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Based on the intuitionistic knowledge content nature of information gain, the concepts
of combination entropy and combination granulation are introduced in rough set theory.

The conditional combination entropy and the mutual information are defined and their

several useful properties are derived. Furthermore, the relationship between the combi-
nation entropy and the combination granulation is established, which can be expressed

as CE(R) + CG(R) = 1. All properties of the above concepts are all special instances of

those of the concepts in incomplete information systems. These results have a wide vari-
ety of applications, such as measuring knowledge content, measuring the significance of

an attribute, constructing decision trees and building a heuristic function in a heuristic

reduct algorithm in rough set theory.

Keywords: Rough set theory; combination entropy; combination granulation

1. Introduction

Rough set theory, introduced by Pawlak1,2, is a relatively new soft computing tool
for the analysis of a vague description of an object. The adjective vague, referring
to the quality of information means inconsistency or ambiguity which follows from
information granulation. The rough set philosophy is based on the assumption that
with every object of the universe there is associated a certain amount of information
(data, knowledge), expressed by means of some attributes used for object descrip-
tion. Objects having the same description are indiscernible (similar) with respect to
the available information. The indiscernibility relation thus generated constitutes a
mathematical basis of the rough set theory; it induces a partition of the universe
into blocks of indiscernible objects, called elementary sets, that can be used to build
knowledge about a real or abstract world1−6. The use of the indiscernibility relation
results in knowledge granulation. The focus of rough set theory is on the ambigu-
ity caused by limited discernibility of objects in the domain of discourse. Its key
concepts are those of object indiscernibility and set approximation, and its main

1
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perspectives are information view and algebra view7.
The entropy of a system as defined by Shannon (1948) gives a measure of uncer-

tainty about its actual structure8. It has been a useful mechanism for characterizing
the information content in various modes and applications in many diverse fields.
Several authors (see, e.g.9−13) have used Shannon’s concept and its variants to mea-
sure uncertainty in rough set theory. But Shannon’s entropy is not a fuzzy entropy,
and cannot measure the fuzziness in rough set theory. A new information entropy
was proposed by Liang in14−16, and some important properties of this entropy are
also derived. Unlike the logarithmic behavior of Shannon’s entropy, the gain func-
tion of this entropy possesses the complement nature. This entropy can be used
to measure the fuzziness of rough set and rough classification. In17, Mi el al. gave
a new fuzzy entropy and applied it for measuring the fuzziness of a fuzzy-rough
set based partition. In18, a new information entropy (combination entropy) and a
new information granulation (combination granulation) were introduced to measure
the uncertainty of an incomplete information system, and the relationship between
these two concepts was established. The gain function of combination entropy pos-
sesses a intuitionistic knowledge content nature. It is mentioning that the equation
CE(P ;Q) = CE(Q) − CE(Q | P ) holds, where CE(P ;Q) denotes the mutual in-
formation between the attribute set P and Q, CE(Q) is the combination entropy of
Q, and CE(Q | P ) represents the conditional combination entropy Q with respect
to P in incomplete information systems, respectively.

This paper aims to establish combination entropy and combination granulation
in rough set theory. Some preliminary concepts such as knowledge, incomplete infor-
mation systems, approximation space and partial relation are reviewed in Section 2.
In Section 3, the combination entropy, the conditional combination entropy and the
mutual information in rough set theory are introduced, and their several important
properties are induced. In Section 3, the combination granulation in rough set the-
ory is given. The relationship between the combination entropy and the combination
granulation is established as well. Section 4 concludes the paper.

2. Preliminaries

In this section, we review some basic concepts such as knowledge, incomplete
information systems, approximation space and partial relation.

An information system is a pair S = (U,A), where,
(1) U is a non-empty finite set of objects;
(2) A is a non-empty finite set of attributes;
(3) for every a ∈ A, there is a mapping a, a : U → Va, where Va is called the

value set of a.
Each subset of attributes P ⊆ A determines a binary indistinguishable relation

IND(P ) as follows

IND(P ) = {(u, v) ∈ U × U | ∀a ∈ P, a(u) = a(v)}.
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It can be easily shown that IND(P ) is an equivalence relation on the set U . For
P ⊆ A, the relation IND(P ) constitutes a partition of U , which is denoted by
U/IND(P ).

If Va contains a null value for at least one attribute a ∈ A, then S is called an
incomplete information system, otherwise it is complete19,20. Further on, we will
denote the null value by ∗.

