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Abstract

Recently, by combining rough set theory with granular computing, pessimistic and optimistic multigranulation rough
sets have been proposed to derive “AND” and “OR” decision rules from decision systems. At the same time, by
integrating granular computing and formal concept analysis, Wille’s concept lattice and object-oriented concept lattice
were used to obtain granular rules and disjunctive rules from formal decision contexts. So, the problem of rule
acquisition can bring rough set theory, granular computing and formal concept analysis together. In this study, to shed
some light on the comparison and combination of rough set theory, granular computing and formal concept analysis,
we investigate the relationship between multigranulation rough sets and concept lattices via rule acquisition. Some
interesting results are obtained in this paper: 1) “AND” decision rules in pessimistic multigranulation rough sets are
proved to be granular rules in concept lattices, but the inverse may not be true; 2) the combination of the truth parts
of an “OR” decision rule in optimistic multigranulation rough sets is an item of the decomposition of a disjunctive
rule in concept lattices; 3) a non-redundant disjunctive rule in concept lattices is shown to be the multi-combination
of the truth parts of “OR” decision rules in optimistic multigranulation rough sets; 4) the same rule is defined with
a same certainty factor but a different support factor in multigranulation rough sets and concept lattices. Moreover,
algorithm complexity analysis is made for the acquisition of “AND” decision rules, “OR” decision rules, granular
rules and disjunctive rules.
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1. Introduction

Rough set theory, presented by Pawlak [42], has drawn many attentions from researchers over the past thirty-
three years [20, 26, 43, 78, 85, 86]. As is well known, its original idea is to partition the universe of discourse into
disjoint subsets by a given equivalence or indiscernibility relation. Furthermore, these obtained disjoint subsets are
viewed as the basic knowledge which is used to characterize any target set by means of the so-called lower and upper
approximations.

Since the equivalence or indiscernibility relation has its limitations in dealing with information systems with fuzzy,
continuous-valued or interval-valued attributes, the classical rough sets have been generalized and developed by some
scholars [14, 16, 18, 57, 59, 73, 77]. Note that the generalized and developed rough sets are beneficial to the imple-
mentation of rule acquisition in different kinds of decision systems [6, 8, 11, 24, 27, 88, 89].

From the aspect of granular computing presented by Zadeh [83] and further elaborated by other researchers [2,
44, 45, 52, 74], the aforementioned generalized and developed rough sets describe a target set by the lower and upper
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approximations under one granulation. However, in the real world, multiple granulations are sometimes required to
approximate a target set as well. For example, multi-scale data sets need multiple granulations for set approximations
[66], and multi-source data sets inspire Qian et al. [48, 49] to put forward pessimistic multigranulation rough sets
and optimistic multigranulation rough sets for applying multi-source information fusion. These information fusion
strategies were soon extended to the cases of incomplete, neighborhood, covering and fuzzy environments [17, 36,
37, 55, 68, 71]. Moreover, it deserves to be mentioned that the pessimistic and optimistic multigranulation rough sets
were used in [48, 49] to derive “AND” and “OR” decision rules from decision systems, which was further discussed
by Yang et al. [70] in terms of local and global measurements of the “AND” and “OR” decision rules.

Formal concept analysis, presented by Wille [64] in the same year as rough set theory, has attracted many re-
searchers [4, 56, 60, 84, 87] to this promising field. Up to now, its applications cover data mining [1, 13], knowledge
discovery [10, 46, 69], machine learning [23], software engineering [53], etc. Within this theory, formal contexts,
formal concepts and concept lattices are three basic notions for data analysis.

Also, it deserves to be mentioned that in recent years both multigranulation rough sets and concept lattices have
been connected with three-way decisions whose unified framework description and superiority were given by Yao
[78, 79, 80] and whose further investigations and applications were studied by many scholars [9, 15, 19, 28, 35, 39,
72, 82]. For example, Qian et al. [50] established a new decision-theoretic rough set [81] from the perspective of
multigranulation rough sets. By taking the intension part of a formal concept as an orthopair [7], Qi et al. [47] put
forward three-way concept lattice and discussed some useful properties. In addition, Li et al. [30] proposed another
three-way concept lattice with the name of approximate concept lattice under the environment of incomplete data,
where the intension part of a formal concept was expressed as a nested pair which is in fact equivalent to an orthopair.

Recently, more and more attention [12, 21, 22, 25, 54, 62, 75] has been paid to comparing and combining rough set
theory and formal concept analysis. Under such a circumstance, object-oriented concept lattice was introduced in [76]
by incorporating lower and upper approximation ideas into concept-forming operators and it was further elaborated
in [41, 61]. Ren et al. [51] presented the notion of a disjunctive rule in formal decision contexts [86] by the help of
Wille’s and object-oriented concept lattices. Moreover, covering-based rough sets and concept lattices were related
to each other in [5, 58] from the viewpoints of approximation operators and reduction. In the meanwhile, integrating
formal concept analysis with granular computing has also attracted many researchers [40, 63]. For instance, Wu et
al. [65] put forward the notion of a granular rule in formal decision contexts. Li et al. [29] discussed the relation
between granular rules and decision rules [31]. In addition, rough set theory has been related to granular computing
[48, 49, 66, 74], and vice versa.

What is more, the comparison and combination of rough set theory, granular computing and formal concept analy-
sis has received much attention in knowledge representation and discovery [32, 65, 67, 75]. The main contributions of
the existing literature in this aspect can be summarized as follows: (1) rough set theory, granular computing and for-
mal concept analysis were combined to form composite concept-forming operators [75] and induce granular concepts
[65]; (2) they were jointly used to recognize cognitive concepts by two-step learning approaches [32, 67]. However,
little attention has been paid to comparing and combining these three theories from the perspective of rule acquisition.
This problem deserves to be investigated since it can not only shed some light on the comparison and combination of
them, but also help us to make better decision analysis of the data.

Motivated by the above problem, this study mainly focuses on the comparison and combination of rough set
theory, granular computing and formal concept analysis from the viewpoint of rule acquisition. More specifically,
we put forward an effective way of transforming decision systems into formal decision contexts and discuss some
useful properties. And then the relationship between multigranulation rough sets and concept lattices is analyzed
from the perspectives of differences and relations between rules, support and certainty factors for rules, and algorithm
complexity analysis of rule acquisition.

The rest of this paper is organized as follows. In Section 2, we recall the notions of Pawlak’s rough set, pessimistic
multigranulation rough set and optimistic multigranulation rough set as well as their induced “AND” and “OR” de-
cision rules. Moreover, Wille’s concept lattice, object-oriented concept lattice, granular rules and disjunctive rules
are introduced. In Section 3, we transform decision systems into formal decision contexts and discuss some useful
properties. In Section 4, the relationship between multigranulation rough sets and concept lattices is analyzed from
the viewpoints of differences and relations between rules, support and certainty factors for rules, and algorithm com-
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plexity analysis of the acquisition of “AND” decision rules, “OR” decision rules, granular rules and disjunctive rules.
Section 5 concludes this paper with a brief summary and an outlook for further research.

2. Preliminaries

In this section, we review some basic notions such as information system, Pawlak’s rough set, pessimistic multi-
granulation rough sets, “AND” decision rules, optimistic multigranulation rough sets, “OR” decision rules, formal
context, Wille’s concept lattice, object-oriented concept lattice, granular rules and disjunctive rules.

2.1. Pawlak’s rough set

Let U be a non-empty finite set of objects and AT be a non-empty finite set of attributes. Then an information
system is considered as a pair S = (U, AT ) [42], where the value of x ∈ U under attribute a ∈ AT is denoted by a(x).

Given A ⊆ AT , an equivalence relation IND(A) is defined as

IND(A) = {(x, y) ∈ U × U : ∀a ∈ A, a(x) = a(y)}, (1)

which partitions U into equivalence classes [x]A = {y ∈ U : (x, y) ∈ IND(A)}. This partition {[x]A : x ∈ U} is often
denoted by U/IND(A). For a subset X of U,

A(X) = {x ∈ U : [x]A ⊆ X} and A(X) = {x ∈ U : [x]A ∩ X , ∅} (2)

are called the lower and upper approximations [42], respectively. The ordered pair [A(X), A(X)] is said to be Pawlak’s
rough set of X with respect to A.

2.2. Multigranulation rough sets and their induced rules

Different from Pawlak’s rough set model, multigranulation rough sets were established on the basis of a family of
equivalence relations rather than a single one only.

