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Decision-theoretic rough set theory is quickly becoming a research direction in rough set theory, which is
a general and typical probabilistic rough set model with respect to its threshold semantics and decision
features. However, unlike the Pawlak rough set, the positive region, the boundary region and the negative
region of a decision-theoretic rough set are not monotonic as the number of attributes increases, which
may lead to overlapping and inefficiency of attribute reduction with it. This may be caused by the
introduction of a probabilistic threshold. To address this issue, based on the local rough set and the
dynamic granulation principle proposed by Qian et al., this study will develop a new decision-
theoretic rough set model satisfying the monotonicity of positive regions, in which the two parameters
a and b need to dynamically update for each granulation. In addition to the semantic interpretation of
its thresholds itself, the new model not only ensures the monotonicity of the positive region of a target
concept (or decision), but also minimizes the local risk under each granulation. These advantages
constitute important improvements of the decision-theoretic rough set model for its better and wider
applications.

� 2015 Published by Elsevier B.V.
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1. Introduction

Rough set theory proposed by Pawlak in 1982 [23] has become
an important tool for dealing with uncertainty management and
uncertainty reasoning. Because of no prior knowledge, the rough
set theory has a wide variety of applications including pattern
recognition, data mining, machine learning, knowledge discovery,
and so on [3,6,7,10,12,13,11,16,29,34,52]. As we know, the lower
approximation of a set in rough set theory is defined by a strict
inclusion relation, which may lead to its sensitivity to noisy data
for attribute reduction and classification tasks. For this observa-
tion, through incorporating probabilistic approaches to rough set
theory, several probabilistic generalizations of rough sets have
been proposed [37,42,46,60], in which threshold values are afore-
hand given. In recent years, based on different threshold arrange-
ments, different versions of probabilistic rough set approaches
were proposed one after another, such as the 0.5-probabilistic
rough set [24], the decision-theoretic rough set model [43,44,47],
the variable precision rough set (VPRS) model [59], membership
functions [26], parameterized rough set models [4], Bayesian rough
set model [35], game-theoretic rough set [5], and so on.
82
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84

85
Within the family of probabilistic rough sets, the semantic
interpretation of the required threshold parameters is the most
fundamental difficulty with the probabilistic approximations. In
the literature [43,44], we saw the first report to solve this difficulty
for probabilistic rough set approximations in a decision-theoretic
framework. In the framework of the decision theory, Bayesian deci-
sion theory was firstly introduced to minimize the decision costs,
which provides a scientific method for determining and interpret-
ing threshold values through taking costs and risks into account.
From this viewpoint, we can say that the decision-theoretic rough
set has a threshold semantic interpretation. It deserves to point out
that the decision-theoretic rough set model can be regarded as a
generalization of probabilistic rough set models [46] because it
can derive various existing rough set models through setting dif-
ferent thresholds. Based on this framework, Yao [47] then pre-
sented a new decision-making method, called a three-way
decision method, in which positive region, boundary region and
negative region are respectively seen as three actions. In the liter-
ature [48], the author further emphasized the superiority of three-
way decisions in probabilistic rough set models. More recently,
Zhang et al. [53] introduced a new recommender system to consult
the user for the choice by combining three-way decisions and ran-
dom forests. Yu et al. [50] proposed a tree-based incremental over-
lapping clustering method using three-way decision theory. To
date, the theoretical framework have been largely enriched since
oi.org/
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the decision-theoretic rough sets were proposed [8,9,32,38,57].
The decision-theoretic rough set model, in recent years, has also
been used in many applications, such as decision-making [38],
clustering analysis [49,50], spam filtering [58], investment deci-
sions [21], multi-view decision models [57] and multiple-
category classification [56].

It is well known that, in the Pawlak rough set model [25], the
lower approximation of a given target concept with respect to an
equivalence relation R is much smaller than the corresponding
lower approximation with respect to an equivalence relation
R0 � R. This property is called monotonicity. Naturally, given a tar-
get decision, its positive region, boundary region and negative
region are all monotonic in the framework of the Pawlak rough
set as well. However, in probabilistic approximations, because of
the introduction of probabilistic thresholds, the conditional proba-
bility of an object x classified into a target concept may increase or
decrease as the number of attributes becomes bigger. In other
words, the monotonicity of lower approximations of a target con-
cept may not hold in probabilistic approximation models.
Accordingly, the positive region, boundary region and negative
region of a given target decision have the same observation in
terms of probabilistic approximations.