Let S = (U,A) be an information system, P ⊆ A an attribute set. We define a
binary relation on U as follows

SIM(P ) = {(u, v) ∈ U × U | ∀a ∈ P, a(u) = a(v) or a(u) = ∗ or a(v) = ∗}.
In fact, SIM(P ) is a tolerance relation on U and the concept of a tolerance relation
has a wide variety of applications in classification19. It can be easily shown that
SIM(P ) =

⋂
a∈P SIM({a}).

Let SP (u) denote the set {v ∈ U |(u, v) ∈ SIM(P )}. SP (u) is the maximal set
of objects which are possibly indistinguishable by P with u.

Let U/SIM(P ) denote the family sets {SP (u)|u ∈ U}, the classification induced
by P . A member SP (u) from U/SIM(P ) will be called a tolerance class or a granule
of information. It should be noticed that the tolerance classes in U/SIM(P ) do
not constitute a partition of U in general. They constitute a covering of U , i.e.,
SP (u) 6= Ø for every u ∈ U , and

⋃
u∈U SP (u) = U .

Let K = (U,R) be an approximation space, where U : a non-empty, finite set
called the universe; R: an equivalence relation (i.e., indiscernibility relation) on U .
K = (U,R) can be regarded as a knowledge base about U . ∀R ∈ R, the partition
U/R = {X1, X2, · · · , Xm} is called the knowledge induced by equivalence relation
R on U . An equivalence relation IND(A) can be induced by the attribute set A in
a complete information system.

Of particular interest is the discrete partition,

U/R = ω = {{x}, x ∈ U},
and the indiscrete partition,

U/R = δ = {U},
or just ω and δ if there is no confusion as to the domain set involved.

Now we define a partial order on all partition sets of U . Let P and Q be two
equivalence relations of U , U/P = {P1, P2, · · · , Pm} and U/Q = {Q1, Q2, · · · , Qn}
be partitions of the finite set U , and we define that the partition U/Q is coarser
than the partition U/P (or the partition U/P is finer than the partition U/Q), i.e.,
P ¹ Q, between partitions by

P ¹ Q ⇔ ∀Pi ∈ U/P , ∃Qj ∈ U/Q → Pi ⊆ Qj .

If P ¹ Q and P 6= Q, then we say that U/Q is strictly coarser than U/P (or
U/P is strictly finer than U/Q) and write as P ≺ Q.
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3. Combination Entropy in Rough Set Theory

In general, the elements in an equivalence class cannot be distinguished each
other, but the elements in different equivalence classes can be distinguished each
other in rough set theory. Therefore, in a sense, the knowledge content of an ap-
proximation space K = (U,R) is the whole number of pairs of the elements which
can be distinguished each other on the universe U . Based on the consideration, in
this section, the combination entropy, the conditional combination entropy and the
mutual information in rough set theory are presented, and their some important
properties are discussed.

In the first part of this section, we first given the definition of combination
entropy in rough set theory.

Definition 1. Let K = (U,R) be an approximation space, U/R = {X1, X2, · · ·,
Xm} a partition of U . Combination entropy of R is defined as

CE(R) =
m∑

i=1

|Xi|
|U |

C2
|U | − C2

|Xi|
C2
|U |

=
m∑

i=1

|Xi|
|U | (1−

C2
|Xi|

C2
|U |

), (1)

where C2
|Xi| = |Xi|×(|Xi|−1)

2 , |Xi|
|U | represents the probability of an equivalence Xi

within the universe U , and
C2
|U|−C2

|Xi|
C2
|U|

denotes the probability of pairs of the ele-

ments which are distinguishable each other within the whole number of pairs of the
elements on the universe U .

If U/R = ω, then the combination entropy of R achieves the maximum value 1.
If U/R = δ, then the combination entropy of R achieves the minimum value 0.
Obviously, when U/R is a partition of U , we have that 0 ≤ CE(R) ≤ 1.

Definition 2. 18 Let S = (U,A) be an incomplete information system. Combina-
tion entropy of A is defined as

CE(A) =
1
|U |

|U |∑

i=1

C2
|U | − C2

|SA(ui)|
C2
|U |

, (2)

where
C2
|U|−C2

|SA(ui)|
C2
|U|

denotes the probability of pairs of the elements which are prob-

ably distinguishable each other within the whole number of pairs of the elements
on the universe U .

