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An attribute reduction approach given decides the decision performance of a reduced decision
table, which can give a guidance for selecting one rule-extraction method in practical appli-
cations. The objective of this study is to compare the decision performance of positive-region
reduction, Shannon’s entropy reduction and Liang’s entropy reduction. In this paper, the
relationships in-between positive-region reduction, Shannon’s entropy reduction and Liang’s
entropy reduction are first investigated. Then, by means of three evaluation indices (certainty
measure, consistency measure, and support measure), we systemically analyze these change
mechanism of decision performance of a decision table induced by each of these three types
of reduction approaches. Finally, by numerical experiments, these change mechanism of a
decision table’s decision performance are verified for the above three attribute reductions.

Keywords: Rough set theory; Attribute reduction; Decision performance evaluation;
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1. Introduction

Rough set theory was proposed by Pawlak in 1982. Recently, it has become a
popular mathematical framework for pattern recognition, image processing, feature
selection, neuro computing, conflict analysis, decision support, data mining and
knowledge discovery process from large data sets (Bazan et al. 2003, Pal et al.
2001, Pawlak 1991, 1998, 2005, Pawlak and Skowron 2007).

In recent years, more attention has been paid to attribute reduction in infor-
mation systems and decision tables. Many types of attribute reduction techniques
have been proposed in the last twenty years (Beynon 2001, Düntsch and Gediaga
1998, Hu and Cercone 1995, Li et al. 2004, Liang and Xu 2002, Mi et al. 2003,
Nguyen and Slezak 1999, Pawlak 1991, 1998, Quafatou 2000, Slezak 1996, 1998,
Wang 2003, Wang et al. 2005, Wu et al. 2005, Yao 2008, 2003, Yao et al. 1999, Zhu
and Wang 2003, Ziarko 1993). For our development, we briefly recall some of these
techniques. Skowron (Quafatou and Rauszer 1992) proposed an attribute reduction
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algorithm using a discernibility matrix, which can find all reducts. However, it only
works in small data sets because the algorithm is very time-consuming.

It is well known that a special heuristic function is usually used to acquire one
of all reducts, which may be a tolerable strategy when only one reduct is needed.
To date, several heuristic reduction approaches have been presented. Hu (Hu and
Cercone 1995) used an attribute dependence to establish an heuristic algorithm for
attribute reduction, which can remain all certain rules. Wang (Wang 2003, Wang
et al. 2005) applied Shannon’s information entropy for estimating the significance of
an attribute. The reduction algorithm determined by this measure can also obtain
one reduct, in which the certainty measure of every decision-rule derived from the
decision table isn’t changed. Liang (Liang et al. 2002, 2004, 2005, 2006, Liang and
Xu 2002, Liang and Qian 2008) proposed a new uncertainty measure to informa-
tion systems, and it can be employed to compute an attribute reduct of a decision
table. The β-reduct proposed by Ziarko (Ziarko 1993) provides a kind of attribute-
reduction methods in the variable precision rough set model. The α-reduct and
α-relative reduct that allow the occurrence of additional inconsistency were pro-
posed in (Nguyen and Slezak 1999) for information systems and decision tables,
respectively. An attribute-reduction method that preserves the class membership
distribution of all objects in information systems was proposed by Slezak (Slezak
1996, 1998). Five kinds of attribute reducts and their relationships inconsistent
systems were investigated by Kryszkiewicz (Kryszkiewicz 2001), Li (Li et al. 2004)
and Mi Mi et al. (2003), respectively. By eliminating some rigorous conditions re-
quired by the distribution reduct, a maximum distribution reduct was introduced
by Mi (Mi et al. 2003). Unlike the possible reduct in (Mi et al. 2003), the maximum
distribution reduct can derive decision rules that are compatible with the original
system. In these reduction approaches, the reduction based on the positive-region,
the reduction method based on Shannon’s entropy and that based on Liang’s en-
tropy are three representative reduction approaches. They are mainly focused on
in the present study.

A set of decision rules can be generated from a decision table by adopting any
kind of reduction method (Huynh and Nakamori 2005, Hu and Cercone 1995,
Quafatou and Rauszer 1992, Quafatou 1995, Wang 2003, Wang et al. 2005). In
(Düntsch and Gediaga 1998), based on information entropy, Düntsch suggested
some uncertainty measures of a decision rule and proposed three criteria for model
selection. Moreover, several other measures such as certainty measure and support
measure are often used to evaluate a decision rule (Greco et al. 2004, Liang et al.
2006). However, all of these measures are only defined for a single decision rule and
are not suitable for measuring the decision performance of a rule set. There are
two more kinds of measures in the literature (Pawlak 1998), which are approxima-
tion accuracy for decision classification and consistency degree for a decision table.
Although these two measures, in some sense, could be regarded as measures for
evaluating the decision performance of all decision rules generated from a decision
table, they have some limitations. For instance, the certainty measure and consis-
tency of a decision table be well characterized by the approximation accuracy and
consistency degree for a degree for a decision table when their values reaches zero.
To overcome the shortcomings of the existing measures, in the literature (Qian
et al. 2008a,b,c), three new measures are proposed for this objective, which are
certainty measure (α), consistency measure (β), and support measure (γ). These
three measures can be use to evaluate the entire decision performance of a given
complete and incomplete decision table.

The decision table induced by an attribute reduction still retains the indispens-
able attributes of the original one through eliminating the redundant attributes.
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However, the decision performance of the decision table may be changed after each
of attribute reductions. In this paper, we compare the changes of decision perfor-
mance after attribute reductions based on positive region, on Shannon’s entropy,
and on Liang’s entropy.

The rest of this paper is organized as follows. Some preliminary concepts are
briefly recalled in Section 2. In Section 3, the relationships among positive-region
reduction, Shannon’s entropy reduction and Liang’s entropy reduction are investi-
gated. In Section 4, through reviewing three existing measures for decision evalua-
tion, the change mechanism of each of these three criteria is discovered in a decision
table. In Section 5, the change of decision performance of a decision table induced
by each of three existing types of reduction approaches is systemically analyzed. In
Section 6, we also have employed a real data set from UCI database for experimen-
tal analysis. Experimental results show the correctness of the change mechanism
obtained in this paper. Section 7 concludes this paper.

2. Preliminaries

In this section, we review some basic concepts such as indiscernibility relation,
partition, decision tables, decision rules, certainty degree and support degree of a
rule and the definition of reduction.

An information system (sometimes called a data table, an attribute-value system,
a knowledge representation system, etc.), as a basic concept in rough set theory,
provides a convenient framework for the representation of objects in terms of their
attribute values.

Let S = (U,A) be an information system, where U is a non-empty and finite set
of objects, called a universe, and A is a non-empty and finite set of attributes. For
each a ∈ A, a mapping a : U → Va is determined by an information system, where
Va is the set of all possible values of a.

Each non-empty subset B ⊆ A determines an indiscernibility relation in the
following way, RB = {(x, y) ∈ U × U | a(x) = a(y),∀a ∈ B}, where a(x) and
a(y) respect the value of object x and y on attribute a respectively. The relation
RB partitions U into some equivalence classes given by U/RB = {[x]B | x ∈
U}, where [x]B denotes the equivalence class determined by x with respect to B,
i.e., [x]B = {y ∈ U | (x, y) ∈ RB}. The partition U/RB is further denoted as
U/B. Furthermore, for any Y ⊆ U , one defines that (B(Y ), B(Y )) is the rough
set of Y with respect to B, where the lower approximation B(Y ) and the upper
approximation B(Y ) of Y are described by

B(Y ) = {x|[x]B ⊆ Y }, and

B(Y ) = {x|[x]B ∩ Y 6= ∅}.