Definition 1 [48]. Let S be an information system and A1, A2, · · · , As ⊆ AT . Then the pessimistic multigranulation
lower and upper approximations of a subset X of U are respectively defined as

s∑
j=1

AP
j (X) = {x ∈ U : [x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ · · · ∧ [x]As ⊆ X} and

s∑
j=1

AP
j (X) =∼

s∑
j=1

AP
j (∼ X), (3)

where [x]A j (1 ≤ j ≤ s) is the equivalence class of x in terms of A j, ∧ is the logical conjunction operator, and ∼ X is
the complement of X with respect to U.

The pair

 s∑
j=1

AP
j (X),

s∑
j=1

AP
j (X)

 is referred to as the pessimistic multigranulation rough set of X with respect to the

attribute sets A1, A2, · · · , As.
In what follows, we discuss rules induced by the pessimistic multigranulation rough sets. Before embarking on

this issue, we introduce the notion of a decision system.
A decision system is an information system such that S = (U, AT∪D) in which AT and D are called the conditional

and decision attribute sets, respectively. In this paper, to simplify the subsequent discussion, we only consider D as
a singleton set {d}. As a result, the decision system to be discussed can be represented by S = (U, AT ∪ {d}). For
convenience, the partition of U induced by the decision attribute d is denoted by U/IND({d}) = {[x]{d} : x ∈ U}.

Furthermore, we review the description or semantic explanation [24, 43] of an equivalence class [x]A j which
is denoted by des([x]A j ) and described as

∧
a∈A j

(a, a(x)), where a(x) is the value of x under attribute a. That is,
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des([x]A j ) =
∧

a∈A j

(a, a(x)). Similarly, the description or semantic explanation of the equivalence class [x]{d} is de-

scribed as des([x]{d}) = (d, d(x)).

According to Definition 1, for any x ∈
s∑

j=1
AP

j ([x]{d}), it generates the following so-called “AND” decision rule from

a decision system:

r∧x :
s∧

j=1

(des([x]A j )→ des([x]{d})),

where every decision rule des([x]A j )→ des([x]{d}) is true based on Eq. (3). Therefore, r∧x can be represented by

r∧x :

 s∧
j=1

des([x]A j )

→ des([x]{d}). (4)

Definition 2 [49]. Let S be an information system and A1, A2, · · · , As ⊆ AT . Then the optimistic multigranulation
lower and upper approximations of a subset X of U are respectively defined as

s∑
j=1

AO
j (X) = {x ∈ U : [x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ · · · ∨ [x]As ⊆ X} and

s∑
j=1

AO
j (X) =∼

s∑
j=1

AO
j (∼ X), (5)

where ∨ is the logical disjunction operator.

The pair

 s∑
j=1

AO
j (X),

s∑
j=1

AO
j (X)

 is referred to as the optimistic multigranulation rough set of X with respect to the

attribute sets A1, A2, · · · , As.

According to Definition 2, for any x ∈
s∑

j=1
AO

j ([x]{d}), it induces the following so-called “OR” decision rule from a

decision system:

r∨x :
s∨

j=1

(des([x]A j )→ des([x]{d})), (6)

where at least one decision rule des([x]A j )→ des([x]{d}) is true based on Eq. (5).

2.3. Wille’s concept lattice and object-oriented concept lattice

In accordance with the notations in the previous subsections, we denote the object set by U and the attribute set by
A. Then, a formal context can be considered as a triple (U, A, I) [64], where (x, a) ∈ I represents that x ∈ U possesses
a ∈ A while (x, a) < I means the opposite.

In fact, a formal context is a special information system with two-valued input data [34, 38]. To derive Wille’s and
object-oriented concept lattices, the following four operators are needed: for any X ⊆ U and B ⊆ A,

X↑ = {a ∈ A : ∀x ∈ X, (x, a) ∈ I},
B↓ = {x ∈ U : ∀a ∈ B, (x, a) ∈ I},
X2 = {a ∈ A : Ia ⊆ X},
B3 = {x ∈ U : xI ∩ B , ∅},

(7)

where Ia = {x ∈ U : (x, a) ∈ I} and xI = {a ∈ A : (x, a) ∈ I}. Moreover, it is interesting to clarify Ia = {a}↓ = {a}3.

Definition 3 [64, 76]. Let (U, A, I) be a formal context, X ⊆ U and B ⊆ A. If X↑ = B and B↓ = X, then (X, B) is called
a Wille’s concept; if X2 = B and B3 = X, then (X, B) is called an object-oriented concept. For each of the cases, X
and B are referred to as the extent and intent of (X, B), respectively.
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Proposition 1 [64, 76]. Let (U, A, I) be a formal context. For X, X1, X2 ⊆ U and B, B1, B2 ⊆ A, the following properties
hold:

(i) X1 ⊆ X2 ⇒ X↑2 ⊆ X↑1 , X2
1 ⊆ X2

2 ;

(ii) B1 ⊆ B2 ⇒ B↓2 ⊆ B↓1, B3
1 ⊆ B3

2 ;
(iii) X ⊆ X↑↓, B ⊆ B↓↑, X23 ⊆ X, B ⊆ B32;
(iv) (X1 ∪ X2)↑ = X↑1 ∩ X↑2 , (X1 ∩ X2)2 = X2

1 ∩ X2
2 ;

(v) (B1 ∪ B2)↓ = B↓1 ∩ B↓2, (B1 ∪ B2)3 = B3
1 ∪ B3

2 ;
(vi) (X↑↓, X↑), (B↓, B↓↑) are Wille’s concepts and (X23, X2), (B3, B32) are object-oriented concepts.

If Wille’s and object-oriented concepts of (U, A, I) are respectively ordered by

(X1, B1) ≤W (X2, B2)⇐⇒ X1 ⊆ X2 (⇐⇒ B2 ⊆ B1),
(X1, B1) ≤O (X2, B2)⇐⇒ X1 ⊆ X2 (⇐⇒ B1 ⊆ B2), (8)

both of them form complete lattices which are called Wille’s concept lattice [64] and object-oriented concept lattice
[76], respectively. Hereinafter, the former is denoted by BW (U, A, I) and the latter is denoted by BO(U, A, I).

2.4. Granular rules and disjunctive rules

A formal decision context (also called decision formal context) [86] is a quintuple Π = (U, A, I,D, J) with (U, A, I)
and (U,D, J) being formal contexts, where A and D with A ∩ D = ∅ are called the conditional and decision attribute
sets, respectively.

To avoid confusion, the operators ↑ and ↓ defined in Eq. (7) are expressed by different forms when they appear in
different contexts of Π. Concretely, in the context (U, A, I), the notations ↑ and ↓ are reserved in their current forms,
while in the context (U,D, J), they are changed as ⇑ and ⇓, respectively. For brevity, sometimes we write {x}↑ as x↑,
{a}↓ as a↓, {x}⇑ as x⇑, and {a}⇓ as a⇓.

Definition 4 [65]. Let Π be a formal decision context and x ∈ U. If x↑↓ ⊆ x⇑⇓, then x↑ → x⇑ is called a granular rule.

A granular rule x↑ → x⇑ says that each object having all the conditional attributes in x↑ also has all the decision
attributes in x⇑. That is, if ∧x↑, then ∧x⇑, where ∧ is the logical conjunction operator.

Definition 5 [51]. Let Π be a formal decision context, BO(U, A, I) be the object-oriented concept lattice of (U, A, I)
and BW (U,D, J) be Wille’s concept lattice of (U,D, J). For (X, B) ∈ BO(U, A, I) and (Y,C) ∈ BW (U,D, J), if X, B, Y ,
C are all non-empty and X ⊆ Y , then the expression B→dis j C is called a disjunctive rule.

Hereinafter, a disjunctive rule B→dis j C is rewritten as B→ C when there is no confusion. A disjunctive rule says
that each object having at least one conditional attribute in B has all the decision attributes in C. That is, if ∨B, then
∧C, where ∨ is the logical disjunction operator.

Definition 6 [51]. Let Π be a formal decision context. For two disjunctive rules B1 → C1 and B2 → C2, if B2 ⊆ B1
and C2 ⊆ C1, we say that B2 → C2 can be implied by B1 → C1. Furthermore, let Ω be a set of disjunctive rules. For
B → C ∈ Ω, if there exists another disjunctive rule B0 → C0 ∈ Ω such that B0 → C0 implies B → C, we say that
B→ C is redundant in Ω; otherwise, it is said to be non-redundant in Ω.

Generally speaking, it is more appealing to derive non-redundant disjunctive rules from a formal decision context.

