and neighborhood upper approximation. Fig. 4 illustrates these relationships.

The conclusions in Theorems 5.4 and 5.5 indicate that the one-to-one correspondence between two lower approxima-
tions differ from that between the two upper approximations. The following theorems give the reason for this problem.

Theorem 5.6. Let S = (U, C") be a hybrid information system and let X C U be a crisp set. If B; > Bo, then
wC's, (X) c WC, (X),
WC";, (X) cWC"y, (X).

Proof. From the existing conditions, we have
WC", (X) = {x; € X|ren(xi,%7) <1 1, V% ¢ X}
C{xi € X[ra(xi, %) <1 f,,V% ¢ X}
={x; eXx e Xif ra(xi,%)>1—p,}
= Wc", (X) and

WC"y, (X) = {xi € Uren (xi, %) = By, 3 € X}
= {x; e Ulran(xi, %) > Bp,3X € X}
C{xie Ulra(xi,x;) = fp, 3 € X}

= WC"y, (X).

Theorem 5.7. Let S= iU, C") be a hybrid information system and let X C U be a crisp set. If §; > &5, then

NC";, () € NC";, (%),

NC";, (X) 2 NC"5, (X).
As in the proof of Theorem 5.6, using the definitions of neighborhood lower and upper approximations, proving the the-
orem is easy.

e —
/ Neighbor- / \\":mg‘s\\
[ hoodlower |38=/"(1-p) [ fuzzylower |
\  approxima- | \  approxima- |

\\ tion / \\ tion /

~ -

’/ Ncighbor-\.\ / \\'ang's\
[ hoodupper | §=7"(p) [ fuzzy upper ‘
|\ approxima- | \  approxima- |

N/ & A

Fig. 4. Relationships between Wang's fuzzy rough approximations and neighborhood rough approximations.
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Theorems 5.6 and 5.7 show that changing Wang’s fuzzy rough approximations with parameter g differs from changing
neighborhood rough approximations with parameter .

5.2. Relationships among fuzzy and crisp hybrid rough approximations

Both fuzzy and crisp hybrid rough approximations are constructed based on the similarity between two objects. There-
fore, we speculate that there exists some inherent relationships among them. Dubois’ and Radzikowska and Kerre’s fuzzy
rough approximations are two important fuzzy hybrid rough approximations. This subsection therefore investigates the
relationships among crisp and fuzzy hybrid rough approximations.

In the following, several theorems illustrate the relationships among Dubois’ fuzzy rough approximations and crisp hy-
brid rough approximations.

Theorem 5.8. Let S=(UC") be a hybrid information system, and X C U. If ren(Xi, %) = f(den (X3, %)), Tee (X3, X)) =

1, de(x,%x)=0 .
{O; oghgerlwijs)e and 1 (X;,X;) = min{ren (X;, X)), Tee (X;, %) }, then

(C"(X)), = HC"(X),
(X)) = HC"(X)

Proof. According to the existing conditions, we have
(€0 = fxlmin{1 —ra(x.x)} > 1}
={Xl1 —ra(xi,%) = 1,Vx; ¢ X}
= {Xilren (xi, %)) <0,V ¢ X}
= {xilren (%1, %;) = 0,Vx; ¢ X}
= {xi|[X]c CX,x; € U}
= HC"(X),

(C"(X))5 = {xi| max{re (x,.%)} > 0}
= {Xi[re (xi, %) > 0,3x; € X}
= {XiHX,‘}C), NX#0,x € U}
— HC"(X).

Theorem 5.8 shows that Hu’s lower approximation is the 1-cut of Dubois’ fuzzy lower approximation, and Hu’s upper
approximation is the strong O-cut of Dubois’ fuzzy upper approximation.

Theorem 5.9. et S=(UC") be a hybrid information system, and X C U. If ren(Xi, X)) = f(den (X3, X)), Tee (X3, X)) =

1, de(x,%)=0 .
{07 ogherlwijse and 1 (X;, X;) = min{res (X, X;), T'ee (X, %) }, then

(C"(X));, = NC" 1) (X) — {xi € X|x; € X if (den (%3, %;) = F 7 (1 — 7)) A dee (%1, %;) = O},
where 26){0, 1], 6 eLO, 1), f(0)=1f1)=0, f() eLO, 1], f(x)<fly) if x>y, and f(x) = fly) if x = y.