We define a partial relation ¹ on the family {U/B | B ⊆ A} as follows: U/P ¹ U/Q
(or U/Q º U/P ) if and only if, for every Pi ∈ U/P , there exists Qj ∈ U/Q such
that Pi ⊆ Qj , where U/P = {P1, P2, · · · , Pm} and U/Q = {Q1, Q2, · · · , Qn} are
partitions induced by P, Q ⊆ A, respectively. In this case, we say that Q is coarser
than P , or P is finer than Q. If U/P ¹ U/Q and U/P 6= U/Q, we say Q is
strictly coarser than P (or P is strictly finer than Q), denoted by U/P ≺ U/Q (or
U/Q Â U/P ).

Let S = (U,C ∪D) with C ∩D = ∅ be an information system, where an element
of C is called a condition attribute, C is called a condition attribute set, an element
of D is called a decision attribute, and D is called a decision attribute set, then
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S is defined as a decision table. For example, a decision table about diagnosing
rheum is given by Table 1, in which U = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} is the
universe, C = {c1, c2, c3, c4} = {Headache, Muscle pain, Animal heat, Cough}
is the condition attribute set, and D = {d} = {Rheum} is the decision attribute
set.

If U/C ¹ U/D, then S = (U,C∪D) is said to be consistent, otherwise it is said to
be inconsistent. Certain decision rules can be extracted from a consistent decision
table, and both uncertain decision rules and certain decision rules can be extracted
from an inconsistent decision table. Furthermore, we call the set of these condition
classes which are the hypotheses of certain decision rules the consistent part of a
decision table, and call the set of all other condition classes the inconsistent part
of the decision table. It will be indicated by a example.

Example 2.1 From Table 1, we can find that it is a inconsistent table. More-
over, it is obvious that the set {e10} is the consistent part of Table 1, the set
{e1, e2, e3, e4, e5, e6, e7, e8, e9} is the inconsistent part of Table 1.

Let S = (U,C ∪D) be a decision table, Xi ∈ U/C and Yj ∈ U/D. By des(Xi)
and des(Yj), we denote the descriptions of the equivalence classes Xi and Yj in the
decision table S. A decision rule is formally defined as (Liang et al. 2006, Pawlak
1991):

Zij : des(Xi) → des(Yj). (1)

The certainty degree µ and support degree s of a decision rule Zij are defined as
follows (Liang et al. 2006, Pawlak 1991):

µ(Zij) = |Xi ∩ Yj |/|Xi| and s(Zij) = |Xi ∩ Yj |/|U |, (2)

where | · | is the cardinality of a set. It is clear that the value of each of µ(Zij) and
s(Zij) of a decision rule Zij falls into the interval [ 1

|U | , 1]. In subsequent discussions,
we denote the cardinality of the set Xi ∩ Yj by |Zij |, which is called the support
number of the rule Zij .

Let S = (U,C∪D) be a decision table, the relative positive region D with respect
to C is defined as (Pawlak 1991)

POSC(D) =
n⋃

i=1

CYi, (3)

where, Yi ∈ U/D, CYi indicates the lower approximation of Yi with respect to C.
Using this denotation, one can give the definition of a positive-region reduct as
follows.

Definition 2.1: (Hu and Cercone 1995) Let S = (U,C ∪D) be a decision table
and B ⊆ C. We call B a positive-region reduct of D with respect to C if B satisfies
the following conditions:

(1) POSC(D) = POSB(D); and

(2) for ∀a ∈ B, POSB(D) 6= POSB−{a}(D).

In (Wang 2003, Wang et al. 2005), Shannon’s condition entropy of condition
attribute set C with respect to decision attribute set D in a decision table S =
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(U,C ∪D) is defined as

H(D|C) = −
m∑

i=1

|Xi|
|U |

n∑

j=1

|Xi ∩ Yj |
|Xi| log2

|Xi ∩ Yj |
|Xi| , (4)

where Xi ∈ U/C and Yj ∈ U/D.

Definition 2.2: (Wang 2003, Wang et al. 2005) Let S = (U,C∪D) be a decision
table, B ⊆ C. We call B a Shannon entropy reduct of D with respect to C if B
satisfies the following conditions:

(1) H(D|C) = H(D|B); and

(2) for ∀a ∈ B, H(D|B) 6= H(D|B − {a}).

In Literature (Liang et al. 2002, 2004, 2006, Liang and Qian 2008), Liang’s en-
tropy of condition attribute set C with respect to decision attribute set D in a
decision table S = (U,C ∪D)is depicted by as

E(D|C) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |
|Xi|

|Y c
j −Xc

i |
|Xi| , (5)

where, Y c
j and Xc

i are the complements of Yj and Xi, respectively.

In terms of this description, one can give the definition of a Liang’s entropy
reduct as follows.

Definition 2.3: Let S = (U,C ∪ D) be a decision table, B ⊆ C. We call B a
Liang’s entropy reduct of D with respect to C if B satisfies the following conditions:

(1) E(D|C) = E(D|B); and

(2) for ∀a ∈ B, E(D|B) 6= E(D|B − {a}).

Positive-region, Shannon’s entropy, and Liang’s entropy are usually applied for
the attribute reduction of a decision table.

3. Relationships among three kinds of reductions

In this section, we will analyze the relationships among positive-region reduction,
Shannon’s entropy reduction and Liang’s entropy reduction.

The rough monotonicity of Shannon’s information entropy have been proved
(Wang 2003, Wang et al. 2005), which is shown as follows.

Theorem 3.1 : (Wang 2003, Wang et al. 2005) Let S = (U,C ∪ D)
and S′ = (U,B ∪ D) be two decision tables, U/C = {X1, X2, · · · , Xm},
U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , Xm, Xu ∪Xv} and U/D =
{Y1, Y2, · · · , Yn}, then

H(D|B) ≥ H(D|C),

especially, if and only if |Xu∩Yj |
|Xu| = |Xv∩Yj |

|Xv| for j ≤ n, i.e., µ(Zuj) = µ(Zvj) for
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j ≤ n.

H(D|B) = H(D|C).

From Theorem 3.1, we can see that Shannon’s entropy of a decision table will be
not more than the one of the table with the coarser partition.

For convenience, suppose that REDP
D(C) is the set of all positive-region reduct,

B(P ) ∈ REDP
D(C) a positive-region reduct, REDS

D(C) the set of all Shannon’s
entropy reduct, B(S) ∈ REDS

D(C) a Shannon’s entropy reduct, REDL
D(C) the

set of all Liang’s entropy reduct and B(L) ∈ REDL
D(C) a Liang’s entropy reduct.

In the following, we establish the relationship among positive-region reduction,
Shannon’s entropy reduction and Liang’s entropy reduction with four theorems
and four corollaries.

Theorem 3.2 : (Wang 2003, Wang et al. 2005) Let S = (U,C∪D) be a decision
table. If an attribute set B(S) be a Shannon’s entropy reduct, then there exists a
positive-region reduct B(P ) such that B(P ) ⊆ B(S).

Proof : Let B(S) be a Shannon’s entropy reduct, thus H(D|C) = H(D|B(S)).
From Theorem 3.1, it follows that |Xu∩Yj |

|Xu| = |Xv∩Yj |
|Xv| , j ≤ n, then, POSC(D) =

POSB(S)(D). Furthermore, it is certain to exist a set B(P ) ⊆ B(S), which satisfies
∀a ∈ B(P ), POSB(P )(D) 6= POSB(P )−{a}(D). Therefore, there exists B(P ) is a
positive-region reduct. ¤

By Theorem 3.2, it follows that for a decision table, there exists a subset of its
Shannon’s entropy reducts which is a positive-region reduct.