In what follows, we analyze the importance of the monotonicity
of a lower approximation in the decision-theoretic rough set
(DTRS). As we know, attribute reduction is one key issue in rough
set theory, based on which one can extract decision rules for pre-
diction from an information system with class labels. Attribute
reduction of a target decision aims at finding a subset of attributes
such that it is at least as good as the original attribute set from the
viewpoint of decision ability. If the lower approximation of a target
concept is not monotonic, a found attribute reduct may be overlap-
ping because of the strict definition of attribute reduction. Except
for this shortcoming, the process of attribute reduction is also com-
putationally time-consuming. To overcome these two issues, it is
very desirable to develop a new decision-theoretic rough set satis-
fying the monotonicity of a target concept, which is the main moti-
vation of this study.

In fact, several studies about the monotonicity of attribute
reduction using DTRS have been reported [8,21,22,45,55]. Yao
and Zhao [45] presented various criteria including the decision-
monotonicity criterion, the generality criterion and the cost crite-
rion for attribute reduction of probabilistic rough set models.
From the viewpoint of information theory, Ma et al. [22] proposed
three new monotonic measure functions by considering variants of
conditional information entropy for obtaining a monotonic attri-
bute reduction process. Li et al. [15] developed a so-called positive
region expanding reduct. Blaszczyński [1] considered three types
of monotonicity properties and proposed several new measures
with monotonicity such that the corresponding lower approxima-
tion satisfies monotonicity. Although these studies have provided
several alternative solutions, how to solve the non-monotonicity
of lower approximations keeping the conditional probability form
unchanged is still an open problem in the decision-theoretic rough
set.

To address the above problem, from the viewpoint of granular
computing [19,20,41,51], this paper develops a new probabilistic
rough set framework under dynamic granulation, called the
decision-theoretic rough set under dynamic granulation
(DG-DTRS). There are two main improvements in the proposed
model. For the first improvement, given a target concept, we only
judge whether each of objects within it is included in its lower
approximation or not, rather than the entire universe. For the sec-
ond improvement, we need to dynamically update the threshold
parameters a and b when granular structures for approximating
a target concept/decision are changed. Therefore, besides the
Please cite this article in press as: Y. Sang et al., Decision-theoretic rough sets
10.1016/j.knosys.2015.08.001
semantic interpretation of its thresholds, the proposed model not
only ensures the monotonicity of the positive region of a target
concept (or decision), but also minimizes the local risk under each
granulation. Hence, the DG-DTRS with these advantages can be
seen as an important improvement of the existing decision-
theoretic rough set model.

The study is organized as follows. Some basic concepts in
Pawlak rough sets and decision-theoretic rough sets are briefly
reviewed in Section 2. In Section 3, a new probabilistic set-
approximation approach is constructed in the context of dynamic
granulation world, and some of its nice properties are explored.
Furthermore, based on Bayesian decision procedure, we also give
a method for updating the required threshold parameters in the
proposedmodel. Finally, Section 4 concludes this paper by bringing
some remarks and discussions.
2. Preliminary knowledge on decision-theoretic rough sets

In this section, we briefly review some basic concepts of
decision-theoretic rough set model.
2.1. Pawlak’s rough set

A decision table is a tuple S ¼ ðU;AT ¼ C [ D;Vaja 2 At;
Iaja 2 AtÞ, where U is a finite non-empty set of objects, called a uni-
verse, C is a non-empty finite set of conditional attributes, D is a
finite set of decision attributes, Va (a 2 AT) is the domain of attri-
bute a, and Ia : U ! Va is an information function that maps an
object in U to exactly one value in Va. A decision table is simply
denoted by S ¼ ðU;At ¼ C [ DÞ [25].