Proof. According to the existing conditions, we have
(CX)), = {xil min{1 - e (xi. %)} > 2}
= {X,’|1 - rc;.(xi,xj) > X,VX]' ¢ X}
= {Xilre (X, %) <1 - 24,Vx; ¢ X}
= {X,‘l(dcn (X,',Xj) = fﬁl (l — )) A dCt(Xi,Xj) = 0) vV (dcr(Xi,Xj) = 1),VX]' ¢ X}
= {X,’ € X‘Xj cX lf(dcn (Xi,Xj) Sffl(] — ))) A dcf(Xi,Xj) = 0}
—{x;i € X|x; € X if (den (%1, %) = f1(1 = 7)) A dee (%3, %) = 0}
= {Xil0cn (Xi) 5111 € X, Xi € U}
—{x;i € X|x; € X if (den (%, %) = f~1(1 = 7)) Adee (%1, %) = 0}
= N_C‘hf—](l,,:)(x) — {x;i € X|x; € X if (den (%, %) = f~1(1 = 7)) Adee(%:,%;) = 0}.
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Theorem 5.9 indicates that neighborhood lower approximation is inherently identical to the /-cut of Dubois’ fuzzy lower
approximation because a one-to-one correspondence between parameters ¢ and /.

Theorem 5.10. Let S=(U,C") be a hybrid information system, and X C U. If Ten(Xi, X)) = f(den (X1, X)), Tee (%1, X)) =

{ 1, dcc(X,‘,Xj) =0

0. otherwise , and e (x;,X;) = min{ren (X;,X;), e (X3, X)) }, then

(C"(X)), = NC"-1(X),
where ;. (0,1], 6 € [0,1), f(0)=1, f(1)=0, f(-) € [0, 1], fix) < fy) if x>y, and fix) = f(y) if x = .

Proof. According to the existing condition, we have

(C'X)), = {xI max{ra (6. %)} > 7}
= {Xilren (X3, %) = 4,3% € X}
= {Xi|der (%i, %) < f71(2) Adee (%, %) = 0,3%; € X}
=NC'.,(X). O

Similar to Theorems 5.9, 5.10 shows that neighborhood upper approximation is the same as the /-cut of Dubois’ fuzzy
upper approximation because a one-to-one correspondence also exists between § and .

Theorem 5.11. Let S=(U,C") be a hybrid information system, and X ¢ U. If rcn(Xi,X;) evaluates the similarity between two
objects in Dubois’ and Wang’s fuzzy upper approximations, then

(X)), = wc", (),
(X)), = WC",(X).

Proof. From the existing condition, we have

(X)), = {xi fgg){l{l —Ten(Xi, X))} > 4}

= {1 —ra(xi,x;) > 2,Y% ¢ X}
= {Xi|ren (X, %) <1-2,Vx; ¢ X}
= wc",(x).

Furthermore,

(X)), = (ul maxire (vx)} > 7}
= {x,-|rc;. (X,‘,Xj) > 2,3 € X}

=wc,x). O

Theorem 5.11 states that Wang's fuzzy rough approximations is in essence equal to the i-cut of Dubois’ fuzzy rough
approximations.

Fig. 5 illustrates the relationships among Hu’'s fuzzy, neighborhood, Wang’'s fuzzy and Dubois’ fuzzy rough
approximations.

Radzikowska and Kerre demonstrated that employing (7, #xp) in Radzikowska and Kerre’s fuzzy rough approximations
gives exactly Dubois’ fuzzy rough approximations [33]. Fig. 6 illustrates this relationship. Furthermore, using the results from
Theorems 5.8, 5.9, 5.10, 5.11, obtaining relationships among Radzikowska and Kerre’s fuzzy and crisp hybrid rough approx-
imations is easy.

Example 1 better illustrates the relationships among crisp and fuzzy hybrid rough approximations. The above analyses
show that the relationships among Dubois’ fuzzy and crisp hybrid approximations are representative. Therefore, we only
analyze the relationships among Dubois’ fuzzy and crisp hybrid rough approximations in the example.

Example 1. Table 1 is part of the table Ecoli in UCI datasets, in which Sequence name is the ID of objects, MCG, GVH, LIP, CHG,
AAC, ALM1 and ALM2 are the condition attributes (LIP and CHG are catégorical, and the others are numerical), and Class is the
decision attribute. Table 1 indicates that it is a hybrid decision table. For convenience, suppose that C" = {MCG,GVH,AA-
C,ALM1,ALM2}, C = {LIP,CHG}, C" = C" U C* and D = {Class}.