Corollary 3.3: (Wang 2003, Wang et al. 2005) Let S = (U,C∪D) be a decision
table, REDS

D(C) a set of all Shannon’s entropy reducts, and REDP
D(C) a set of

all positive-region reducts, then min{|B(P )| : B(P ) ∈ REDP
D(C)} ≤ min{|B(S)| :

B(S) ∈ REDS
D(C)}.

Corollary 3.3 shows that for a decision table, the cardinality of the minimum
Shannon’s entropy reduct is not less than the cardinality of the minimum positive-
region entropy reduct.

Theorem 3.4 : Let S = (U,C ∪ D) and S′ = (U,B ∪ D) be two deci-
sion tables, U/C = {X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · ,
Xv−1, Xv+1, · · · , Xm, Xu ∪Xv} and U/D = {Y1, Y2, · · · , Yn}, then

E(D|B) ≥ E(D|C),

especially, if and only if µ(Zuw) = µ(Zvw) = 1 for w ≤ n and µ(Zuj) = µ(Zvj) = 0
for j ≤ n and j 6= w, then

E(D|B) = E(D|C).
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Proof : For the existing condition, one has that

E∆ = E(D|B)− E(D|C)

=
n∑

j=1

|Xu ∩ Yj |+ |Xv ∩ Yj |
|U |

|Xu − Yj |+ |Xv − Yj |
|U |

−
n∑

j=1

|Xu ∩ Yj |
|U |

|Xu − Yj |
|U | −

n∑

j=1

|Xv ∩ Yj |
|U |

|Xv − Yj |
|U |

=
n∑

j=1

|Xu ∩ Yj |
|U |

|Xv| − |Xv ∩ Yj |
|U | +

n∑

j=1

|Xv ∩ Yj |
|U |

|Xu| − |Xu ∩ Yj |
|U |

=
n∑

j=1

|Xu||Xv|(µ(Zuj) + µ(Zvj)− 2µ(Zuj)µ(Zvj))
|U |2 .

Let fj = µ(Zuj) + µ(Zvj) − 2µ(Zuj)µ(Zvj). It is clear that 0 ≤ µ(Zuj) ≤ 1 and
0 ≤ µ(Zvj) ≤ 1. The sign of fj will be investigated as follows.

If µ(Zuj) = 0 and 0 < µ(Zvj) ≤ 1 (or 0 < µ(Zuj) ≤ 1 and µ(Zvj) = 0), then
fj > 0.

If µ(Zuj) = 0 and µ(Zvj) = 0, then fj = 0.
If µ(Zuj) = 1 and 0 ≤ µ(Zvj) < 1 (or 0 ≤ µ(Zuj) < 1 and µ(Zvj) = 1), then

fj > 0.
If µ(Zuj) = 1 and µ(Zvj) = 1, then fj = 0.
If 0 < µ(Zuj) < 1 and 0 < µ(Zvj) < 1, then fj > 0.
From the above several cases, we have that fj ≥ 0. Then E∆ =

∑n
j=1

|Xu||Xv|fj

|U |2 ≥
0. Furthermore, one has that E∆ = 0 iff fj = 0. In other words, E(D|B) = E(D|C)
holds, if and only if µ(Zuw) = µ(Zvw) = 1 for w ≤ n and µ(Zuj) = µ(Zvj) = 0 for
j ≤ n and j 6= w. ¤

Theorem 3.4 indicates that Liang’s entropy of a decision table will be not more
than the one of the table with the coarser condition attributes set.

Theorem 3.5 : Let S = (U,C ∪D) be a decision table. If an attribute set B(L) is
a Liang’s entropy reduct, then there exists a Shannon’s entropy reduct B(S) such
that B(S) ⊆ B(L).

Proof : Since B(S) is a Shannon’s entropy reduct, we have that E(D|C) =
E(D|B(L)). And from Theorem 3.4, it follows that there exists w ≤ n such
that µ(Zuw) = µ(Zvw) = 1 and µ(Zuj) = µ(Zvj) = 0, j ≤ n, j 6= w, i.e.
µ(Zuj) = µ(Zvj), j ≤ n. Therefore,H(D|C) = H(D|B(L)). Furthermore, there ex-
ists a set B(S)⊆B(L), which satisfies ∀a ∈ B(S), POSB(S)(D) 6= POSB(S)−{a}(D).
From Definition 2.1, B(S) is a Shannon’s entropy reduct. ¤

Theorem 3.5 shows that there exists a subset of its Liang’s entropy reducts which
is its Shannon’s entropy reduct.

Corollary 3.6: Let S = (U,C ∪D) be a decision table, REDL
D(C) a set of all

Liang’s entropy reducts, and REDS
D(C) a set of all Shannon entropy reducts, then

min{|B(S)| : B(S) ∈ REDS
D(C)} ≤ min{|B(L)| : B(L) ∈ REDL

D(C)}.
From Corollary 3.6, we can see that, for a decision table, there exists a subset of

its Shannon’s reducts which is its positive-region reduct.
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Corollary 3.7: Let S = (U,C ∪ D) be a decision table. If B(L) is a Liang’s
entropy reduct, then there exist a positive-region reduct B(P ) and a Shannon’s
entropy reduct B(S) such that B(P ) ⊆ B(S) ⊆ B(L).

The relationship among positive region reducts, Shannon’s entropy reducts and
Liang’s entropy reducts is indicated by Corollary 3.7.

Corollary 3.8: Let S = (U,C ∪ D) be a decision table, REDL
D(C) a set of

all Liang’s entropy reducts, REDS
D(C) a set of all Shannon entropy reducts, and

REDP
D(C) a set of all Shannon entropy reducts, then min{|B(P )| : B(P ) ∈

REDP
D(C)} ≤ min{|B(S)| : B(S) ∈ REDS

D(C)} ≤ min{|B(L)| : B(L) ∈
REDL

D(C)}.
These relationships among the above three kinds of attribute reductions in Corol-

lary 3.8 are illustrated by the following Example 3.1.

Example 3.1 We employ Table 1 to illustrate the relationship among the three
kinds of attribute reductions. By computing, we have that

REDP
D(C) = {{Headache}, {Animal heat, Cough}},

REDS
D(C) = {{Headache, Muscle pain}, {Animal heat, Cough}}, and

REDL
D(C) = {{Headache, Animal heat, Muscle pain}, {Animal heat, Cough}}.

Obviously, one can obtain the following inclusion relationships.

{Headache}︸ ︷︷ ︸
a positive−region reduct

⊆ {Headache, Muscle pain}︸ ︷︷ ︸
a Shannon′s entropy reduct

⊆ {Headache, Animal heat, Muscle Pain}︸ ︷︷ ︸
a Liang′s entropy reduct

.

{Animal heat, Cough}︸ ︷︷ ︸
a positive−region reduct

⊆ {Animal heat, Cough}︸ ︷︷ ︸
a Shannon′s entropy reduct

⊆ {Animal heat, Cough}︸ ︷︷ ︸
a Liang′s entropy reduct

.

Therefore, min{|B(P )| : B(P ) ∈ REDP
D(C)} = |{Headache}|, min{|B(S)| :

B(S) ∈ REDS
D(C)} = |{Animal heat, Cough}|, min{|B(L)| :

B(L) ∈ REDL
D(C)} = |{Animal heat, Cough}|, then, |{Headache}| ≤

|{Animal heat, Cough}| ≤ |{Animal heat, Cough}|.
From the example, we can see that the relationship among minimal positive-

region reduct, the minimal Shannon’s entropy reduct and the minimal Liang’s
entropy reduct corresponds to Corollary 3.8.