An attribute subset A#At determines an equivalence relation
EA (or simply E). That is,

EA ¼ fðx; yÞ 2 U � Uj8a 2 A; IaðxÞ ¼ IaðyÞg:
Two objects in U are equivalent to each other if and only if they
have the same values on all attributes in A. An equivalence relation
is reflexive, symmetric and transitive.

The pair apr ¼ hU; EAi is called an approximation space defined
by the attribute set A [25]. The equivalence relation EA induces a
partition of U, denoted by U=EA or U=A. An object x 2 U is described
by its equivalence class of U=EA : ½x�EA ¼ ½x�A ¼ fy 2 Ujðx; yÞ 2 EAg.
Each equivalence class ½x�A may be viewed as an information gran-
ule consisting of indistinguishable elements. The granular struc-
ture induced by an equivalence relation is a partition of the
entire universe.

Given an approximation space hU; EAi. For an arbitrary subset
X#U, one can construct its lower and upper approximations with
information granules of the universe induced by the partition U=A
via the following definition:

aprAðXÞ ¼ [f½x�A #Xjx 2 Ug;
aprAðXÞ ¼ [f½x�A \ X – ;jx 2 Ug:
The pair haprAðXÞ; aprAðXÞi is called a rough set of X with respect to
the equivalence relation EA. Equivalently, they can also be rewritten
as

aprAðXÞ ¼ fxjPðXj½x�AÞ ¼ 1jx 2 Ug;
aprAðXÞ ¼ fxjPðXj½x�AÞ > 0jx 2 Ug;
where PðXj½x�AÞ denotes the conditional probability that the object x
belongs to a target concept X.

Through using the rough set approximations of X defined by A,
the universe U is divided into three disjoint regions: the positive
under dynamic granulation, Knowl. Based Syst. (2015), http://dx.doi.org/
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region POSAðXÞ, the boundary region BNDAðXÞ and the negative
region NEGAðXÞ of X:

POSAðXÞ ¼ aprAðXÞ;
BNDAðXÞ ¼ aprAðXÞ � aprAðXÞ;
NEGAðXÞ ¼ U � ðPOSAðXÞ [ BNDAðXÞÞ ¼ U � aprAðXÞ:
These three regions are often used to predict the class label of an
unseen object in rough set theory.

2.2. Decision-theoretic rough sets

A decision-theoretic rough set model is a typical probabilistic
rough set model, in which Bayesian decision procedure is intro-
duced to minimize the decision costs. The rough set model pro-
vides a systematic method to set the required threshold
parameters from the viewpoint of loss functions. In this subsection,
we review some basic concepts in the decision-theoretic rough set
model [43].

In the Bayesian decision procedure, a finite set of states can be
written as X ¼ fx1; . . . ;xsg, and a finite set of m possible actions
can be denoted by A ¼ fa1; . . . ; amg. Let PðxjjxÞ be the conditional
probability of an object x being in state xj given that the object is
described by x. Let kðaijxjÞ denote the loss, or cost, for taking action
ai when the state is xj. Suppose taking action ai when the state is
xj, then the expected loss associated with taking action ai can be
given by:

RðaijxÞ ¼
Xs

j¼1
kðaijxjÞPðxjjxÞ

In the decision-theoretic rough set theory, given an approxima-
tion space apr ¼ hU; EAi and an arbitrary subset X#U, the approx-
imation operators partition the universe into three disjoint classes:
the positive region POSAðXÞ, the boundary region BNDAðXÞ and the
negative region NEGAðXÞ [47]. The classification of objects accord-
ing to approximation operators can be easily fitted into the
Bayesian decision-theoretic framework. The set of states is given
by X ¼ fX;Xcg indicating that an object is in a decision class X
and not in X, respectively. Based on the three regions, the set of
actions is given by A ¼ fa1; a2; a3g, where a1, a2 and a3 represent
the three actions in classifying an object x, deciding POSAðXÞ, decid-
ing NEGAðXÞ, and deciding BNDAðXÞ, respectively. Through using the
conditional probability PðXj½x�AÞ, the Bayesian decision procedure
can decide how to assign x into these three disjoint regions
[50,52]. Let kðaijXÞ denote the loss incurred for taking action ai
when an object belongs to X, and let kðaijXcÞ denote the loss
incurred for taking the same action when the object does not
belong to X.