3. Transforming decision systems into formal decision contexts

In this section, we focus on transforming decision systems into formal decision contexts and discuss some useful
properties to facilitate our subsequent discussion.
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Let S = (U, AT ∪ {d}) be a decision system with U = {x1, x2, · · · , xm} and AT = {a1, a2, · · · , an}. Note that S can
be represented as a two-dimensional table (see Table 1 for details), where a j(xi) (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the value of
xi under the conditional attribute a j and d(xi) is the value of xi under the decision attribute d.

Table 1: A decision system S = (U, AT ∪ {d})

a1 a2 · · · an d
x1 a1(x1) a2(x1) · · · an(x1) d(x1)
x2 a1(x2) a2(x2) · · · an(x2) d(x2)
...

...
...

...
...

...

xm a1(xm) a2(xm) · · · an(xm) d(xm)

Generally speaking, for a conditional attribute a j, there may exist a repetition of values in the array a j(x1), a j(x2),
· · · , a j(xm). For our purpose, we create a new array v j

1, v j
2, · · · , v j

m j without the repetition of values. In other words,
v j

1, v j
2, · · · , v j

m j are parts of a j(x1), a j(x2), · · · , a j(xm) by avoiding repetition. Similarly, for the decision attribute d,
from the original array d(x1), d(x2), · · · , d(xm), we can also create a new array vd

1, vd
2, · · · , vd

md
without the repetition

of values. That is, vd
1, vd

2, · · · , vd
md

are non-repeatedly selected from d(x1), d(x2), · · · , d(xm).
Then, based on the above convention, we can obtain a formal decision context Π = (U, A, I,D, J), where U =

{x1, x2, · · · , xm}, A = {a1(v1
1), · · · , a1(v1

m1
), a2(v2

1), · · · , a2(v2
m2

), · · · , an(vn
1), · · · , an(vn

mn
)}, D = {d(vd

1), d(vd
2), · · · , d(vd

md
)}.

Note that Π can be represented as a two-dimensional table. More details can be found in Table 2. In the table, the
Boolean function λi jk is used to describe whether the object xi has the conditional attribute a j(v

j
k) and the Boolean

function µik is used to describe whether the object xi has the decision attribute d(vd
k ). More specifically,

λi jk =

{
1, if a j(xi) = v j

k,
0, otherwise,

(9)

µik =

{
1, if d(xi) = vd

k ,
0, otherwise. (10)

We say that the formal decision context Π shown in Table 2 is induced by the decision system S .

Table 2: A formal decision context Π = (U, A, I,D, J) induced by S

a1(v1
1) · · · a1(v1

m1
) a2(v2

1) · · · a2(v2
m2

) · · · an(vn
1) · · · an(vn

mn
) d(vd

1) · · · d(vd
md

)
x1 λ111 · · · λ11m1 λ121 · · · λ12m2 · · · λ1n1 · · · λ1nmn µ11 · · · µ1md

x2 λ211 · · · λ21m1 λ221 · · · λ22m2 · · · λ2n1 · · · λ2nmn µ21 · · · µ2md

...
...

...
...

...
...

...
...

...
...

...
...

...
...

xm λm11 · · · λm1m1 λm21 · · · λm2m2 · · · λmn1 · · · λmnmn µm1 · · · µmmd

Proposition 2. Let Π = (U, A, I,D, J) be the formal decision context induced by S , where U = {x1, x2, · · · , xm},
A = {a1(v1

1), · · · , a1(v1
m1

), a2(v2
1), · · · , a2(v2

m2
), · · · , an(vn

1), · · · , an(vn
mn

)} and D = {d(vd
1), d(vd

2), · · · , d(vd
md

)}. Then, for
any xi ∈ U,

(i) there exists a j(v
j
k) (∀ j ∈ {1, 2, · · · , n}) such that (xi, a j(v

j
k)) ∈ I and (xi, a j(v

j
t )) < I for all t ∈ {1, 2, · · · ,m j} − {k};

(ii) there exists d(vd
k ) such that (xi, d(vd

k )) ∈ J and (xi, d(vd
t )) < J for all t ∈ {1, 2, · · · ,md} − {k}.

Proof. (i) Suppose a j(xi) is the value of xi under the conditional attribute a j in the decision system S . Then based
on the above discussion of transforming S into Π, there exists v j

k such that a j(xi) = v j
k and a j(xi) , v j

t for all
t ∈ {1, 2, · · · ,m j} − {k}. By Eq. (9), it follows that λi jk = 1 and λi jt = 0 for all t ∈ {1, 2, · · · ,m j} − {k}, which leads to
(xi, a j(v

j
k)) ∈ I and (xi, a j(v

j
t )) < I for all t ∈ {1, 2, · · · ,m j} − {k}.
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(ii) It can be proved in a manner similar to (i). 2

Proposition 3. Let Π = (U, A, I,D, J) be the formal decision context induced by S , where U = {x1, x2, · · · , xm},
A = {a1(v1

1), · · · , a1(v1
m1

), a2(v2
1), · · · , a2(v2

m2
), · · · , an(vn

1), · · · , an(vn
mn

)} and D = {d(vd
1), d(vd

2), · · · , d(vd
md

)}. Then, for
any xi ∈ U,

(i) there exists a j(v
j
k) (∀ j ∈ {1, 2, · · · , n}) such that {a j(v

j
k)}↓ = [xi]{a j}, where [xi]{a j} is the equivalence class of xi in

terms of {a j}, and ↓ is the operator defined in Eq. (7);
(ii) there exists d(vd

k ) such that {d(vd
k )}⇓ = [xi]{d}, where [xi]{d} is the equivalence class of xi in terms of {d}, and ⇓ is

the operator specified in Section 2.4.

Proof. (i) Suppose a j(xi) is the value of xi under the conditional attribute a j in the decision system S . Then based on
the discussion of transforming S into Π, there exists v j

k such that a j(xi) = v j
k. By Eqs. (1), (7) and (9), we conclude

{a j(v
j
k)}↓ = {x ∈ U : (x, a j(v

j
k)) ∈ I} = {x ∈ U : a j(x) = v j

k} = {x ∈ U : a j(x) = a j(xi)} = [xi]{a j}.
(ii) It can be proved in a manner similar to (i). 2

Finally, we use a real example to show the process of transforming a decision system into a formal decision context.

Example 1. Table 3 depicts a dataset of five patients who suffer (or do not suffer) from flu.

Table 3: A flu dataset

Patient Temperature Headache Flu
x1 Normal No No
x2 Slightly high A little No
x3 Slightly high No No
x4 High A little Yes
x5 Normal Serious Yes

Let U = {x1, x2, x3, x4, x5}, AT = {a1, a2} (a1: Temperature, a2: Headache) and d: Flu. Then we can establish a
decision system S = (U, AT ∪ {d}). From Table 3, we obtain the following information:

[x1]{a1} = [x5]{a1} = {x1, x5}, [x2]{a1} = [x3]{a1} = {x2, x3}, [x4]{a1} = {x4},

[x1]{a2} = [x3]{a2} = {x1, x3}, [x2]{a2} = [x4]{a2} = {x2, x4}, [x5]{a2} = {x5},
[x1]{d} = [x2]{d} = [x3]{d} = {x1, x2, x3}, [x4]{d} = [x5]{d} = {x4, x5}.

By the above transforming approach, we generate a formal decision context Π = (U, A, I,D, J) with A = {a1(Normal),
a1(Slightly high), a1(High), a2(No), a2(A little), a2(Serious)} and D = {d(No), d(Yes)}. The binary relations I and J
are shown in Table 4. In the table, number 1 in the i-th row and j-th column means that the i-th object has the j-th
attribute, and number 0 means the opposite.

Table 4: A formal decision context Π = (U, A, I,D, J) induced by S

Patient a1(Normal) a1(Slightly high) a1(High) a2(No) a2(A little) a2(Serious) d(No) d(Yes)
x1 1 0 0 1 0 0 1 0
x2 0 1 0 0 1 0 1 0
x3 0 1 0 1 0 0 1 0
x4 0 0 1 0 1 0 0 1
x5 1 0 0 0 0 1 0 1

From Table 4, we get the following information:

{a1(Normal)}↓ = {x1, x5}, {a1(Slightly high)}↓ = {x2, x3}, {a1(High)}↓ = {x4},
7



{a2(No)}↓ = {x1, x3}, {a2(A little)}↓ = {x2, x4}, {a2(Serious)}↓ = {x5},
{d(No)}⇓ = {x1, x2, x3}, {d(Yes)}⇓ = {x4, x5}.