From Definition 1 and Definition 2, one can obtain the following proposition.

Proposition 1. Let S = (U,A) be a complete information system and
U/IND(A) = {X1, X2, · · · , Xm}. Then, the combination entropy of A degenerate
into

CE(A) =
m∑

i=1

|Xi|
|U | (1−

C2
|Xi|

C2
|U|

),
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i.e.,

CE(A) =
1
|U |

|U |∑

i=1

(1−
C2
|SA(ui)|
C2
|U |

) =
m∑

i=1

|Xi|
|U | (1−

C2
|Xi|

C2
|U |

). (3)

Proof. Let U/IND(A) = {X1, X2, · · · , Xm} and Xi = {ui1, ui2, · · · , uisi
} (i ≤ m),

where |Xi| = si and
m∑

i=1

|si| = |U |. Then, the relationships among the elements in

U/SIM(A) and the elements in U/IND(A) are as follows

Xi = SA(ui1) = SA(ui2) = · · · = SA(uisi
),

|Xi| = |SA(ui1)| = |SA(ui2)| = · · · = |SA(uisi
)|.

Hence, we have that

CE(A) =
m∑

i=1

|Xi|
|U | (1−

C2
|Xi|

C2
|U|

)

= 1− 1
|U |

m∑
i=1

|Xi| × C2
|Xi|

C2
|U|

= 1− 1
|U |

m∑
i=1

|SA(ui1)|+|SA(ui1)|+···+|SA(uisi
)|

|Xi| × C2
|Xi|

C2
|U|

= 1− 1
|U |

m∑
i=1

C2
|SA(ui)|
C2
|U|

= 1
|U |

|U |∑
i=1

(1− C2
|SA(ui)|
C2
|U|

).

This completes the proof.

Proposition 1 states that the combination entropy in complete information sys-
tems is a special instance of the combination entropy in incomplete information
systems. It means that the definition of combination entropy of complete informa-
tion systems is a consistent extension to that of incomplete information systems.

Definition 3. Let K1 = (U,P ) and K2 = (U,Q) be two approximation spaces,
U/P = {P1, P2, · · · , Pm} and U/Q = {Q1, Q2, · · · , Qn} be two partitions on U . The
combination entropy induced by the equivalence relation P ∩Q can be defined as

CE(P ∩Q) =
m∑

i=1

n∑

j=1

|Pi ∩Qj |
|U |

C2
|U | − C2

|Pi∩Qj |
C2
|U |

(4)

For our further development, we introduce the following lemma.

Lemma 1. Let a be a natural number and N is the set of natural numbers. If
a =

s∑
i=1

ai (s > 1), ai ∈ N , then C2
a >

s∑
i=1

C2
ai

.

From Definition 1 and Lemma 1, one can get the following proposition.

Proposition 2. Let K1 = (U,P ) and K2 = (U,Q) be two approximation spaces,
then CE(P ) > CE(Q) if P ≺ Q.
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Proof. Let U/P = {P1, P2, · · · , Pm} and U/Q = {Q1, Q2, · · · , Qn}. Since P ≺
Q, we have that m > n and there exists a partition C = {C1, C2, · · · , Cn} of
{1, 2, · · · ,m} such that Qj =

⋃
i∈Cj

Pi (j = 1, 2, · · · , n). And, it follows from the

definition of P ≺ Q that there exists Cj0 ∈ C such that |Cj0 | > 1.
Thus, one has that

CE(Q) =
n∑

j=1

|Qj |
|U |

C2
|U|−C2

|Qj |
C2
|U|

= 1−
n∑

j=1

|Qj |
|U |

C2
|Qj |

C2
|U|

= 1−
n∑

j=1

| S
i∈Cj

Pi|

|U |

C2
| S

i∈Cj

Pi|

C2
|U|

= 1−
n∑

j=1

P
i∈Cj

|Pi|

|U |

C2P
i∈Cj

|Pi|

C2
|U|

= 1− (
n∑

j=1,j 6=j0

P
i∈Cj

|Pi|

|U |

C2P
i∈Cj

|Pi|

C2
|U|

+

P
i∈Cj0

|Pi|

|U |

C2 P
i∈Cj0

|Pi|

C2
|U|

)

< 1−
m∑

i=1

|Pi|
|U |

C2
|Pi|

C2
|U|

=
m∑

i=1

|Pi|
|U |

C2
|U|−C2

|Pi|
C2
|U|

= CE(P ).
That is, CE(P ) > CE(Q). This completes the proof.