The expected loss Rðaij½x�AÞ associated with taking the individual
actions can be expressed as:

R1 ¼ Rða1j½x�AÞ ¼ k11PðXj½x�AÞ þ k12PðXcj½x�AÞ;
R2 ¼ Rða2j½x�AÞ ¼ k21PðXj½x�AÞ þ k22PðXcj½x�AÞ;
R3 ¼ Rða3j½x�AÞ ¼ k31PðXj½x�AÞ þ k32PðXcj½x�AÞ;
where ki1 ¼ kðaijXÞ, ki2 ¼ kðaijXcÞ; i ¼ 1;2;3. The Bayesian decision
procedure leads to the following minimum-risk decision rules:

(P) if R1 6 R2 and R1 6 R3, decide x 2 POSAðXÞ;
(N) if R2 6 R1 and R2 6 R3, decide x 2 NEGAðXÞ;
(B) if R3 6 R1 and R3 6 R2, decide x 2 BNDAðXÞ.

Consider a special kind of loss functions with k11 6 k31 < k21 and
k22 6 k32 < k12, that is, the cost of classifying an object x belonging
to X into the positive region POSðXÞ is less than or equal to the cost
Please cite this article in press as: Y. Sang et al., Decision-theoretic rough sets
10.1016/j.knosys.2015.08.001
of classifying x into the boundary region BNDðXÞ, and both of these
costs are strictly less than the cost of classifying x into the negative
region NEGðXÞ. The reverse order of cost is used for classifying an
object not in X. This assumption implies that a 2 ð0;1�; c 2 ð0;1Þ,
and b 2 ½0;1Þ. In this case, the minimum-risk decision rules can
be re-expressed as:

(P) if PðXj½x�AÞP a and PðXj½x�AÞP c, decide x 2 POSAðXÞ,
(N) if PðXj½x�AÞ 6 b and PðXj½x�AÞ 6 c, decide x 2 NEGAðXÞ,
(B) if b 6 PðXj½x�AÞ 6 a, decide x 2 BNDAðXÞ,

where

a ¼ k12 � k32
ðk31 � k32Þ � ðk11 � k12Þ ;

c ¼ k12 � k22
ðk21 � k22Þ � ðk11 � k12Þ ;

b ¼ k32 � k22
ðk21 � k22Þ � ðk31 � k32Þ :

If a loss function with k11 6 k31 < k21 and k22 6 k32 < k12, it fur-
ther satisfies the condition: ðk12 � k32Þðk21 � k31ÞP
ðk31 � k11Þðk32 � k22Þ, then 1 P a > c > b P 0. In this case, after
tie-breaking, the following simplified decision rules are obtained:

(P1) if PðXj½x�AÞP a , decide x 2 POSAðXÞ;
(N1) if PðXj½x�AÞ 6 b, decide x 2 NEGAðXÞ;
(B1) if b < PðXj½x�AÞ < a, decide x 2 BNDAðXÞ.

After computing the two parameters a and b from the loss func-
tions, using the above decision rules, we get the probabilistic
approximations as follows:

aprða;bÞA ðXÞ ¼ fx 2 UjPðXj½x�AÞP ag;
aprða;bÞA ðXÞ ¼ fx 2 UjPðXj½x�AÞ > bg:
The combination of these two approximations is called a decision-
theoretic rough set (DTRS). In DTRS, three kinds of probabilistic
regions (positive, boundary and negative regions) of concept X are
defined as follows:

POSða;bÞA ðXÞ ¼ aprða;bÞA ðXÞ;
BNDða;bÞA ðXÞ ¼ aprða;bÞA ðXÞ � aprða;bÞA ðXÞ;
NEGða;bÞA ðXÞ ¼ U � POSða;bÞA ðXÞ [ BNDða;bÞA ðXÞ:

In the framework of decision-theoretic rough sets, many exist-
ing models such as the Pawlak rough set model, variable precision
rough set model and Bayesian rough set model, can be explicitly
derived by considering various classes of loss functions.
Therefore, we have regarded it as a general and fundamental prob-
abilistic rough set model.