4. Change mechanism of decision performance of a decision table

In this section, we investigate the change mechanism of decision performance of a
decision table from the viewpoint of decision evaluation.

Approximation accuracy of a classification aC(F ) was introduced in (Pawlak
1991). Let F = {Y1, Y2, · · · , Yn} be a classification of the universe U , and C a
condition attribute set. Then, C-lower and C-upper approximations of F are given
by CF = {CY1, CY2, · · · , CYn} and CF = {CY1, CY2, · · · , CYn}, respectively,
where CYi =

⋃{x ∈ U | [x]C ⊆ Yi ∈ F}, 1 ≤ i ≤ n, and CYi =
⋃{x ∈

U | [x]C ∩ Yi 6= Ø, Yi ∈ F}, 1 ≤ i ≤ n. The approximation accuracy of F by

C is defined as aC(F ) =
P

Yi∈F |CYi|P
Yi∈F |CYi| . The approximation accuracy expresses the
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percentage of possible correct decisions when classifying objects by employing the
attribute set C. In a broad sense, aC(F ) can be used to measure the certainty of
a decision table. However, it has some limitations. In (Qian et al. 2008b), a new
certainty measure α was proposed for overcoming these limitations, which is shown
as follows.

Definition 4.1: (Qian et al. 2008b) Let S = (U,C ∪ D) be a decision table,
and RULE = {Zij |Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The certainty
measure α of S is defined as

α(S) =
m∑

i=1

n∑

j=1

s(Zij)µ(Zij) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |2
|U ||Xi| . (6)

Through using the definition, one can get the following Theorem 4.2.

Theorem 4.2 : Let S = (U,C ∪ D) and S′ = (U,B ∪ D) be two decision ta-
bles. If U/C = {X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1,
Xv+1, · · · , Xm, Xu ∪ Xv} and U/D = {Y1, Y2, · · · , Yn}, then α(S′) ≤ α(S), espe-
cially, α(S′) = α(S) iff µ(Zuj) = µ(Zvj) for j ≤ n.

Proof : From the definition of certainty measure α, it follows that

α∆ = α(S′)− α(S)

=
m∑

i=1,i6=u,i 6=v

n∑

j=1

|Xi ∩ Yj |2
|U ||Xi| +

n∑

j=1

((|Xu ∪Xv) ∩ Yj |)2
|U |(|Xu ∪Xv|)

−
m∑

i=1,i6=u,i 6=v

n∑

j=1

|Xi ∩ Yj |2
|U ||Xi| −

n∑

j=1

|Xu ∩ Yj |2
|U ||Xu| −

n∑

j=1

|Xv ∩ Yj |2
|U ||Xv|

=
n∑

j=1

(|Xu ∩ Yj |+ |Xv ∩ Yj |)2
|U |(|Xu|+ |Xv|) −

n∑

j=1

|Xu ∩ Yj |2
|U ||Xu| −

n∑

j=1

|Xv ∩ Yj |2
|U ||Xv|

= −
n∑

j=1

(|Xu||Xv ∩ Yj | − |Xv||Xu ∩ Yj |)2
|U ||Xu||Xv|(|Xu|+ |Xv|)

= −
n∑

j=1

|Xu||Xv|(µ(Zuj)− µ(Zvj))2

|U |(|Xu|+ |Xv|) ≤ 0.

Clearly, one has that α∆ = 0 when µ(Zuj) = µ(Zvj). That is α(S) = α(S′). ¤

The following Corollary 4.3 is directly derived from Theorem 4.2.

Corollary 4.3: Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables.
If U/B Â U/C, then α(S′) ≤ α(S).

Corollary 4.3 shows that certainty measure α of the decision table after condition
attribute set becoming coarser will be not more than the one of the original table.

As follows, we analyze the change mechanism of the consistency measure of
a decision table. The consistency measure from (Qian et al. 2008b) is another
important measure for assessing the decision performance of a decision table, which
is shown in Definition 4.4.

Definition 4.4: (Qian et al. 2008b) Let S = (U,C ∪D) be a decision table and
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RULE = {Zij |Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The consistency
measure β of S is defined as

β(S) =
m∑

i=1

|Xi|
|U | [1−

4
|Xi|

Ni∑

j=1

|Xi ∩ Yj |µ(Zij)(1− µ(Zij))], (7)

where Ni is the number of decision rules determined by the condition class Xi, and
µ(Zij) is the certainty degree of the rule Zij .

Using the consistency measure, the following Theorem 4.5 can be derived.

Theorem 4.5 : Let S = (U,C ∪ D) and S′ = (U,B ∪ D) be two decision ta-
bles, if U/C = {X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1,
Xv+1, · · · , Xm, Xu ∪ Xv}, U/D = {Y1, Y2, · · · , Yn} then the relationship between
β(S′) and β(S) is uncertain, especially, β(S) = β(S′) iff µ(Zuj) = µ(Zvj) for
j ≤ n.

Proof : From the definition of consistency measure, it is easy to know that

β(S) =
m∑

i=1

|Xi|
|U | [1−

4
|Xi|

Ni∑

j=1

|Xi ∩ Yj |µ(Zij)(1− µ(Zij))]

= 1− 4
|U |

m∑

i=1

n∑

j=1

|Xi ∩ Yj |µ(Zij)(1− µ(Zij))

β∆ = β(S′)− β(S)

=
4
|U |

n∑

j=1

( |Xu ∩ Yj |2
|Xu| − |Xu ∩ Yj |3

|Xu|2
)

+
4
|U |

n∑

j=1

( |Xv ∩ Yj |2
|Xv| − |Xv ∩ Yj |3

|Xv|2
)

− 4
|U |

n∑

j=1

(
(|Xu ∩ Yj |+ |Xv ∩ Yj |)2

|Xu|+ |Xv| − (|Xu ∩ Yj |+ |Xv ∩ Yj |)3
(|Xu|+ |Xv|)2

)
.

Let x = |Xu|, y = |Xv|, δj = |Xu∩Yj |
|Xu| and σj = |Xv∩Yj |

|Xv| . It follows that

β∆ =
n∑

j=1

(δjx)2

x
− (δjx)3

x2
+

n∑

j=1

(σjy)2

y
− (σjy)3

y2

−
n∑

j=1

(δjx + σjy)2

x + y
− (δjx + σjy)3

(x + y)2
)

=
n∑

j=1

xy

(x + y)2
(
((δj − σj)2 − 2δ3

j − σ3
j + 3δ2

j σj)x
)

+
n∑

j=1

xy

(x + y)2
(
((δj − σj)2 − δ3

j − 2σ3
j + 3δjσ

2
j )y

)

=
n∑

j=1

xy(δj − σj)2

(x + y)2
((1− 2δj − σj)x + (1− 2σj − δj)y) .
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Obviously, when δj = σj , ∀j ≤ n, i.e.µ(Zuj) = µ(Zvj), we have that β∆ = 0. Thus,
β(S′) = β(S). Otherwise, the value of β∆ is uncertain. ¤

Theorem 4.5 easily deduces the following corollary.

Corollary 4.6: Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables,
if U/C ≺ U/B, then the relationship between β(S′) and β(S) is uncertain.

Corollary 4.6 indicates that, for a decision table, the change of the consistency
measure β is uncertain after the condition attribute set becoming coarser.