Please cite this article in press as: W. Wei et al.,, A comparative study of rough sets for hybrid data, Inform. Sci. (2011), doi:10.1016/
j.ins.2011.12.006
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Fig. 5. Relationships among Dubois’ fuzzy rough approximation and crisp hybrid rough approximations.

13

and 1 (X, %) =

512 Without loss of generality, let ren(X;,%;) = f(den(%:,%;)) = { (1)7_ 2dcn (X3, %), ggh(grlv;{{;: 0.5
510 {0 Sinerise - where dex,x) = max(”| (TR and det ) = { ] St S DI <€
514 After computing, we obtain the following distance matrix:
o 0 0.2323 03529 0.7176 0.7412 0.8353 1 07412 1 1
0.2323 0 0.2353 0.6406 0.6235 0.7879 0.8824 06235 1 1
0.3529 0.2353 0 0.6563 0.3882 0.6566 0.6471 04545 1 1
0.7176 0.6406 0.6563 0 1 1 0.8281 08438 1 1
D(C") = 0.7412 0.6235 0.3882 1 0 03334 03131 03467 1 1
0.8353 0.7879 0.6566 1 0.3334 0 0.6465 0.2400 1 1
1 0.8824 0.6470 0.8281 0.3131 0.6465 0 04444 1 1
0.7412 0.6235 0.4545 0.8438 0.3467 0.2400 0.4444 0 11
1 1 1 1 1 1 1 1 0 1
517 1 1 1 1 1 1 1 1 10
518 and similarity matrix:
o 1 0.5354 0.2941 O 0 0 0 0 00
0.5354 1 0.5294 0 0 0 0 0 00
0.2941 0.5294 1 0 0.2235 0] 0 0.0909 0 O
0 0 0 1 0 0] 0 0 00
M(ch) = 0 0 0.2235 0 1 0.3334 03737 03067 0 O
0 0 0 0 03334 1 0 05200 0 O
0 0 0 0 03737 0 1 0.1111 0 O
0 0 0.0909 0 0.3067 0.5200 0.1111 1 00
0 0 0 0 0 0 0 0 10
521 0 0 0 0 0 0] 0 0 01

522 The equivalent classes induced by hybrid attribute set C* and decision attribute Class are
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Fig. 6. Relationship between Dubois’ and Radzikowska and Kerre’s fuzzy rough approximations.

Table 1
Data description.
Sequence name MCG GVH LIP CHG AAC ALM1 ALM2 Class
Xx1(FTSN) 0.00 0.51 0.48 0.50 0.35 0.67 0.44 im
X2(FTSQ) 0.10 0.49 0.48 0.50 0.41 0.67 0.21 im
x3(MOTB) 0.30 0.51 0.48 0.50 0.42 0.61 0.34 im
X4(TOLA) 0.61 0.47 0.48 0.50 0.00 0.80 0.32 im
xs5(TOLQ) 0.63 0.75 0.48 0.50 0.64 0.73 0.66 im
Xs(EMRB) 0.71 0.52 0.48 0.50 0.64 1.00 0.99 im
Xx7(ATKC) 0.85 0.53 0.48 0.50 0.53 0.52 0.35 imS
xs(NFRB) 0.63 0.49 0.48 0.50 0.54 0.76 0.79 imS
Xo(NLPA) 0.75 0.55 1.00 1.00 0.40 0.47 0.30 imL
X10(CYOA) 0.70 0.39 1.00 0.50 0.51 0.82 0.84 imL
1 05353 02941 0 O O O O o 0
Xi]en = —+ + +—Ft—F+—F—F—+t—+—,
X1 X2 X3 X4 X5 X X7 Xg X9 X0
05353 1 052949 0 O O O O O 0
X2 = +—+ +—Ft—F—F+—F—+—+—,
X1 X2 X3 X4 X5 X X7 Xg X9 X0
02941 05294 1 0 02235 0 O 00909 O 0
[X3]en = + +—+— +—+—+ +—+—
X1 X2 X3 Xy X5 Xe X7 Xg X9 X10
o 0 01 0 O O 0 O 0
Kelp=—F—F+—F—F—F—F—F+—F+—+—,
X1 X2 X3 X4 X5 Xe¢ X7 Xg X9 Xio
0 0 02235 0 1 03333 03737 03067 O 0
Xs]on =—+—+ +—+— + + +—+ ,
X2 X3 X4 X5 Xe X7 Xg X9 X10
0O 0 O O 03334 1 0 052 0 0
[XG}CII:——&-——I———«——-}— +—t—Ft——+—+—,
X1 X2 X3 X4 Xs Xe X7 Xg X9 X10
0O O O 03737 0 1 01111 O 0
X7len =+ ——+—+—+ +—+—+ +—+——,
X1 X2 X3 X4 Xs Xe X7 Xg X9 X10
0 O 00909 0 03067 05200 01111 1 0 0
[Xg}cn*—-&-—-i- +—+ + + +—t—+—,
X1 X2 X3 X4 Xs X X7 Xg X9 X0
0O 0 0 0 0O O O o0 1 0
[Xg}ch =—+—+ —