3. Decision-theoretic rough set models under dynamic
granulation

Multigranulation rough set theory was proposed by Qian [27] in
2006, in which lower and upper approximations are approximated
by granular structures induced by multiple binary relations instead
of single binary relation. In a sense, the multigranulation rough set
is a kind of information fusion strategies through fusing multiple
granular structures. Qian et al. [30,31] have proposed optimistic
and pessimistic multigranulation rough sets which are based on
optimistic and pessimistic strategies, respectively. In recent years,
many extended multigranulation rough set models have also been
proposed and studied [14,17,29,36,39,40,54]. Another multigranu-
lation rough set is characterized by dynamic granular structures
under dynamic granulation, Knowl. Based Syst. (2015), http://dx.doi.org/
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[28]. For example, the positive approximation can be seen as one
representative of them, in which a rough set is constructed by a
dynamic granulation order with hierarchical structure [28]. The
positive approximation is constructed by a sequence of granulation
worlds stretching from coarse to fine granulation, which can be
used to accelerate a heuristic process of attribute reduction.

In the view of granular computing [51], in existing decision-
theoretic rough set models, a target concept described by a set is
always characterized with upper and lower approximations under
a single granulation. Qian et al. [32] proposed multigranulation
decision-theoretic rough sets (MG-DTRS) for extending its wider
applications such as multi-source data analysis, knowledge discov-
ery from data with high dimensions and distributive information
systems. However, unlike the Pawlak rough set, the positive region,
the boundary region and the negative region of a decision-
theoretic rough set is not monotonic as the number of attributes
increases, which may lead to overlapping and inefficiency of attri-
bute reduction with it.

To address this issue, without loss of generality, in this section
we first investigate the monotonicity of positive regions through
comparing the Pawlak rough set model with the decision-
theoretic rough set model, develop a new decision-theoretic rough
set under dynamic granulation from the viewpoint of granular
computing (called decision-theoretic rough sets under dynamic
granulation), and investigate some of its important properties.

3.1. Non-monotonicity of probabilistic positive regions in DTRS

Given a decision table S ¼ ðU;At ¼ C [ DÞwith P;Q #C. A partial
relation ^ on 2C can be defined as follows [2,18,28]:

P ^ Q () 8x 2 U; ½x�P # ½x�Q :
That is, if P ^ Q , then Q is said to be coarser than P (or P is finer than
Q). If P ^ Q and U=P – U=Q ;Q is said to be strictly coarser than P or
P is strictly finer than Q, denoted by P � Q .

Given a decision table S ¼ ðU;At ¼ C [ DÞ, for an arbitrary sub-
set X#U, from the definition of lower/upper approximation in
the Pawlak rough set, we can immediately obtain the monotonicity
of the positive region of X as follows:

P ^ Q ) POSPðXÞ � POSQ ðXÞ:
That is, a thinner partition induces a larger positive region.

In the following, we can extend the monotonic property of a
single set to a decision partition U=D ¼ fD1;D2; . . . ;Dmg of the uni-
verse as follows:

P ^ Q ) 8Di 2 U=D; POSPðDiÞ � POSQ ðDiÞ;
and thus

P ^ Q ) POSPðDÞ � POSQ ðDÞ:
From the above properties, we can see that the positive regions of a
decision partition induced by the decision attributes also satisfy the
monotonicity in the context of the Pawlak rough set model.
Naturally, given a target decision, its negative region and boundary
region have the same monotonicity in the framework of the Pawlak
rough set model [25].

However, in the decision-theoretic rough set, we cannot obtain
the monotonicity of probabilistic positive regions of a target (or
decision). In the decision-theoretic rough set, if one object is
included in the lower approximation of a target concept X, then
all objects coming from its equivalence class are putted into this
lower approximation. This means that the lower approximation
of a probabilistic rough set may overflow the range of a target con-
cept. In addition, in the process of a heuristic attribute reduction,
the probabilistic positive region of a target decision may not
Please cite this article in press as: Y. Sang et al., Decision-theoretic rough sets
10.1016/j.knosys.2015.08.001
monotonically increase as the number of attributes becomes lar-
ger, which is caused by the fact that the conditional probability
function is not a monotonic function with respect to the equiva-
lence class ½x�. This is illustrated by the following example.