Theorem 4.7 : Let S = (U,C ∪ D) and S′ = (U,B ∪ D) be two decision ta-
bles, if U/C = {X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1,
Xv+1, · · · , Xm, Xu ∪Xv}, U/D = {Y1, Y2}, then β(S′) ≤ β(S), especially, β(S) =
β(S′) iff µ(Zuj) = µ(Zvj) for j ≤ 2.

Proof : Let x = |Xu|, y = |Xv|, δj = |Xu∩Yj |
|Xu| and σj = |Xv∩Yj |

|Xv| . From the proof of
Theorem 4.5, we have that

β∆ = β(S′)− β(S)

=
n∑

j=1

xy(δj − σj)2

(x + y)2
((1− 2δj − σj)x + (1− 2σj − δj)y) .

Furthermore, by the existing condition U/D = {Y1, Y2}, we have that δ1 + δ2 = 1
and σ1 + σ2 = 1. Thus, it follows that

β∆ =
xy(δ1 − σ1)2

(x + y)2
((1− 2δ1 − σ1)x + (1− 2σ1 − δ1)y)

+
xy(δ2 − σ2)2

(x + y)2
((1− 2δ2 − σ2)x + (1− 2σ2 − δ2)y)

= −2
xy(δ1 − σ1)2

(x + y)
≤ 0.

Obviously, when δj = σj i.e.µ(Zuj) = µ(Zvj) for j ≤ 2, we have that β(S′) = β(S).
¤

The following Corollary 4.8 generalizes the results of Theorem 4.7.

Corollary 4.8: Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables,
if U/C ≺ U/B and U/D = {Y1, Y2}, then β(S′) ≤ β(S).

Corollary 4.8 shows that, for a decision table with two decision values, consistency
measure β of the decision will be not more than its one after condition attribute
set becoming coarser.

In Literature (Qian et al. 2008b), support measure of a decision table is proposed
for computing entire support measure of all decision rules. In the following, we will
consider the mechanism of the measure.

Definition 4.9: (Qian et al. 2008b) Let S = (U,C ∪ D) be a decision table
and RULE = {Zij |Zij : des(Xi) → des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The support



June 16, 2010 18:26 International Journal of General Systems ”Comparative study of decision
performance of decision tables induced by attribute reductions”

12 WEI WEI, JIYE LIANG, YUHUA QIAN, FENG WANG and CHUANGYIN DANG

measure γ of S is defined as

γ(S) =
m∑

i=1

n∑

j=1

s2(Zij) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |2
|U |2 . (8)

The following Theorem 4.10 gives the monotonicity of the support measure in
the context of decision tables.

Theorem 4.10 : Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables,
if U/C = {X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, U/D = {Y1, Y2, · · · , Yn},
Xu+1, · · · , Xv−1, Xv+1, · · · , Xm, Xu ∪Xv}, then γ(S′) ≥ γ(S).

Proof : By the existing condition, it follows that

γ∆ = γ(S′)− γ(S)

=
l∑

k=1

n∑

j=1

|X ′
k ∩ Yj |2
|U |2 −

m∑

i=1

n∑

j=1

|Xi ∩ Yj |2
|U |2

=
n∑

j=1

(|Xu ∩ Yj |+ |Xv ∩ Yj |)2
|U |2 −

n∑

j=1

|Xu ∩ Yj |2
|U |2 −

n∑

j=1

|Xv ∩ Yj |2
|U |2

=
n∑

j=1

2|Xu ∩ Yj ||Xv ∩ Yj |
|U |2 ≥ 0.

¤

Corollary 4.11: Let S = (U,C ∪D) and S′ = (U,B∪D) be two decision tables.
If U/C ≺ U/B, then γ(S′) ≥ γ(S).

From Corollary 4.11, we know that, for a given decision, the finer condition
attribute set usually decreases the support measure γ.

5. Change of decision performance induced by reduction approaches

In this section, we investigate the three kinds of attribute reduction mthods, namely
positive region reduction, Shannon’s entropy reduction and Liang’s entropy reduc-
tion. We analyze the difference between the decision performance of a reduced
decision table and that of the original one.

5.1 Change of decision performance induced by positive-region reduction

The analysis on change of decision performance of a decision table after performing
a positive-region reduction will be shown in this subsection. They can be discovered
by the following six theorems and three examples.

Theorem 5.1 : Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables,
and B be a positive-region reduct of C. If Xu ∈ U/C and Xv ∈ U/C are in the
consistent part of the decision table S, and Xu ∪ Xv = Xw, Xw ∈ U/B, then
µ(Zuj) = µ(Zvj) for Yj ∈ U/D, where µ(Zij) = |Xi ∩ Yj |/|Xi|.

Proof : From the condition, we have that the two classes Xu and Xv in the con-
sistent part of S combines a new condition class Xw in S′. Therefore, the con-
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dition classes Xw will fall in the inconsistent part of S′ if ∃j ≤ n such that
µ(Zuj) 6= µ(Zvj). Clearly, the positive region of S is unequal to the one of S′,
which is in contradictive with the assumption that B is a positive-region reduct of
C. Thus, µ(Zuj) = µ(Zvj) for Yj ∈ U/D. ¤

Theorem 5.1 indicates that if some condition classes in the consistent part of
a decision table combine to a new condition class after performing the positive-
region reduction, then the rules induced by these condition classes have the same
certainty measures.

Moreover, we first investigate the change mechanism of entire certainty measure
α with respect to the positive-region reduction.

Theorem 5.2 : Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables.
If S is consistent and B is a positive-region reduct of C, then

α(S′) = α(S), β(S′) = β(S), γ(S′) ≥ γ(S).

Proof : By the existing condition that B is a positive-region reduct of C, we have
U/B º U/C. It is obviously that α(S′) = α(S), β(S′) = β(S), γ(S′) = γ(S) if
U/B = U/C, and the case U/B Â U/C will be analyzed in detail.

For simplicity, without any loss of generality, let U/C = {X1, X2, · · · , Xm},
U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , Xm, Xu ∪Xv} and U/D =
{Y1, Y2, · · · , Yn}.

Since the decision table S is consistent, then the decision table S′ after performing
the positive-region reduction is also consistent. Furthermore, according to Theorem
5.1, we have that µ(Zuj) = µ(Zvj) for j ≤ n. Thus, by Theorem 4.2, Theorem
4.5 and Theorem4.10, we have that α(S′) = α(S), β(S′) = β(S), γ(S′) ≥ γ(S),
respectively. ¤

Theorem 5.2 shows that, for a consistent table, if it is reduced by performing
the positive-region reduction, then the certainty measure of the table will be un-
changed.

Theorem 5.3 : Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables.
If B is a positive-region reduct of C, then α(S′) ≤ α(S), the relationship between
β(S′) and β(S) is uncertain, and γ(S′) ≥ γ(S).

Proof : From the condition that B is a positive-region reduct of C, we have U/B º
U/C. It is obviously that α(S′) = α(S), β(S′) = β(S), γ(S′) = γ(S) if U/B = U/C,
and the case U/B Â U/C will be analyzed in detail.

For simplicity, without any loss of generality, we suppose that U/C =
{X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , Xm,
Xu ∪Xv} and U/D = {Y1, Y2, · · · , Yn}.

Through using the positive-region reduction, the change of condition classes has
two cases. One is combination of the condition classes in the consistent part of a
decision table, the other is combination of the condition classes in the inconsistent
part of a decision table. These two cases are listed as follows.

1) The condition classes combined in the consistent part
Let the two classes Xu and Xv in the consistent part of decision table S become a

new condition class Xu∪Xv after performing the positive-region reduction and the
other condition classes are unchanged. From Theorem 5.1, it follows that µ(Zuj) =
µ(Zvj), j ≤ n. Furthrermore, by Theorem 4.2, Theorem 4.5 and Theorem 4.10, one
has that α(S′) = α(S), β(S′) = β(S) and γ(S′) ≥ γ(S), respectively.