Then, it is easy to check that Propositions 2 and 3 are true for Example 1.

4. A comparative study of multigranulation rough sets and concept lattices via rule acquisition

In this section, the relationship between multigranulation rough sets and concept lattices is analyzed from the per-
spectives of differences and relations between rules, support and certainty factors for rules and algorithm complexity
analysis of rule acquisition.

4.1. Differences and relations between rules in multigranulation rough sets and concept lattices

In what follows, we mainly discuss the relationship between “AND” decision rules and granular rules, and the
relationship between “OR” decision rules and disjunctive rules.

4.1.1. Relationship between “AND” decision rules and granular rules

For a decision system S = (U, AT ∪ {d}), let
s∑

j=1
AP

j ([x]{d}) be the pessimistic multigranulation lower approximation

of [x]{d} ∈ U/IND({d}) with respect to the attribute sets A1, A2, · · · , As ⊆ AT .

Theorem 1. Let S be a decision system, A1, A2, · · · , As be pairwise different subsets of AT with ∪A j = AT , x ∈
s∑

j=1
AP

j ([x]{d}), and Π be the formal decision context induced by S . Then the “AND” decision rule
(

s∧
j=1

des([x]A j )
)
→

des([x]{d}) is a granular rule extracted from Π.

Proof. Since x ∈
s∑

j=1
AP

j ([x]{d}), by Definition 1, we conclude [x]A j ⊆ [x]{d} for all j = 1, 2, · · · , s. Furthermore,

combining ∪A j = AT with (v) of Proposition 1 and Propositions 2 and 3, we have

x↑↓ = {a1(a1(x)), a2(a2(x)), · · · , a|AT |(a|AT |(x))}↓

=

(( ∪
a∈A1

{a(a(x))}
)∪ ( ∪

a∈A2

{a(a(x))}
)∪ · · ·∪( ∪

a∈As

{a(a(x))}
))↓

=

( ∪
a∈A1

{a(a(x))}
)↓∩( ∪

a∈A2

{a(a(x))}
)↓∩ · · ·∩( ∪

a∈As

{a(a(x))}
)↓

=

( ∩
a∈A1

{a(a(x))}↓
)∩ ( ∩

a∈A2

{a(a(x))}↓
)∩ · · ·∩( ∩

a∈As

{a(a(x)}↓
)

=

( ∩
a∈A1

[x]{a}

)∩ ( ∩
a∈A2

[x]{a}

)∩ · · ·∩( ∩
a∈As

[x]{a}

)
= [x]A1 ∩ [x]A2 ∩ · · · ∩ [x]As

⊆ [x]{d}
= {d(d(x))}⇓
= x⇑⇓.

(11)

Then, by Definition 4, we obtain a granular rule {a1(a1(x)), a2(a2(x)), · · · , a|AT |(a|AT |(x))} → {d(d(x))} which can be

expressed as
|AT |∧
j=1

a j(a j(x)) → d(d(x)) and rewritten as
s∧

j=1

 ∧
a∈A j

a(a(x))
 → d(d(x)). Since from the viewpoint of

semantic explanation, a(a(x)) is equivalent to (a, a(x)) and d(d(x)) is equivalent to (d, d(x)), it follows des([x]A j ) =∧
a∈A j

(a, a(x)) =
∧

a∈A j

a(a(x)) and des([x]{d}) = (d, d(x)) = d(d(x)). So, the granular rule
s∧

j=1

 ∧
a∈A j

a(a(x))
 → d(d(x)) is

just the “AND” decision rule
(

s∧
j=1

des([x]A j )
)
→ des([x]{d}). 2
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Example 2. Continued with Example 1. Take A1 = {a1} and A2 = {a2}. We can compute the partitions U/IND(A1) =
{{x1, x5}, {x2, x3}, {x4}}, U/IND(A2) = {{x1, x3}, {x2, x4}, {x5}}, and U/IND({d}) = {{x1, x2, x3}, {x4, x5}}. By Eq. (3),
{A1 + A2}P({x1, x2, x3}) = {x3} and {A1 + A2}P({x4, x5}) = ∅. Then, by Eq.(4), we obtain the following “AND” decision
rule from the decision system S in Table 3 using pessimistic multigranulation rough sets:

r∧x3
: (Temperature,Slightly high) ∧ (Headache,No)→ (Flu,No).

On the other hand, based on Definition 4, we generate the following granular rules from the induced formal decision
context Π in Table 4:

rg
x1 : If Temperature(Normal) and Headache(No), then Flu(No);

rg
x2 : If Temperature(Slightly high) and Headache(A little), then Flu(No);

rg
x3 : If Temperature(Slightly high) and Headache(No), then Flu(No);

rg
x4 : If Temperature(High) and Headache(A little), then Flu(Yes);

rg
x5 : If Temperature(Normal) and Headache(Serious), then Flu(Yes).

Since r∧x3
is just rg

x3 , Example 2 confirms that the “AND” decision rule derived from S is the granular rule derived from
the induced formal decision context Π.

Theorem 2. Let S be a decision system, A1, A2, · · · , As be pairwise different subsets of AT with ∪A j = AT , and Π
be the formal decision context induced by S . Then some granular rules extracted from Π may not be “AND” decision
rules extracted from S .

We use the following counter-example to confirm our statement in Theorem 2.

Example 3. Continued with Example 2. Note that A1, A2, · · · , As are pairwise different subsets of AT with ∪A j = AT .
Under such a circumstance, we conclude that s is less than or equal to 3 regardless of the empty set. On the other
hand, since our discussion is under the multigranulation environment, s should be greater than or equal to 2. To sum
up, we obtain 2 ≤ s ≤ 3.

When s = 2, there are three cases regardless of the order:

1) A1 = {a1}, A2 = {a2}, 2) A1 = {a1}, A2 = {a1, a2}, 3) A1 = {a1, a2}, A2 = {a2};

when s = 3, there is only one case regardless of the order:

4) A1 = {a1}, A2 = {a2}, A3 = {a1, a2}.

Case 1) A1 = {a1}, A2 = {a2}. Based on the results obtained in Example 2, we know that the granular rules rg
x1 , rg

x2 ,
rg

x4 and rg
x5 derived from the induced formal decision context Π are not “AND” decision rules extracted from S .

Case 2) A1 = {a1}, A2 = {a1, a2}. By Eq. (4), we obtain the following “AND” decision rules from S in Table 3
using pessimistic multigranulation rough sets:

r∧x2
: (Temperature,Slightly high) ∧ (Headache,A little)→ (Flu,No);

r∧x3
: (Temperature,Slightly high) ∧ (Headache,No)→ (Flu,No);

r∧x4
: (Temperature,High) ∧ (Headache,A little)→ (Flu,Yes).

Combining them with the results in Example 2, we know that the granular rules rg
x1 and rg

x5 derived from Π are not
“AND” decision rules extracted from S .

Case 3) A1 = {a1, a2}, A2 = {a2}. By Eq. (4), we obtain the following “AND” decision rules from S in Table 3
using pessimistic multigranulation rough sets:

r∧x1
: (Temperature,Normal) ∧ (Headache,No)→ (Flu,No);

r∧x3
: (Temperature,Slightly high) ∧ (Headache,No)→ (Flu,No);

r∧x5
: (Temperature,Normal) ∧ (Headache,Serious)→ (Flu,Yes).
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Combining them with the results in Example 2, we know that the granular rules rg
x2 and rg

x4 derived from Π are not
“AND” decision rules extracted from S .

Case 4) A1 = {a1}, A2 = {a2}, A3 = {a1, a2}. The conclusion is the same as that of Case 1. That is, the granular
rules rg

x1 , rg
x2 , rg

x4 and rg
x5 derived from Π are not “AND” decision rules extracted from S .

In summary, Example 3 verifies our statement in Theorem 2.

4.1.2. Relationship between “OR” decision rules and disjunctive rules

Before embarking on this issue, we introduce the combination of the truth parts of an “OR” decision rule.

Given a decision system S = (U, AT∪{d}), let
s∑

j=1
AO

j ([x]{d}) be the optimistic multigranulation lower approximation

of [x]{d} ∈ U/IND({d}) with respect to the attribute sets A1, A2, · · · , As ⊆ AT .

For x ∈
s∑

j=1
AO

j ([x]{d}), the “OR” decision rule

r∨x :
s∨

j=1

(des([x]A j )→ des([x]{d}))

says that some decision rules des([x]A j ) → des([x]{d}) are true while others are not. Without loss of generality, we
assume that des([x]A j ) → des([x]{d}) (1 ≤ j ≤ k) are true. Then, by combining des([x]A j ) → des([x]{d}) (1 ≤ j ≤ k),
we obtain

r∨∗x :

 k∨
j=1

des([x]A j )

→ des([x]{d}).