Proposition 2 states that the combination entropy of a knowledge increases as the
equivalence classes become smaller through finer partitioning in rough set theory.

In the following, in the view of the above combination entropy, we discuss the
conditional combination entropy and the mutual information in rough set theory.

Definition 4. Let K1 = (U,P ) and K2 = (U,Q) be two approximation spaces.
Conditional combination entropy of Q with respect to P is defined as

CE(Q | P ) =
m∑

i=1

(
|Pi|
|U |

C2
|Pi|

C2
|U |

−
n∑

j=1

|Pi ∩Qj |
|U |

C2
|Pi∩Qj |
C2
|U |

). (5)

Proposition 3. Let K1 = (U,P ) and K2 = (U,Q) be two approximation spaces.
Then,

CE(Q | P ) = CE(P ∩Q)− CE(P ). (6)

Proof. It easily follows from the definition of the conditional combination entropy
that

CE(Q | P ) =
m∑

i=1

( |Pi|
|U |

C2
|Pi|

C2
|U|

−
n∑

j=1

|Pi∩Qj |
|U |

C2
|Pi∩Qj |
C2
|U|

)

=
m∑

i=1

[
n∑

j=1

|Pi∩Qj |
|U | (1− C2

|Pi∩Qj |
C2
|U|

)− |Pi|
|U | (1−

C2
|Pi|

C2
|U|

)]
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= CE(P ∩Q)− CE(P ).
This completes the proof.

Definition 5. Let K1 = (U,P ) and K2 = (U,Q) be two approximation spaces.
Mutual information between P and Q is defined as

CE(P ;Q) = CE(P ) + CE(Q)− CE(P ∩Q). (7)

The relationship among the combination entropy, the conditional combination
entropy and the mutual information can be established by the following proposition.

Proposition 4. Let K1 = (U,P ) and K2 = (U,Q) be two approximation spaces.
Then,

CE(P ;Q) = CE(Q)− CE(Q | P ). (8)

Proof. It follows from Proposition 3 that
CE(P ;Q) = CE(P ) + CE(Q)− CE(P ∩Q)

= CE(Q)− (CE(P ∩Q)− CE(P ))
= CE(Q)− CE(Q | P ).

This completes the proof.

As follows, we investigate three important properties of the conditional combi-
nation entropy and the mutual information.

Proposition 5. Let K1 = (U,P ) and K2 = (U,Q) be two approximation spaces.
Then, P ¹ Q if and only if CE(Q | P ) = 0.

Proof. (1) Suppose P ¹ Q. Hence, for arbitrary Pi ∈ U/P and arbitrary Qj ∈
U/Q, we have that Pi ∩Qj = Ø or Pi ⊆ Qj , i.e., |Pi ∩Qj | = 0 or |Pi ∩Qj | = |Pi|.
Therefore, one can obtain that

CE(Q | P ) =
m∑

i=1

( |Pi|
|U |

C2
|Pi|

C2
|U|

−
n∑

j=1

|Pi∩Qj |
|U |

C2
|Pi∩Qj |
C2
|U|

)

= 1
|U |C2

|U|

m∑
i=1

(|Pi|C2
|Pi| −

n∑
j=1

|Pi ∩Qj |C2
|Pi∩Qj |)

= 1
|U |C2

|U|

m∑
i=1

(|Pi|C2
|Pi| − |Pi|C2

|Pi|)

= 0.
(2) Suppose CE(Q | P ) = 0. We need to prove P ¹ Q. If P ¹ Q does not hold,

then there exists Pk ∈ U/P such that Pk ⊆ Qj does not hold (∀Qj ∈ U/Q). Let
{Qj ∈ Q | Qj ∩ Pk 6= Ø} = {Qj1 , Qj2 , · · · , Qj

k
′ }, where k

′
> 1, then |Pk ∩Qjl

| > 0,
l = 1, 2, · · · , k′ .