2) The condition classes combined in the inconsistent part
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Let the two classes Xu and Xv in the inconsistent part of table S are combined
to a class Xu ∪Xv after the positive-region reduction and other condition classes
are unchanged. From Theorem 4.2, Theorem 4.5 and Theorem 4.10, it follows
that α(S′) ≤ α(S), the relationship between β(S′) and β(S) is uncertain, and
γ(S′) ≥ γ(S).

In conclusion, α(S′) ≤ α(S), the relationship between β(S′) and β(S) is uncer-
tain, and γ(S′) ≥ γ(S), if B is a positive-region reduct of C. ¤

Theorem 5.3 states that, for a decision table, the certainty measure α of the
decision table after using the positive-region reduction will be no more than that
of original one, the consistency measure β of the reduced table will be uncertain
after performing a positive-region reduction, and the support measure γ after using
the positive-region reduction will be no less than that of original one. Example 5.1
shows their change mechanism.

Example 5.1 We employ Table 2 and Table 3 to illustrate the change of the deci-
sion performance of a decision table after performing the positive-region reduction.

It is easy to calculate using Definition 2.1 that the set of all positive-region
reducts of Table 2 is REDP

D(C) = {{Muscle pain, Cough}}. Let B(P ) =
{Muscle pain, Cough}, S′ = (U,B(P ) ∪D), we have that

α(S) = 0.4861, α(S′) = 0.4833,

β(S) = 0.2639, β(S′) = 0.2667,

γ(S) = 0.1528, γ(S′) = 0.2778.

It is clear that

α(S′) < α(S), β(S′) > β(S), γ(S′) > γ(S).

Furthermore, we can obtain that the set of all positive-region reducts of Table
3 is REDP

D(C) = {{Muscle pain, Cough}}. Let B(P ) = {Muscle pain, Cough},
S′ = (U,B(P ) ∪D), one has

α(S) = 0.4861, α(S′) = 0.4860,

β(S) = 0.2639, β(S′) = 0.2600,

γ(S) = 0.1528, γ(S′) = 0.2500.

Obviously,

α(S′) < α(S), β(S′) < β(S), γ(S′) > γ(S).

Theorem 5.4 : Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables,
U/D = {Y1, Y2}. If B is a positive-region reduct of C, then α(S′) ≤ α(S), β(S′) ≤
β(S) and γ(S′) ≥ γ(S).

Proof : According to the condition that B is a positive-region reduct of C, we
have U/B º U/C. It is obviously that α(S′) = α(S), β(S′) = β(S), γ(S′) = γ(S) if
U/B = U/C, and the case U/B Â U/C will be investigated in detail.

For simplicity, without any loss of generality, we suppose that U/C =
{X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , Xm,
Xu ∪Xv} and U/D = {Y1, Y2}.
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Through using the positive-region reduction, the change of condition classes has
two cases. One is combination of the condition classes in the consistent part of a
decision table, the other is combination of the condition classes in the inconsistent
part of a decision table. These two cases are listed as follows.

1) The condition classes combined in the consistent part
Let the two classes Xu and Xv in the consistent part of decision table S become a

new condition class Xu∪Xv after performing the positive-region reduction and the
other condition classes are unchanged. From Theorem 5.1, it follows that µ(Zuj) =
µ(Zvj), j ≤ n. Furthrermore, by Theorem 4.2, Theorem 4.7 and Theorem 4.10, one
has that α(S′) = α(S), β(S′) = β(S) and γ(S′) ≥ γ(S), respectively.

2) The condition classes combined in the inconsistent part
Let the two classes Xu and Xv in the inconsistent part of table S are combined

to a class Xu ∪Xv after the positive-region reduction and other condition classes
are unchanged. From Theorem 4.2, Theorem 4.7 and Theorem 4.10, it follows that
α(S′) ≤ α(S), β(S′) ≤ β(S) and γ(S′) ≥ γ(S).

In conclusion, α(S′) ≤ α(S), β(S′) ≤ β(S) and γ(S′) ≥ γ(S), if B is a positive-
region reduct of C and there are only two decision values in a decision table. ¤

Theorem 5.3 states that, for a decision table with two decision values, the cer-
tainty measure α and the consistence measure β after using the positive-region
reduction will be no more than that of original table, and the support measure γ
will be no less than that of original one. It is illustrated by the following example.

Example 5.2 We employ Table 1 to illustrate the change of the decision perfor-
mance of a decision table after performing the positive-region reduction.

It is easy to obtain by Definition 2.1 that the set of all positive-region reducts
REDP

D(C) = {{Headache}, {Animal heat, Cough}}. Let B1(P ) = {Headache},
B2(P ) = {Animal heat, Cough}, S1 = (U,B1(P ) ∪D) and S2 = (U,B2(P ) ∪D),
we have that

α(S) = 0.5667, α(S1) = 0.5556, α(S2) = 0.5667,

β(S) = 0.1333, β(S1) = 0.1111, β(S2) = 0.1333,

γ(S) = 0.1200, γ(S1) = 0.4200, γ(S2) = 0.1200.

It is clear that

α(S1) < α(S), α(S2) = α(S),

β(S1) < β(S), β(S2) = β(S),

γ(S1) > γ(S), γ(S2) = γ(S).

5.2 Change of decision performance induced by Shannon’s entropy reduction

In this subsection, we will analyze the change mechanism of decision performance
of a decision table through performing Shannon’s entropy reduction.

Theorem 5.5 : Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables.
If B is a Shannon’s entropy reduct of C, then

α(S) = α(S′), β(S) = β(S′) and γ(S) ≤ γ(S′).

Proof : For simplicity, without any loss of generality, let U/C =
{X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , Xm,
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Xu ∪ Xv} and U/D = {Y1, Y2, · · · , Yn}. From the existing condition that B is a
Shannon’s entropy reduct of C and Theorem 3.1, it follows that µ(Zuj) = µ(Zvj).

Therefore, by Theorem 4.2, α(S) = α(S′), from Theorem 4.5, β(S) = β(S′), and
according to Theorem 4.7, γ(S) ≤ γ(S′). ¤

Theorem 5.5 states that the certainty measure α of a decision table will be
unchangeable after Shannon’s entropy reduction, the consistent measure β of a
decision table will also be unchangeable after using Shannon’s entropy reduction,
and the support measure γ through using Shannon’s entropy reduction will be no
less than that of original one. Example 5.4 illustrates the change mechanism of the
support measure.

Example 5.3 We employ Table 1 to illustrate the change of the decision perfor-
mance of a decision table after performing the Shannon’s entropy reduction.

It is easy to calculate from Definition 2.2 that the set of all Shannon’s entropy
reducts REDS

D(C) = {{Headache, Muscle pain}, {Animal heat, Cough}}. Let
B1(S) = {Headache, Muscle pain}, B2(S) = {Animal heat, Cough} and S1 =
(U,B1(S) ∪D), S2 = (U,B2(S) ∪D), we have that

α(S) = 0.5667, α(S1) = 0.5667, α(S2) = 0.5667,

β(S) = 0.1333, β(S1) = 0.1333, β(S2) = 0.1333,

γ(S) = 0.1200, γ(S1) = 0.2400, γ(S2) = 0.1200.

Obviously,

α(S1) = α(S2) = α(S), β(S1) = β(S2) = β(S), γ(S1) > γ(S), γ(S2) = γ(S).