Hereinafter, we say that r∨∗x is the combination of the truth parts of the “OR” decision rule r∨x .
Moreover, we discuss the decomposition of a disjunctive rule.
Let Π = (U, A, I,D, J) be a formal decision context, BO(U, A, I) be the object-oriented concept lattice of (U, A, I)

and BW (U,D, J) be Wille’s concept lattice of (U,D, J). For (X, B) ∈ BO(U, A, I) with B = {b1, b2, · · · , bl} and (Y,C) ∈
BW (U,D, J) with C = {c1, c2, · · · , ct}, the disjunctive rule B→ C, represented as b1∨b2∨ · · ·∨bl → c1∧ c2∧ · · ·∧ ct,
can be decomposed into

b1 → c1 ∧ c2 ∧ · · · ∧ ct,
b2 → c1 ∧ c2 ∧ · · · ∧ ct,
...

bl → c1 ∧ c2 ∧ · · · ∧ ct.

By combining parts of them, we generate a new rule ∨B0 → ∧C, where B0 ⊆ B. Hereinafter, we say that ∨B0 → ∧C
is an item of the decomposition of the disjunctive rule B→ C.

Theorem 3. Let S be a decision system, A1, A2, · · · , As be pairwise different singleton subsets of AT with ∪A j = AT ,

x ∈
s∑

j=1
AO

j ([x]{d}), and Π be the formal decision context induced by S . Then the combination of the truth parts of the

“OR” decision rule
s∨

j=1
(des([x]A j )→ des([x]{d})) is an item of the decomposition of a disjunctive rule derived from Π.

Proof. Suppose

r∨∗x :

 k∨
j=1

des([x]A j )

→ des([x]{d})

is the combination of the truth parts of the “OR” decision rule

r∨x :
s∨

j=1

(des([x]A j )→ des([x]{d})).
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Moreover, since A1, A2, · · · , As are pairwise different singleton subsets of AT with ∪A j = AT , we assume A1 = {a1},
A2 = {a2}, · · · , As = {as}. So, r∨∗x can be represented as

(a1, a1(x)) ∨ (a2, a2(x)) ∨ · · · ∨ (ak, ak(x))→ (d, d(x)). (12)

Also, we have
[x]{a j} ⊆ [x]{d} (1 ≤ j ≤ k). (13)

On the other hand, by (vi) of Proposition 1, (([x]{d})23, ([x]{d})2) is an object-oriented concept of (U, A, I) and
(([x]{d})⇑⇓, ([x]{d})⇑) is a Wille’s concept of (U,D, J). Considering that ([x]{d})⇑⇓ = {d(d(x))}⇓ = [x]{d}, we have
([x]{d})23 ⊆ ([x]{d})⇑⇓ according to (iii) of Proposition 1. Furthermore, note that ([x]{d})23, ([x]{d})2, ([x]{d})⇑⇓ and
([x]{d})⇑ are all non-empty. Then by Definition 5, we generate a disjunctive rule ([x]{d})2 → ([x]{d})⇑. Besides,
based on Eqs. (7) and (13) and Proposition 2, we have a j(a j(x)) ∈ ([x]{d})2 for all 1 ≤ j ≤ k because Ia j(a j(x)) =
{a j(a j(x))}↓ = [x]{a j} ⊆ [x]{d}. As a result, it follows {a1(a1(x)), a2(a2(x)), · · · , ak(ak(x))} ⊆ ([x]{d})2. So,

a1(a1(x)) ∨ a2(a2(x)) ∨ · · · ∨ ak(ak(x))→ d(d(x)) (14)

is an item of the decomposition of the disjunctive rule ([x]{d})2 → ([x]{d})⇑ due to ([x]{d})⇑ = d(d(x)). Since from
the viewpoint of semantic explanation, a j(a j(x)) is equivalent to (a j, a j(x)) and d(d(x)) is equivalent to (d, d(x)), we
conclude that Eqs. (12) and (14) are the same. 2

Example 4. Continued with Example 1. Take A1 = {a1} and A2 = {a2}. Then, U/IND(A1) = {{x1, x5}, {x2, x3}, {x4}},
U/IND(A2) = {{x1, x3}, {x2, x4}, {x5}}, and U/IND({d}) = {{x1, x2, x3}, {x4, x5}}. By Eq. (5), {A1 + A2}O({x1, x2, x3}) =
{x1, x2, x3} and {A1 + A2}O({x4, x5}) = {x4, x5}. Furthermore, by Eq. (6), we obtain the following “OR” decision rules
from the decision system S in Table 3 using optimistic multigranulation rough sets:

r∨x1
: Temperature(Normal)→ Flu(No) ∨ Headache(No)→ Flu(No);

r∨x2
: Temperature(Slightly high)→ Flu(No) ∨ Headache(A little)→ Flu(No);

r∨x3
: Temperature(Slightly high)→ Flu(No) ∨ Headache(No)→ Flu(No);

r∨x4
: Temperature(High)→ Flu(Yes) ∨ Headache(A little)→ Flu(Yes);

r∨x5
: Temperature(Normal)→ Flu(Yes) ∨ Headache(Serious)→ Flu(Yes).

By the combination of the truth parts of every “OR” decision rule r∨xi
(1 ≤ i ≤ 5), we get

r∨∗x1
: Headache(No)→ Flu(No);

r∨∗x2
: Temperature(Slightly high)→ Flu(No);

r∨∗x3
: Temperature(Slightly high) ∨ Headache(No)→ Flu(No);

r∨∗x4
: Temperature(High)→ Flu(Yes);

r∨∗x5
: Headache(Serious)→ Flu(Yes).
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According to the formal decision context Π induced by S in Table 4, we can compute

BO(U, A, I) =



(∅, ∅),
(U, A),
({x4}, {a1(High)}),
({x5}, {a2(Serious)}),
({x1, x3}, {a2(No)}),
({x2, x3}, {a1(Slightly high)}),
({x2, x4}, {a1(High), a2(A little)}),
({x1, x5}, {a1(Normal), a2(Serious)}),
({x4, x5}, {a1(High), a2(Serious)}),
({x1, x2, x3}, {a1(Slightly high), a2(No)}),
({x1, x3, x4}, {a1(High), a2(No)}),
({x1, x3, x5}, {a1(Normal), a2(No), a2(Serious)}),
({x1, x4, x5}, {a1(Normal), a1(High), a2(Serious)}),
({x2, x3, x4}, {a1(Slightly high), a1(High), a2(A little)}),
({x2, x3, x5}, {a1(Slightly high), a2(Serious)}),
({x2, x4, x5}, {a1(High), a2(A little), a2(Serious)}),
({x1, x2, x3, x4}, {a1(Slightly high), a1(High), a2(No), a2(A little)}),
({x1, x2, x3, x5}, {a1(Normal), a1(Slightly high), a2(No), a2(Serious)}),
({x1, x2, x4, x5}, {a1(Normal), a1(High), a2(A little), a2(Serious)}),
({x1, x3, x4, x5}, {a1(Normal), a1(High), a2(No), a2(Serious)}),
({x2, x3, x4, x5}, {a1(Slightly high), a1(High), a2(A little), a2(Serious)})



,

BW (U,D, J) = {(U, ∅), ({x1, x2, x3}, {d(No)}), ({x4, x5}, {d(Yes)}), (∅,D)},
where a1, a2 and d denote Temperature, Headache and Flue, respectively.

Moreover, combining BO(U, A, I) and BW (U,D, J) with Definitions 5 and 6, we generate the following non-
redundant disjunctive rules:

rdisj
1 : Temperature(Slightly high) ∨ Headache(No)→ Flu(No);

rdisj
2 : Temperature(High) ∨ Headache(Serious)→ Flu(Yes).

Then, we know that r∨∗x1
, r∨∗x2

and r∨∗x3
are items of the decomposition of the disjunctive rule rdisj

1 , and r∨∗x4
and r∨∗x5

are

items of the decomposition of the disjunctive rule rdisj
2 .

In addition to the combination of the truth parts of an “OR” decision rule, we continue to introduce the multi-
combination of the truth parts of some “OR” decision rules below.

Let S = (U, AT ∪ {d}) be a decision system and A1, A2, · · · , As ⊆ AT . For any y ∈
s∑

j=1
AO

j ([x]{d}), we obtain the

following “OR” decision rule

r∨y :
s∨

j=1

(des([y]A j )→ des([y]{d})).