Xi ' Xp X3 X4 Xs Xs6 X7 Xs Xo Xio’
0O 0 0 0 0 O O 0 o 1
Koloh =—+—+—+—F+—F+—F+—F+—+—+—,
X1 X2 X3 X4 X5 Xe¢ X7 Xg X9 Xio
Y1 = {X1,X2,X3,X4,X5, X5},
Yy = {x7,xs},

Y3 = {X9,X10},

where Y7, Ys, Y3 are the decision classes induced by decision attribute.

Furthermore, we can obtain the upper and lower approximations of Y;:
h 1 1 09091 1 06263 04800 0 0 O O
CY)=—+—+ +—+ + =ttt

X1 X X3 Xy X5 X6 X7 Xg X9 Xio

- 1 1 1 1 1 1 03737 05200 0 O
CY) =ttt —t—+—+ + +—+—,

X1 X2 X3 X4 X5 Xg X7 Xs X9 X10

HC" (Y1) = {x1,%, Xa},

HC"(Yl) = {X1,X2,X3,X4,Xs5,X6,X7,X3}.
Thus, it is easy to know that
(C"(Y1)); = {¥1.X2, x4} = HC"(Y),

(C"(Y1))g = {X1,X2, X3, X4, X5, X6, X7, X5} = HC"(Y1).
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The results are in accordance with Theorem 5.8.
Suppose that parameter ¢ = 0.3. One can obtain that 6 (X1) = {X1,X2}, 0 (X2) = {X1,X2,X3}, dn(X3) = {X2,X3}, On(Xg) =
{X4}, 5Ch (Xs) = {)(5}7 (3Ch (XG) = {XG.,Xg}, 5C!1 (X7) = {?(7}7 (3Ch (Xg) = {XG,Xg}7 (5Ch (Xg) = {Xg}7 (5Ch (X]o) = {X]o}. Thus

NC"o3(Y1) = {X1,X2,X3,Xa, X5},
{Xl“X}‘ cY; if dcn (X,‘,Xj) =03A dCC(Xi,Xj) = O} = @, and

h
NC"3(Y1) = {X1,X2,X3,X4,X5,X6, X3 }.

Because the relationships between 4 and 6 in lower and upper approximations are 5 = f '(1 — 1) and 6 = f (1), obtaining that
A=1-(1-2%03)=0.6and 1=1 — 2 x 0.3 = 0.4, respectively. Therefore, we can obtain that

(C"(Y1))og = {X1,X2,X3,X4,X5} = NC"o3(Y1) — 0,
(C"(Y1))ga = (%1, %2, X3, X4, X5, X6, X5} = NC"3(Y).

The given example easily explains Theorems 5.9 and 5.10.
In addition, suppose that g =0.6; it is easy to obtain that

WC"o6(Y1) = {X1,%2,%3,%a, %5} = (C"(Y1))g6:
WC"05(Y1) = {X1,%2,X3,Xa, X5, X5} = (C"(Y1))g5.

The above equations expound and illustrate Theorem 5.11.

6. Conclusions

This paper clarifies the relationships among the generalized rough set models for hybrid data. To approach the target, we
investigated the relationships among the rough sets from two viewpoints: constructing information granules and rough
approximations. We first investigated in detail the construction of fuzzy and neighborhood hybrid granules. We then ana-
lyzed the relationships among these rough approximations. We came to the following conclusions: Hu's fuzzy rough approx-
imations are special cases of both neighborhood and Wang’s fuzzy rough approximations. One-to-one correspondence
relationships exist between Wang's fuzzy and neighborhood rough approximations. Wang’s fuzzy and neighborhood rough
approximations are the cut sets of Dubois’ and Radzikowska and Kerre’s fuzzy rough approximations, respectively. These re-
sults can help researchers both understand these generalized rough sets and select a proper model for a given application.
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