Therefore, we have that

CE(Q | P ) =
m∑

i=1

( |Pi|
|U |

C2
|Pi|

C2
|U|

−
n∑

j=1

|Pi∩Qj |
|U |

C2
|Pi∩Qj |
C2
|U|

)
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= 1
|U |C2

|U|

m∑
i=1

(|Pi|C2
|Pi| −

n∑
j=1

|Pi ∩Qj |C2
|Pi∩Qj |)

= 1
|U |C2

|U|
[

m∑
i=1,i 6=k

(|Pi|C2
|Pi| −

n∑
j=1

|Pi ∩Qj |C2
|Pi∩Qj |) + (|Pk|C2

|Pk|

−
n∑

j=1

|Pk ∩Qj |C2
|Pk∩Qj |)]

≥ 1
|U |C2

|U|
(|Pk|C2

|Pk| −
n∑

j=1

|Pk ∩Qj |C2
|Pk∩Qj |)

= 1
|U |C2

|U|
(|Pk|C2

|Pk| −
k
′∑

l=1

|Pk ∩Qjl
|C2
|Pk∩Qjl

|)

> 0.
This yields a contradiction. Thus, P ¹ Q.

This completes the proof.

Proposition 6. Let K1 = (U,P ) and K2 = (U,Q) be two approximation spaces,
U/D be a decision (i.e., a known partition) on U , then CE(P | D) > CE(Q | D)
if P ≺ Q.

Proof. Let U/P = {P1, P2, · · · , Pm}, U/Q = {Q1, Q2, · · · , Qn} and U/D =
{D1, D2, · · · , Dr}. It follows from P ≺ Q that there exists a partition C =
{C1, C2, · · · , Cn} of {1, 2, · · · ,m} such that Qj =

⋃
s∈Cj

Ps, j = 1, 2, · · · , n. And,

there exists Cj0 ∈ C such that |Cj0 | > 1.
Therefore, we have that

CE(Q | D) =
r∑

k=1

( |Dk|
|U |

C2
|Dk|

C2
|U|

−
n∑

j=1

|Qj∩Dk|
|U |

C2
|Qj∩Dk|
C2
|U|

)

= 1
|U |C2

|U|

r∑
k=1

(|Dk|C2
|Dk| −

n∑
j=1

| ⋃
s∈Cj

(Ps ∩Dk)|C2
| S

s∈Cj

(Ps∩Dk)|)

= 1
|U |C2

|U|

r∑
k=1

(|Dk|C2
|Dk| −

n∑
j=1

(
∑

s∈Cj

|Ps ∩Dk|)C2P
s∈Cj

|Ps∩Dk|)

= 1
|U |C2

|U|

r∑
k=1

(|Dk|C2
|Dk| −

n∑
j=1,j 6=j0

(
∑

s∈Cj

|Ps ∩Dk|)C2P
s∈Cj

|Ps∩Dk|

− ∑
s∈Cj0

|Ps ∩Dk|C2P
s∈Cj0

|Ps∩Dk|)

< 1
|U |C2

|U|

r∑
k=1

(|Dk|C2
|Dk| −

m∑
i=1

|Pi ∩Dk|C2
|Pi∩Dk|)

= CE(P | D),
i.e., CE(P | D) > CE(Q | D). This completes the proof.

However, the reverse relation of this proposition cannot be established in general.
This is illustrated by the following example.

Example 1. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Assume that

U/P = {{1, 3, 4}, {2, 5, 6}, {7, 8, 9, 10}},



December 10, 2007 16:3 WSPC/INSTRUCTION FILE ”combination en-
tropy & combination granulation in rough set th”

Combination Entropy and Combination Granulation in Rough Set Theory 9

U/Q = {{1, 5}, {2, 3, 4, 6, 7}, {8, 9, 10}},
and

U/D = {{1, 3, 5, 8, 9}, {2, 4, 6, 7, 10}}.
It is easily computed that

CE(P | D) = CE(P ∩D)− CE(D) = 221
225 − 7

9 = 46
225 ,

CE(Q | D) = CE(Q ∩D)− CE(D) = 211
225 − 7

9 = 36
225 ,

i.e., CE(P | D) > CE(Q | D).
However, P ≺ Q can not hold in fact.

Proposition 7. Let K1 = (U,P ) and K2 = (U,Q) be two approximation spaces,
and U/D a decision (i.e., a known partition) on U . Then, CE(P ;D) ≥ CE(Q;D)
if P ≺ Q.

Proof. Let U/P = {P1, P2, · · · , Pm}, U/Q = {Q1, Q2, · · · , Qn} and U/D =
{D1, D2, · · · , Dr}. It follows from P ≺ Q that there exists a partition C =
{C1, C2, · · · , Cn} of {1, 2, · · · ,m} such that Qj =

⋃
s∈Cj

Ps, j = 1, 2, · · · , n.