Suppose

r∨∗y :

 ky∨
j=1

des([y]A j )

→ des([y]{d})

is the combination of the truth parts of r∨y . Then, we say that

r∨∗s∑
j=1

AO
j ([x]{d})

:
∨

y∈
s∑

j=1
AO

j ([x]{d})

 ky∨
j=1

des([y]A j )

→ des([y]{d})
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is the multi-combination of the truth parts of r∨y

y ∈ s∑
j=1

AO
j ([x]{d})

 with their conclusions being the same.

Theorem 4. Let S be a decision system, A1, A2, · · · , As be pairwise different singleton subsets of AT with ∪A j = AT ,
and Π be the formal decision context induced by S . Then a non-redundant disjunctive rule derived from Π is the
multi-combination of the truth parts of some “OR” decision rules derived from S .

Proof. For any non-redundant disjunctive rule B→ C of Π, it follows (X, B) ∈ BO(U, A, I) and (Y,C) ∈ BW (U,D, J),
where BO(U, A, I) is the object-oriented concept lattice of (U, A, I) and BW (U,D, J) is Wille’s concept lattice of
(U,D, J). According to Table 2, without loss of generality, we assume

B = {a1(v1
1), · · · , a1(v1

t1 ), a2(v2
1), · · · , a2(v2

t2 ), · · · , ak(vk
1), · · · , ak(vk

tk )} and C = {d(vd
t )}.

Then the disjunctive rule B→ C can be represented as

a1(v1
1) ∨ · · · ∨ a1(v1

t1 ) ∨ a2(v2
1) ∨ · · · ∨ a2(v2

t2 ) ∨ · · · ∨ ak(vk
1) ∨ · · · ∨ ak(vk

tk )→ d(vd
t ). (15)

By Definition 5, we have

B3 ⊆ C⇓

⇔ {a1(v1
1), · · · , a1(v1

t1 ), a2(v2
1), · · · , a2(v2

t2 ), · · · , ak(vk
1), · · · , ak(vk

tk )}
3 ⊆ {d(vd

t )}⇓
⇔ {a1(v1

1)}3 ∪ · · · ∪ {a1(v1
t1 )}3 ∪ {a2(v2

1)}3 ∪ · · · ∪ {a2(v2
t2 )}3 ∪ · · · ∪ {ak(vk

1)}3 ∪ · · · ∪ {ak(vk
tk )}

3 ⊆ {d(vd
t )}⇓

⇔ {a1(v1
1)}↓ ∪ · · · ∪ {a1(v1

t1 )}↓ ∪ {a2(v2
1)}↓ ∪ · · · ∪ {a2(v2

t2 )}↓ ∪ · · · ∪ {ak(vk
1)}↓ ∪ · · · ∪ {ak(vk

tk )}
↓ ⊆ {d(vd

t )}⇓.

Thus, for any j ∈ {1, 2, · · · , k} and i ∈ {1, 2, · · · , t j}, we have {a j(v
j
i )}↓ ⊆ {d(vd

t )}⇓. Moreover, based on Proposition
3, there exist [y]{a j} with a j(y) = v j

i and [z]{d} with d(z) = vd
t such that [y]{a j} = {a j(v

j
i )}↓ and [z]{d} = {d(vd

t )}⇓. Thus,
we get [y]{a j} ⊆ [z]{d}. Note that [y]{a j} ⊆ [z]{d} can be represented as [x]{a j} ⊆ [x]{d}, where x ∈ [y]{a j} ∩ [z]{d}.
Besides, considering that A1, A2, · · · , As are pairwise different singleton subsets of AT with ∪A j = AT , we suppose
A1 = {a1}, A2 = {a2}, · · · , As = {as}. So, des([x]A j )→ des([x]{d}) is a truth part of the “OR” decision rule

r∨x :
s∨

j=1

(des([x]A j )→ des([x]{d})).

Moreover, for any truth part des([x]Al ) → des([x]{d}) of r∨x , we have [x]{al} ⊆ [x]{d}, yielding {al(vl
i)}↓ ⊆ {d(vd

t )}⇓. As
a result, we obtain {al(vl

i)}3 ⊆ {d(vd
t )}⇓, which means that {al(vl

i)}32 → d(vd
t ) is a disjunctive rule. Since B → C is

non-redundant, we get {al(vl
i)}32 ⊆ B due to C = {d(vd

t )}, yielding al(vl
i) ∈ B. That is, des([x]Al ) → des([x]{d}) is an

item of the decomposition of the disjunctive rule B→ C.
To sum up, each a j(v

j
i ) → d(vd

t ) with j ∈ {1, 2, · · · , k} and i ∈ {1, 2, · · · , t j} is a truth part of an “OR” decision
rule whose truth parts are items of the decomposition of the disjunctive rule B → C. Consequently, by Eq. (15), we
conclude that the disjunctive rule B→ C is the multi-combination of the truth parts of some “OR” decision rules. 2

From the proof of Theorem 4, a non-redundant disjunctive rule B → C derived from Π is in fact the multi-
combination of the truth parts of the “OR” decision rules (derived from S ) with their conclusions being the same as
that of B→ C.

Example 5. Continued with Example 4. We find that the non-redundant disjunctive rule rdisj
1 is the multi-combination

of the truth parts of the “OR” decision rules r∨x1
, r∨x2

and r∨x3
. Moreover, it is easy to see that the conclusions of r∨x1

, r∨x2

and r∨x3
are the same. Similarly, the non-redundant disjunctive rule rdisj

2 is the multi-combination of the truth parts of
the “OR” decision rules r∨x4

and r∨x5
with their conclusions being the same.

4.2. Support and certainty factors for rules in multigranulation rough sets and concept lattices

As is well known, how to evaluate the decision performance of a rule has become a very important issue in both
multigranulation rough sets and concept lattices [29, 48, 70]. By considering different requirements of decision-
making in the real world, a variety of measurements have been presented in recent years. In what follows, we only
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discuss support and certainty factors for rules in multigranulation rough sets which are called support and confidence
for rules in concept lattices, respectively.

Definition 7 [48, 70]. Let S be a decision system, A1, A2, · · · , As ⊆ AT and x ∈ U. Then,

(i) the support factor of an “AND” decision rule
(

s∧
j=1

des([x]A j )
)
→ des([x]{d}) is defined as

Supp


 s∧

j=1

des([x]A j )

→ des([x]{d})

 = min
{ |[x]A j ∩ [x]{d}|

|U | : j = 1, 2, · · · , s
}

; (16)

(ii) the support factor of an “OR” decision rule
s∨

j=1
(des([x]A j )→ des([x]{d})) is defined as

Supp

 s∨
j=1

(des([x]A j )→ des([x]{d}))

 = max
{ |[x]A j ∩ [x]{d}|

|U | : j = 1, 2, · · · , s
}

; (17)

(iii) the certainty factor of an “AND” decision rule
(

s∧
j=1

des([x]A j )
)
→ des([x]{d}) is defined as

Cer


 s∧

j=1

des([x]A j )

→ des([x]{d})

 = min
{ |[x]A j ∩ [x]{d}|

|[x]A j |
: j = 1, 2, · · · , s

}
; (18)

(iv) the certainty factor of an “OR” decision rule
s∨

j=1
(des([x]A j )→ des([x]{d})) is defined as

Cer

 s∨
j=1

(des([x]A j )→ des([x]{d}))

 = max
{ |[x]A j ∩ [x]{d}|

|[x]A j |
: j = 1, 2, · · · , s

}
. (19)

Definition 8 [3, 65]. Let Π be a formal decision context, x ∈ U and x↑ → x⇑ be a granular rule. Then the support and
confidence of x↑ → x⇑ are respectively defined as

Supp(x↑ → x⇑) =
|x↑↓ ∩ x⇑⇓|
|U | (20)

and

Conf(x↑ → x⇑) =
|x↑↓ ∩ x⇑⇓|
|x↑↓| . (21)

Definition 9 [51]. Let Π be a formal decision context, BO(U, A, I) be the object-oriented concept lattice of (U, A, I)
and BW (U,D, J) be Wille’s concept lattice of (U,D, J). For any disjunctive rule B → C, the support and confidence
of B→ C are respectively defined as

Supp(B→ C) =
|B3 ∩C⇓|
|U | (22)

and

Conf(B→ C) =
|B3 ∩C⇓|
|B3| . (23)

Theorem 5. Let S be a decision system, A1, A2, · · · , As be pairwise different subsets of AT with ∪A j = AT , and Π be

the induced formal decision context. For any x ∈
s∑

j=1
AP

j ([x]{d}), Supp
((

s∧
j=1

des([x]A j )
)
→ des([x]{d})

)
≥ Supp(x↑ → x⇑)

and Cer
((

s∧
j=1

des([x]A j )
)
→ des([x]{d})

)
= Conf(x↑ → x⇑).
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Proof. Since x ∈
s∑

j=1
AP

j ([x]{d}), we obtain

[x]A j ⊆ [x]{d} for all 1 ≤ j ≤ s. (24)

By Eq. (16), we have

Supp


 s∧

j=1

des([x]A j )

→ des([x]{d})

 = min
{ |[x]A j ∩ [x]{d}|

|U | : j = 1, 2, · · · , s
}
= min

{ |[x]A j |
|U | : j = 1, 2, · · · , s

}
.