5.3 Change of decision performance induced by Liang’s entropy reduction

In this subsection, one will express the variety of decision performance through
Liang’s entropy reduction.

Theorem 5.6 : Let S = (U,C ∪D) and S′ = (U,B ∪D) be two decision tables.
if B is a Liang’s entropy reduct of C, then

α(S) = α(S′), β(S) = β(S′) and γ(S) ≤ γ(S′).

Proof : For simplicity, without any loss of generality, let U/C =
{X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , Xm,
Xu ∪Xv} and U/D = {Y1, Y2, · · · , Yn}. Through using Liang’s entropy reduction,
we suppose that the two classes Xu and Xv(u, v < m) combine to a new class
Xu ∪Xv. From Theorem 3.4 it follows that µ(Zuj) = µ(Zvj).

Therefore, from Theorem 4.2, α(S) = α(S′), by Theorem 4.5, β(S) = β(S′), and
from Theorem 4.7, γ(S) ≤ γ(S′). ¤

Theorem 5.6 shows that the certainty measure α will be unchanged after per-
forming Liang’s entropy reduction, the consistency measure will also be unchanged
after performing a Liang’s entropy reduction, and the support measure after using
Liang’s entropy reduction will be no less than that of original one. This idea can
be explained by the following example.

Example 5.4 We employ Table 1 to illustrate the change of the decision perfor-
mance of a decision table after performing Liang’s entropy reduction.
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It is easy to get using Definition 2.3 that the set of all Liang’s entropy reducts
REDL

D(C) = {{Headache, Animalheat, Musclepain}, {Animal heat, Cough}}.
Let B1(L) = {Headache, Animal heat, Musclepain}, B2(L) =
{Animal heat, Cough} and S1 = (U,B1(L) ∪ D), S2 = (U,B2(L) ∪ D). we have
that

α(S) = 0.5667, α(S1) = 0.5667, α(S2) = 0.5667,

β(S) = 0.1333, β(S1) = 0.1333, β(S2) = 0.1333,

γ(S) = 0.1200, γ(S1) = 0.1200, γ(S2) = 0.1200.

Obviously,

α(S1) = α(S2) = α(S), β(S1) = β(S2) = β(S), γ(S1) = γ(S2) = γ(S).

6. Example analysis

In this section, through experimental analysis, we illustrate the change of the deci-
sion performance after using the positive-region reduction, Shannon’s entropy re-
duction and Liang’s entropy reduction, for general decision tables. We have down-
load the data set Spect from UCI database (Spect is a decision table with two
decision values). In order to verify their performance, we randomly extract 150
objects from the data set 100 times. As the limitation of the paper’s length, one of
100 tables extracted from Spect is selected to verify our results.

6.1 Performance change deriving from positive-region redction

All the positive-region reducts and their corresponding three performance measures
of the original table are shown in Table 4 and Figures 1-3. The values of α, β and
γ of the original table and the corresponding reduced tables are shown in Table
4. Figures 1-3 express that the value of each of α, β and γ with respect to every
positive-region reduct respectively.

From Table 4 and Figures 1-3, it is easy to draw the following conclusion. Through
using a positive-region reduction, the certainty measure α and the consistency
measure β are not bigger than the original certainty measure and the original
consistency measure respectively, and the support measure γ is not smaller than
the original support measure.

6.2 Performance change deriving from Shannon’s entropy reduction

All the Shannon’s entropy reducts and their corresponding three performance mea-
sures of the original table are shown in Table 5 and Figures 4-6.The values of α, β
and γ of the original table and the corresponding reduced tables are shown in Table
5. Figures 4-6 express that the value of each of α, β and γ as to every Shannon’s
entropy reduct respectively.

From Table 5 and Figures 4-6, it is easy to draw the following conclusion: after
performing a Shannon’s entropy reduction, each of the certainty measure α and the
consistency measure β is the same as each of those induced by a original decision
table, and the support measure γ is not smaller than the original support measure.
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6.3 Performance change deriving from Liang’s entropy reduction

All the Liang’s entropy reducts and their corresponding three performance mea-
sures of the original table are shown in Table 6 and Figures 7-9. The values of α,
β and γ of the original table and the corresponding reduced tables are appeared
in Table 6. Figures 7-9 express that the value of each of α, β and γ with respect
to every positive-region reduct respectively.

From Table 6 and Figures 7-9, it is easy to draw the following conclusions: after
performing a Liang’s entropy reduction, the change is similar to Shannon’s entropy
reduction, each of the certainty measure α and the consistency measure β is the
same as each of those induced by a original decision table, and the support measure
γ is not smaller than the original support measure.

7. Conclusions

Certainty measure, consistency measure and support measure are three important
measures for evaluating the decision performance of a decision table. In this pa-
per, we have analyzed the change mechanism of the decision performance after
performing the positive-region reduction, Shannon’s entropy reduction and Liang’s
entropy reduction, and have obtained some of their important properties. These
three measures may be changed through using a positive-region reduction. How-
ever, the certainty measure and the consistency measure are unchanged after using
a Shannon’s entropy reduction and Liang’s entropy reduction, and the support
measure is usually increased. These results may be helpful for determining which
of the positive-region reduction, Shannon’s entropy reduction and Liang’s entropy
reduction is preferred for a practical decision problem in the context of complete
decision tables. Further development will be focus on change mechanism of three
evaluation measures in the context of incomplete decision tables.
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Table 1. A decision table about diagnosing rheum

Patients Headache Muscle pain Animal heat Cough Rheum

e1 Yes Yes Normal No No
e2 Yes Yes High No No
e3 Yes Yes Normal No Yes
e4 Yes Yes high No Yes
e5 Yes No High Yes Yes
e6 Yes No High Yes Yes
e7 Yes No High Yes No
e8 Yes Yes Very high Yes Yes
e9 Yes Yes Very high Yes No
e10 No Yes Normal Yes Yes

Table 2. A decision table about diagnosing rheum

Patients Headache Muscle pain Animal heat Cough Rheum

e1 Yes No high Yes No
e2 Yes Yes high No Yes
e3 Yes Yes Normal Yes No
e4 Yes Yes Normal Yes No
e5 Yes Yes Normal Yes Yes
e6 Yes Yes Normal Yes Possible
e7 No Yes High Yes No
e8 No Yes High Yes No
e9 No Yes High Yes No
e10 No Yes High Yes Yes
e11 No Yes High Yes Yes
e12 No Yes High Yes Possible

Table 3. A decision table about diagnosing rheum

Patients Headache Muscle pain Animal heat Cough Rheum

e1 Yes No high Yes No
e2 Yes Yes high No Yes
e3 Yes Yes Normal Yes No
e4 Yes Yes Normal Yes No
e5 Yes Yes Normal Yes Yes
e6 Yes Yes Normal Yes Possible
e7 No Yes High Yes No
e8 No Yes High Yes Yes
e9 No Yes High Yes Yes
e10 No Yes High Yes Yes
e11 No Yes High Yes Possible
e12 No Yes High Yes Possible
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Table 4. All positive-region reducts and decision performance measures of corre-