Therefore, we have that
CE(Q;D) = CE(Q) + CE(D)− CE(Q ∩D)

= 1 +
n∑

j=1

r∑
k=1

|Qj∩Dk|
|U |

C2
|Qj∩Dk|
C2
|U|

−
n∑

j=1

|Qj |
|U |

C2
|Qj |

C2
|U|

−
r∑

k=1

|Dk|
|U |

C2
|Dk|

C2
|U|

= 1 +
n∑

j=1

r∑
k=1

| S
s∈Cj

(Ps∩Dk)|

|U |

C2
| S

s∈Cj

(Ps∩Dk)|

C2
|U|

−
n∑

j=1

| S
s∈Cj

Ps|

|U |

C2
| S

s∈Cj

Ps|

C2
|U|

−
r∑

k=1

|Dk|
|U |

C2
|Dk|

C2
|U|

= 1 +
n∑

j=1

r∑
k=1

P
s∈Cj

|Ps∩Dk|

|U |

C2P
s∈Cj

|Ps∩Dk|

C2
|U|

−
n∑

j=1

P
s∈Cj

|Ps|

|U |

C2P
s∈Cj

|Ps|

C2
|U|

−
r∑

k=1

|Dk|
|U |

C2
|Dk|

C2
|U|

≤ 1 +
m∑

i=1

r∑
k=1

|Pi∩Dk|
|U |

C2
|Pi∩Dk|
C2
|U|

−
m∑

i=1

|Pi|
|U |

C2
|Pi|

C2
|U|

−
r∑

k=1

|Dk|
|U |

C2
|Dk|

C2
|U|

= CE(P ;D).
That is CE(P ;D) ≥ CE(Q;D). This completes the proof.

Similar to Proposition 6, the reverse relation of this proposition can not hold in
general.

4. Combination Granulation

In this section, the combination granulation and its very useful properties are
investigated in rough set theory. The relationship between the combination entropy
and the combination granulation in rough set theory is established as well.
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Definition 6. Let K = (U,R) be an approximation space and U/R = {X1, X2,
· · · , Xm} a partition of U . Combination granulation of R is defined as

CG(R) =
m∑

i=1

|Xi|
|U |

C2
|Xi|

C2
|U |

, (9)

where |Xi|
|U | represents the probability of an equivalence class Xi within the universe

U and
C2
|Xi|

C2
|U|

denotes the probability of pairs of the elements on equivalence class

Xi within the whole number of pairs of the elements on the universe U .

If U/R = δ, then the combination granulation of R achieves the maximum value
1.

If U/R = ω, then the combination granulation of R achieves the minimum value
0.

Obviously, when U/R is a partition of U , we have that 0 ≤ CG(R) ≤ 1.

Definition 7. 18 Let S = (U,A) be an incomplete information system. Combina-
tion granulation of A is defined as

CG(A) =
1
|U |

|U |∑

i=1

C2
|SA(ui)|
C2
|U |

, (10)

where
C2
|SA(ui)|
C2
|U|

denotes the probability of pairs of the elements on tolerance class

SA(ui) within the whole number of pairs of the elements on the universe U .

The following proposition shows the relationship between these two knowledge
granulations.

Proposition 8. Let S = (U,A) be an incomplete information system and
U/IND(A) = {X1, X2, · · · , Xm}. Then, the knowledge granulation of knowledge
A degenerates into

CG(A) =
m∑

i=1

|Xi|
|U |

C2
|Xi|

C2
|U|

,

i.e.,

CG(A) =
1
|U |

|U |∑

i=1

C2
|SA(ui)|
C2
|U |

=
m∑

i=1

|Xi|
|U |

C2
|Xi|

C2
|U |

. (11)

Proof. Let U/SIM(A) = {X1, X2, · · · , Xm} and Xi = {ui1, ui2, · · · , uisi
}, where

|Xi| = si and
m∑

i=1

|si| = |U |.
The relationship between the elements in U/SIM(A) and the elements in

U/IND(A) can be described as follows

Xi = SA(ui1) = SA(ui2) = · · · = SA(uisi
),
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|Xi| = |SA(ui1)| = |SA(ui2)| = · · · = |SA(uisi)|.