According to Eq. (11), we get x↑↓ = [x]A1 ∩ [x]A2 ∩ · · · ∩ [x]As and x⇑⇓ = [x]{d}. Then, it follows from Eqs. (20) and
(24) that

Supp(x↑ → x⇑) =
|x↑↓ ∩ x⇑⇓|
|U |

=
| ([x]A1 ∩ [x]A2 ∩ · · · ∩ [x]As

) ∩ [x]{d}|
|U |

=
|[x]A1 ∩ [x]A2 ∩ · · · ∩ [x]As |

|U |

≤ min
{ |[x]A j |
|U | : j = 1, 2, · · · , s

}

= Supp


 s∧

j=1

des([x]A j )

→ des([x]{d})

 .
As a result, Supp

((
s∧

j=1
des([x]A j )

)
→ des([x]{d})

)
≥ Supp(x↑ → x⇑) is at hand.

Moreover, based on Eqs. (18), (21) and (24), we obtain

Cer


 s∧

j=1

des([x]A j )

→ des([x]{d})

 = min
{ |[x]A j ∩ [x]{d}|

|[x]A j |
: j = 1, 2, · · · , s

}
= 1

and

Conf(x↑ → x⇑) =
|x↑↓ ∩ x⇑⇓|
|x↑↓| = 1.

That is, Cer
((

s∧
j=1

des([x]A j )
)
→ des([x]{d})

)
= Conf(x↑ → x⇑). 2

Combining Theorem 1 with Theorem 5, we find that the same rule is defined with a same certainty factor but a
different support factor in pessimistic multigranulation rough sets and concept lattices. This can also be confirmed by
the following example.

Example 6. Continued with Example 2 in which A1 = {a1} and A2 = {a2}. Note that x3 ∈ {A1 + A2}P([x3]{d}). Then,
based on the results obtained in Example 2, we have

Supp
(
des([x3]A1 ) ∧ des([x3]A2 )→ des([x3]{d})

)
= min

{ |[x3]A1 ∩ [x3]{d}|
|U | ,

|[x3]A2 ∩ [x3]{d}|
|U |

}
= min

{
2
5
,

2
5

}
=

2
5
,

Supp(x↑3 → x⇑3) =
|x↑↓3 ∩ x⇑⇓3 |
|U | =

|{x3} ∩ {x1, x2, x3}|
|U | =

1
5
,

Cer
(
des([x3]A1 ) ∧ des([x3]A2 )→ des([x3]{d})

)
= min

{ |[x3]A1 ∩ [x3]{d}|
|[x3]A1 |

,
|[x3]A2 ∩ [x3]{d}|
|[x3]A2 |

}
= 1,
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Conf(x↑3 → x⇑3) =
|x↑↓3 ∩ x⇑⇓3 |
|x↑↓3 |

=
|{x3} ∩ {x1, x2, x3}|

|{x3}|
= 1.

Thus, we obtain
Supp

(
des([x3]A1 ) ∧ des([x3]A2 )→ des([x3]{d})

)
> Supp(x↑3 → x⇑3)

and
Cer

(
des([x3]A1 ) ∧ des([x3]A2 )→ des([x3]{d})

)
= Conf(x↑3 → x⇑3).

Note that both des([x3]A1 ) ∧ des([x3]A2 )→ des([x3]{d} and x3
↑ → x3

⇑ are

(Temperature,Slightly high) ∧ (Headache,No)→ (Flu,No).

So, Example 6 confirms that the same rule is defined with a same certainty factor but a different support factor in
pessimistic multigranulation rough sets and concept lattices.
Theorem 6. Let S be a decision system, A1, A2, · · · , As be pairwise different singleton subsets of AT with ∪A j = AT ,
andΠ be the induced formal decision context. If a disjunctive rule B→ C with B = {a1(a1(x)), a2(a2(x)), · · · , as(as(x))}
and C = {d(d(x))} is the combination of the truth parts of an “OR” decision rule

s∨
j=1

(des([x]A j ) → des([x]{d})), then

Supp(B→ C) ≥ Supp
(

s∨
j=1

(des([x]A j )→ des([x]{d}))
)

and Conf(B→ C) = Cer
(

s∨
j=1

(des([x] j)→ des([x]{d}))
)
.

Proof. Without loss of generality, we suppose A1 = {a1}, A2 = {a2}, · · · , As = {as}. Since the disjunctive rule B → C
with B = {a1(a1(x)), a2(a2(x)), · · · , as(as(x))} and C = {d(d(x))} is assumed to be the combination of the truth parts

of the “OR” decision rule
s∨

j=1
(des([x]A j )→ des([x]{d})), it follows from Eq. (22) that

Supp(B→ C) =
|B3 ∩C⇓|
|U |

=
|{a1(a1(x)), a2(a2(x)), · · · , as(as(x))}3 ∩ {d(d(x))}⇓|

|U |

=
| ({a1(a1(x))}3 ∪ {a2(a2(x))}3 ∪ · · · ∪ {as(as(x))}3) ∩ {d(d(x))}⇓|

|U |

=
|
(
{a1(a1(x))}↓ ∪ {a2(a2(x))}↓ ∪ · · · ∪ {as(as(x))}↓

)
∩ {d(d(x))}⇓|

|U |

=
| ([x]A1 ∪ [x]A2 ∪ · · · ∪ [x]As

) ∩ [x]{d}|
|U |

=
|([x]A1 ∩ [x]{d}) ∪ ([x]A2 ∩ [x]{d}) ∩ · · · ∩ ([x]As ∩ [x]{d})|

|U |

≥ max
{ |[x]A j ∩ [x]{d}|

|U | : j = 1, 2, · · · , s
}

= Supp

 s∨
j=1

(des([x]A j )→ des([x]{d}))

 .
So, Supp(B→ C) ≥ Supp

(
s∨

j=1
(des([x]A j )→ des([x]{d}))

)
is at hand.
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Moreover, based on Eqs. (19) and (23), we obtain

Conf(B→ C) =
|B3 ∩C⇓|
|B3| = 1

and

Cer

 s∨
j=1

(des([x]A j )→ des([x]{d}))

 = max
{ |[x]A j ∩ [x]{d}|

|[x]A j |
: j = 1, 2, · · · , s

}
= 1.

Consequently, it follows Conf(B→ C) = Cer
(

s∨
j=1

(des([x]A j )→ des([x]{d}))
)
. 2

Combining Theorem 4 with Theorem 6, we find that the same rule is defined with a same certainty factor but a
different support factor in optimistic multigranulation rough sets and concept lattices. This can be confirmed by the
following example.

Example 7. Continued with Example 4. Consider the following disjunctive rule B→ C:

rdisj
1 : Temperature(Slightly high) ∨ Headache(No)→ Flu(No).

It is easy to check that B→ C is the combination of the truth parts of the following “OR” decision rule

r∨x3
: Temperature(Slightly high)→ Flu(No) ∨ Headache(No)→ Flu(No).

Let A1 = {a1} and A2 = {a2}. Then, we have

Supp
(
des([x3]A1 ) ∨ des([x3]A2 )→ des([x3]{d})

)
= max

{ |[x3]A1 ∩ [x3]{d}|
|U | ,

|[x3]A2 ∩ [x3]{d}|
|U |

}
= max

{
2
5
,

2
5

}
=

2
5
,

Supp(B3 → C⇓) =
|B3 ∩C⇓|
|U | =

|{x1, x2, x3} ∩ {x1, x2, x3}|
|U | =

3
5
,

Cer
(
des([x3]A1 ) ∨ des([x3]A2 )→ des([x3]{d})

)
= max

{ |[x3]A1 ∩ [x3]{d}|
|[x3]A1 |

,
|[x3]A2 ∩ [x3]{d}|
|[x3]A2 |

}
= 1,

Conf(B3 → C⇓) =
|B3 ∩C⇓|
|B3| =

|{x1, x2, x3} ∩ {x1, x2, x3}|
|{x1, x2, x3}|

= 1.