sponding reduced tables

No. Reducts α β γ

1 1,2,3,4,8,9,10,11,12,14,15,16,19,20,21 0.90379 0.80758 0.01396
2 1,2,3,4,7,8,9,10,11,13,14,15,16,19,20,21 0.90444 0.80889 0.01244
3 1,2,3,4,8,9,10,11,12,14,17,20,21,22 0.90339 0.80679 0.01102
4 1,2,3,4,8,9,10,11,12,14,19,21,22 0.90381 0.80762 0.01262
5 1,2,3,4,5,8,9,10,11,13,14,17,20,21,22 0.90381 0.80762 0.01058
6 1,2,3,4,7,8,9,10,11,13,14,17,20,21,22 0.90400 0.80800 0.01004
7 1,2,3,4,8,9,10,11,13,14,16,17,20,21,22 0.90381 0.80762 0.01031
8 1,2,3,4,8,9,10,11,13,14,19,20,21,22 0.90444 0.80889 0.01013
9 1,2,3,4,6,8,9,10,12,14,15,16,19,20,21 0.90379 0.80758 0.01387
10 1,2,3,4,5,6,8,9,11,12,14,15,19,20,21 0.90379 0.80758 0.01396
11 1,2,3,4,6,8,9,10,11,12,14,15,19,20,21 0.90379 0.80758 0.01396
12 1,2,3,4,6,8,9,11,12,14,15,17,19,20,21 0.90379 0.80758 0.01378
13 1,2,3,4,6,7,8,9,10,13,14,15,16,19,20,21 0.90444 0.80889 0.01236
14 1,2,3,4,5,6,7,8,9,11,13,14,15,19,20,21 0.90444 0.80889 0.01262
15 1,2,3,4,6,7,8,9,10,11,13,14,15,19,20,21 0.90444 0.80889 0.01244
16 1,2,3,4,6,7,8,9,11,13,14,15,17,19,20,21 0.90444 0.80889 0.01236
17 1,3,4,6,8,9,10,12,14,16,17,20,21,22 0.90339 0.80679 0.01111
18 1,3,4,6,8,9,10,12,14,16,19,21,22 0.90381 0.80762 0.01253
19 1,3,4,5,6,8,9,11,12,14,17,21,22 0.90337 0.80673 0.01307
20 1,3,4,6,8,9,10,11,12,14,17,21,22 0.90337 0.80673 0.01289
21 1,3,4,6,8,9,11,12,14,17,19,21,22 0.90381 0.80762 0.01262
22 1,3,4,5,6,8,9,11,12,14,19,21,22 0.90381 0.80762 0.01271
23 1,3,4,6,8,9,10,11,12,14,19,21,22 0.90381 0.80762 0.01262
24 1,2,3,4,6,8,9,10,13,14,16,17,20,21,22 0.90381 0.80762 0.01022
25 1,3,4,6,7,8,9,10,13,14,16,17,20,21,22 0.90400 0.80800 0.00987
26 1,2,3,4,6,8,9,10,13,14,16,18,19,20,21,22 0.90444 0.80889 0.00967
27 1,3,4,6,7,8,9,10,13,14,16,19,20,21,22 0.90444 0.80889 0.00960
28 1,2,3,4,5,6,8,9,11,13,14,17,20,21,22 0.90381 0.80762 0.01076
29 1,2,3,4,6,8,9,11,13,14,17,19,20,21,22 0.90444 0.80889 0.01004
30 1,3,4,5,6,7,8,9,11,13,14,17,20,21,22 0.90400 0.80800 0.01013
31 1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
32 1,2,3,4,5,6,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.01033
33 1,3,4,5,6,7,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.00969

? Original table 0.90444 0.80889 0.00933

Table 5. All Shannon’s entropy reducts and decision performance measures of corre-

sponding reduced tables

No. Reducts α β γ

1 1,2,3,4,8,9,10,11,12,13,14,19,21,22 0.90444 0.80889 0.01120
2 1,2,3,4,7,8,9,10,11,13,14,15,16,19,20,21 0.90444 0.80889 0.01240
3 1,2,3,4,8,9,10,11,12,13,14,15,16,19,20,21 0.90444 0.80889 0.01227
4 1,2,3,4,8,9,10,11,13,14,19,20,21,22 0.90444 0.80889 0.01013
5 1,2,3,4,5,6,7,8,9,11,13,14,15,19,20,21 0.90444 0.80889 0.01262
6 1,2,3,4,6,7,8,9,10,11,13,14,15,19,20,21 0.90444 0.80889 0.01244
7 1,2,3,4,6,7,8,9,11,13,14,15,17,19,20,21 0.90444 0.80889 0.01236
8 1,2,3,4,5,6,8,9,11,12,13,14,15,19,20,21 0.90444 0.80889 0.01236
9 1,2,3,4,6,8,9,10,11,12,13,14,15,19,20,21 0.90444 0.80889 0.01227
10 1,2,3,4,6,8,9,11,12,13,14,15,17,19,20,21 0.90444 0.80889 0.01209
11 1,2,3,4,6,7,8,9,10,13,14,15,16,19,20,21 0.90444 0.80889 0.01236
12 1,2,3,4,6,8,9,10,12,13,14,15,16,19,20,21 0.90444 0.80889 0.01218
13 1,3,4,5,6,8,9,11,12,13,14,19,21,22 0.90444 0.80889 0.01120
14 1,3,4,6,8,9,10,11,12,13,14,19,21,22 0.90444 0.80889 0.01111
15 1,3,4,6,8,9,11,12,13,14,17,19,21,22 0.90444 0.80889 0.01102
16 1,2,3,4,5,6,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.01013
17 1,2,3,4,6,8,9,11,13,14,17,19,20,21,22 0.90444 0.80889 0.01004
18 1,3,4,5,6,7,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.00969
19 1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
20 1,3,4,6,8,9,10,12,13,14,16,19,21,22 0.90444 0.80889 0.01111
21 1,2,3,4,6,8,9,10,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
22 1,2,3,4,6,8,9,10,13,14,16,18,19,20,21,22 0.90444 0.80889 0.00969
23 1,3,4,6,7,8,9,10,13,14,16,19,20,21,22 0.90444 0.80889 0.00960

? Original table 0.90444 0.80889 0.00933
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Table 6. All Liang’s entropy reducts and decision performance measures of corre-

sponding reduced tables

No. Reducts α β γ

1 1,2,3,4,7,8,9,10,11,13,14,19,20,21,22 0.90444 0.80889 0.00969
2 1,2,3,4,8,9,10,11,12,13,14,19,20,21,22 0.90444 0.80889 0.00978
3 1,3,4,6,7,8,9,10,13,14,16,19,20,21,22 0.90444 0.80889 0.00960
4 1,3,4,5,6,7,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.00969
5 1,2,3,4,6,7,8,9,11,13,14,17,19,20,21,22 0.90444 0.80889 0.00969
6 1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
7 1,3,4,6,8,9,10,12,13,14,16,19,20,21,22 0.90444 0.80889 0.00978
8 1,3,4,5,6,8,9,11,12,13,14,19,20,21,22 0.90444 0.80889 0.00987
9 1,3,4,6,8,9,10,11,12,13,14,19,20,21,22 0.90444 0.80889 0.00978
10 1,3,4,6,8,9,11,12,13,14,17,19,20,21,22 0.90444 0.80889 0.00969

? Original table 0.90444 0.80889 0.00933
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Figure 1. Variation of the certainty measure α after Positive-
region reducts.
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Figure 2. Variation of the consistency measure β after Positive-
region reducts.
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Figure 3. Variation of the support measure γ after Positive-region
reducts.
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Figure 4. Variation of the certainty measure α after the Shan-
non’s entropy reducts.
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Figure 5. Variation of the consistency measure β after the Shan-
non’s entropy reducts.
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Figure 6. Variation of the support measure γ after the Shannon’s
entropy reducts.
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Figure 7. Variation of the certainty measure α after the Liang’s
entropy reducts.
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Figure 8. Variation of the consistency measure β after the Liang’s
entropy reducts.
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Figure 9. Variation of the support measure γ after the Liang’s
entropy reducts.
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