Therefore, one has that

CG(A) =
m∑

i=1

|Xi|
|U |

C2
|Xi|

C2
|U|

= 1
|U |

m∑
i=1

|SA(ui1)|+|SA(ui2)|+···+|SA(uisi
)|

|Xi|
C2
|Xi|

C2
|U|

= 1
|U |

|U |∑
i=1

C2
|SA(ui)|
C2
|U|

.

This completes the proof.

Proposition 8 states that the combination granulation in complete information
systems is a special instance of the combination granulation in incomplete informa-
tion systems. It means that the definition of combination granulation of complete
information systems is a consistent extension to that of incomplete information
systems.

Proposition 9. Let K = (U,R) be an approximation space, and U/P and U/Q be
partitions of the finite set U . If P ≺ Q, then CG(P ) < CE(Q).

Proof. Let U/P = {P1, P2, · · · , Pm} and U/Q = {Q1, Q2, · · · , Qn}. Since P ≺
Q, we have that m > n and there exists a partition C = {C1, C2, · · · , Cn} of
{1, 2, · · · ,m} such that Qj =

⋃
i∈Cj

Pi (j = 1, 2, · · · , n). And, it follows from the

definition of P ≺ Q that there exists Cj0 ∈ C such that |Cj0 | > 1.
Thus, one can have that

CG(Q) =
n∑

j=1

|Qj |
|U |

C2
|Qj |

C2
|U|

=
n∑

j=1

| S
i∈Cj

Pi|

|U |

C2
| S

i∈Cj

Pi|

C2
|U|

=
n∑

j=1

P
i∈Cj

|Pi|

|U |

C2P
i∈Cj

|Pi|

C2
|U|

=
n∑

j=1,j 6=j0

P
i∈Cj

|Pi|

|U |

C2P
i∈Cj

|Pi|

C2
|U|

+

P
i∈Cj0

|Pi|

|U |

C2 P
i∈Cj0

|Pi|

C2
|U|

>
m∑

i=1

|Pi|
|U |

C2
|Pi|

C2
|U|

= CG(Q).
That is, CG(P ) < CG(Q). This completes the proof.

Proposition 9 states that the knowledge granulation decreases as the equivalence
classes become smaller through finer partitioning.

Then, we will establish the relationship between the combination entropy and
the combination granulation in rough set theory.
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Proposition 10. Let K = (U,R) be an approximation space and U/R =
{X1, X2, · · ·, Xm} a partition of U . Then, the relationship between the combina-
tion entropy CE(R) and the combination granulation CG(R) is as follows

CE(R) + CG(R) = 1. (12)

Proof. It follows from the definition of CE(R) and CG(R) that

CE(R) =
m∑

i=1

|Xi|
|U |

C2
|U|−C2

|Xi|
C2
|U|

=
m∑

i=1

|Xi|
|U | (1−

C2
|Xi|

C2
|U|

)

= 1−
m∑

i=1

|Xi|
|U |

C2
|Xi|

C2
|U|

= 1− CG(R).
Obviously,

CG(R) + CG(R) = 1.

This completes the proof.

Remark. Proposition 10 states the relationship between the combination entropy
and the combination granulation is strictly complement relationship. In other words,
they posses the same capability for depicting the uncertainty of an approximation
space. This proposition is illustrated by the following Example 2.

Example 2. Given by U = {medium, small, little, tiny, big, large, huge,
enormous}. Let R be an equivalence relation, U/R a partition of U and U/R =
{{medium},{small, little, tiny},{big, large},{huge, enormous}}.

By computing, it follows that
CE(R) = 1

8 (1− 0
28 ) + 3

8 (1− 3
28 ) + 2

8 (1− 1
28 ) + 2

8 (1− 1
28 ) = 211

224 ,
CG(R) = 1

8 × 0
28 + 3

8 × 3
28 + 2

8 × 1
28 + 2

8 × 1
28 = 13

224 .

It is clear that CE(R) + CG(R) = 1.

5. Conclusions

In the present research, the combination entropy, the conditional combination en-
tropy, the mutual information and the combination granulation with the intuition-
istic knowledge content nature are introduced in rough set theory, respectively.
Some important properties of these concepts are derived. All properties of the
above concepts are all special instances of those of the concepts in incomplete in-
formation systems. Finally, the relationship between the combination entropy and
the combination granulation is established, which can be formally expressed as
CE(R) + CG(R) = 1. These results have a wide variety of applications, such as
measuring knowledge content, measuring the significance of an attribute, construct-
ing decision trees and building a heuristic function in a heuristic reduct algorithm
in rough set theory.
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