Thus, we obtain
Supp(B3 → C⇓) > Supp

(
des([x3]A1 ) ∨ des([x3]A2 )→ des([x3]{d})

)
and

Conf(B3 → C⇓) = Cer
(
des([x3]A1 ) ∨ des([x3]A2 )→ des([x3]{d})

)
.

Moreover, it is easy to observe that B3 → C⇓ and des([x3]A1 ) ∨ des([x3]A2 ) → des([x3]{d}) are the same. To sum
up, Example 7 confirms that the same rule is defined with a same certainty factor but a different support factor in
optimistic multigranulation rough sets and concept lattices.

4.3. Algorithm complexity analysis of rule acquisition in multigranulation rough sets and concept lattices

Let S = (U, AT ∪{d}) be a decision system, A1, A2, · · · , As ⊆ AT , Π = (U, A, I,D, J) be the formal decision context
induced by S , BO(U, A, I) be the object-oriented concept lattice of (U, A, I), and BW (U,D, J) be Wille’s concept lattice
of (U,D, J).

Then the procedures of computing “AND” decision rules, granular rules, “OR” decision rules and non-redundant
disjunctive rules can respectively be depicted by Algorithms 1, 2, 3 and 4. Their time complexities are O(s|AT ||U |2),
O((|A| + |D|)|U |2), O(s|AT ||U |2) and O((|LO| + |LW |)|LO||LW ||U |), respectively. Here, |LO| denotes the cardinality of
BO(U, A, I) and |LW | denotes that of BW (U,D, J). Moreover, it is easy to observe that the time complexities of
Algorithms 1, 2 and 3 are all polynomial while that of Algorithm 4 is exponential.
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Algorithm 1 Computing “AND” decision rules from a decision system
Require: A decision system S = (U, AT ∪ {d}) with A1, A2, · · · , As ⊆ AT .
Ensure: “AND” decision rules of S .

1: Initialize Ω = ∅;
2: Build the partitions U/IND(A j) = {[x]A j : x ∈ U} ( j = 1, 2, · · · , s) and U/IND({d}) = {[x]{d} : x ∈ U}.
3: For each [x]{d}

4: Compute the pessimistic multigranulation lower approximation
s∑

j=1
AP

j ([x]{d});

5: If
s∑

j=1
AP

j ([x]{d}) , ∅

6: For each x ∈
s∑

j=1
AP

j ([x]{d})

7: Ω← Ω ∪
{(

s∧
j=1

des([x]A j )
)
→ des([x]{d})

}
;

8: End For
9: End If

10: End For
11: Return Ω.

Algorithm 2 Computing granular rules from a formal decision context
Require: A formal decision context Π = (U, A, I,D, J).
Ensure: Granular rules of Π.

1: Initialize Ω = ∅;
2: For each x ∈ U
3: If x↑↓ ⊆ x⇑⇓

4: Ω← Ω ∪ {x↑ → x⇓};
5: End If
6: End For
7: Return Ω.

5. Conclusions

In this section, we draw some conclusions to show the main contributions of our paper and give an outlook for
further study.

(i) A brief summary of our study

To shed some light on the comparison and combination of rough set theory, granular computing and formal concept
analysis, this study has investigated the relationship between multigranulation rough sets and concept lattices from
the perspectives of differences and relations between rules, support and certainty factors for rules, and algorithm
complexity analysis of rule acquisition. Some interesting results have been obtained in this paper. More specifically,
1) “AND” decision rules in pessimistic multigranulation rough sets have been proved to be granular rules in concept
lattices, but the inverse may not be true; 2) the combination of the truth parts of an “OR” decision rule in optimistic
multigranulation rough sets has been shown to be an item of the decomposition of the disjunctive rule in concept
lattices; 3) each non-redundant disjunctive rule in concept lattices has been confirmed to be the multi-combination
of the truth parts of some “OR” decision rules in optimistic multigranulation rough sets; 4) it has been revealed that
the same rule is defined with a same certainty factor but a different support factor in multigranulation rough sets and
concept lattices.

(ii) The differences and similarities between our study and the existing ones
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Algorithm 3 Computing “OR” decision rules from a decision system
Require: A decision system S = (U, AT ∪ {d}) with A1, A2, · · · , As ⊆ AT .
Ensure: “OR” decision rules of S .

1: Initialize Ω = ∅;
2: Build the partitions U/IND(A j) = {[x]A j : x ∈ U} ( j = 1, 2, · · · , s) and U/IND({d}) = {[x]{d} : x ∈ U}.
3: For each [x]{d}

4: Compute the optimistic multigranulation lower approximation
s∑

j=1
AO

j ([x]{d});

5: If
s∑

j=1
AO

j ([x]{d}) , ∅

6: For each x ∈
s∑

j=1
AO

j ([x]{d})

7: Ω← Ω ∪
{

s∨
j=1

(des([x]A j )→ des([x]{d}))
}

;

8: End For
9: End If

10: End For
11: Return Ω.

Algorithm 4 Computing non-redundant disjunctive rules from a formal decision context
Require: A formal decision context Π = (U, A, I,D, J).
Ensure: Non-redundant disjunctive rules of Π.

1: Initialize Ω = ∅;
2: Construct BO(U, A, I) and BW (U,D, J).
3: For each ((X, B), (Y,C)) ∈ BO(U, A, I) ×BW (U,D, J) with X, B,Y,C , ∅
4: If X ⊆ Y , there does not exist (X0, B0) ∈ BO(U, A, I) such that X ⊂ X0 ⊆ Y , and there does not exist

(Y0,C0) ∈ BW (U,D, J) such that X ⊆ Y0 ⊂ Y
5: Ω← Ω ∪ {B→ C};
6: End If
7: End For
8: Return Ω.

In what follows, we mainly distinguish the differences between our study and the existing ones with respect to the
granulation environment, research objective, angle of thinking, and characteristics of interdisciplinary studies.

• Our work is different from the ones in [22, 25, 62] as far as the granulation environment is concerned. In fact,
our comparative study was made under multigranulation environment, while those in [22, 25, 62] were done
under single granulation environment.

• Our research is different from the ones in [29, 33] in terms of the research objective. More specifically, the
current study was to compare and combine rough set theory, granular computing and formal concept analysis
through “AND” decision rules, “OR” decision rules, granular rules and disjunctive rules, while reference [29]
is to reveal the relationship between decision rules and granular rules, and reference [33] is to reduce the size
of objects of a formal decision context without any effect on the non-redundant decision rules.

• Our study is different from the one in [21] with regard to the angle of thinking. To be more concrete, our
research transformed decision systems into formal decision contexts for comparison of different rules, while
the research in [21] established a concept-lattice-based rough set model by inducing a lattice structure from an
information system.

• This paper is different from the ones in [5, 58] with respect to the characteristics of interdisciplinary studies.
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More detailedly, multigranulation rough sets and concept lattices were comparatively studied in this paper by
rule acquisition, while covering-based rough sets and concept lattices were related to each other in [5, 58]
through approximation operators and reduction.

In addition to the above differences, there are similarities between our contribution and the existing ones. For
example, when rough set theory is integrated with formal concept analysis, it is necessary to establish an equivalence
relation from a formal context or inversely induce a lattice structure from an information system.

(iii) An outlook for further study

Note that the existing algorithm of extracting non-redundant disjunctive rules from a formal decision context takes
exponential time in the worst case. One may firstly transform the formal decision context into a decision system, and
then obtain the non-redundant disjunctive rules via the multi-combination of the truth parts of the “OR” decision rules
with their conclusions being the same. This may be a feasible way of reducing the time complexity of computing
non-redundant disjunctive rules since deriving “OR” decision rules in optimistic multigranulation rough sets only
takes polynomial time. This problem will be addressed detailedly in our future work.

Moreover, the current study was to compare and combine rough set theory, granular computing and formal concept
analysis via the classical multigranulation rough sets and concept lattices. Note that both the classical multigranulation
rough sets and concept lattices have been generalized and developed by some researchers [17, 31, 36, 37, 47, 60, 68].
Then it is natural to further compare and combine rough set theory, granular computing and formal concept analysis
based on the generalized multigranulation rough sets and concept lattices. This issue will also be discussed in our
future work.
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