Example 1. Let U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g be a uni-
verse, U=P;U=Q two partitions on U, where

U=P ¼ ffx1; x2; x3g; fx4g; fx5; x6; x7; x8g; fx9; x10gg;
U=Q ¼ ffx1; x2g; fx3g; fx4g; fx5; x6g; fx7; x8g; fx9; x10gg:
Here, we suppose two parameters ða;bÞ ¼ ð0:6; 0:2Þ. Then, from the
definition of the partial relation, it is obvious that Q ^ P holds.

Take a target concept X ¼ fx1; x3; x5; x6; x7; x9g. Based on the
definition of probabilistic lower approximation in DTRS, through
computing the condition probability of x 2 U, we have that

aprð0:6;0:2ÞP ðXÞ ¼ fx1; x2; x3; x5; x6; x7; x8g;
aprð0:6;0:2ÞQ ðXÞ ¼ fx3; x5; x6g:

That is, for Q ^ P, we obtain POSða;bÞQ ðXÞ# POSða;bÞP ðXÞ. This means
that probabilistic positive region of a target concept with the num-
ber of attributes decreasing may enlarge, which indicates that the
monotonicity of positive regions does not hold in the DTRS model.

In addition, the probabilistic lower approximation defined in
DTRS may overflow the range of a target concept, which would
seriously affect the implementation of the monotonicity.

In order to facilitate this study, we will adopt the form of local
rough set approximations proposed by Qian et al. [33] to modify
the original decision-theoretic rough set. Based on this idea, we
first give its definition as follows.

Definition 1. Let K ¼ hU; EAi be an approximation space and an
arbitrary subset X#U. Then the L� ða; bÞ lower and upper
approximations are defined by

aprða;bÞA ðXÞ ¼ fxjPðXj½x�AÞP a; x 2 Xg;
aprða;bÞA ðXÞ ¼ [f½x�AjPðXj½x�AÞ > b; x 2 Xg:
The pair haprAða;bÞðXÞ; aprAða;bÞðXÞi is called a local decision-theoretic
rough set (L-DTRS).

It can be seen from the above definition, compared with the
classical probabilistic set-approximations, that we change the
range of the objects in the lower approximation of a concept.
That is to say, in L� ða; bÞ approximations, we only judge whether
the objects coming from a target concept belong to its lower/upper
approximations or not, while in the existing decision-theoretic
rough set, we need to consider all objects in the entire universe.
It deserves to point out that the computation of its lower/upper
approximation is only based on the information granules deter-
mined by objects within a target concept, rather than the given
universe.

Obviously, the above L� ða; bÞ lower approximation satisfies
the following property

aprða;bÞA ðXÞ#X:

However, for a classical decision-theoretic rough set, this property
may not hold.

In the following studies, in order to overcome the non-
monotonicity of positive regions in the DTRS model, we will intro-
duce a new probabilistic rough set approximation approach
through combining the local decision-theoretic rough set and the
idea of dynamic granulation, in which a target concept is approxi-
mated by the dynamic granular structures.
under dynamic granulation, Knowl. Based Syst. (2015), http://dx.doi.org/
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A partition induced by an equivalence relation provides a gran-
ulation world for describing a target concept. Thus, a sequence of
granulation worlds can be determined by a sequence of attribute
sets in the power set of attributes, which is called a dynamic gran-
ulation order [28]. For the sake of the monotonicity study, in this
paper, we only discuss that the dynamic granulation order is a
sequence of granulation worlds stretching from coarse to fine gran-
ulation which can be determined by a sequence of attribute sets
with granulations from coarse to fine in the power set of attributes.

Generally, we introduce the description of dynamic granulation
worlds as follows [28]:

Given a decision table S ¼ ðU;At ¼ C [ DÞ , P ¼ fA1;A2; . . . ;Ang a
family of attribute sets with A1 < A2 < � � � < An;Al 2 2C ; l 6 n, we
can define a dynamic granulation order denoted by
Pl ¼ fA1;A2; . . . ;Alg; l 6 n. In practice, a granulation order on an
attribute set can be appointed by users or experts constructed
according to the significance of each attribute. Based on this view-
point, we can redefine the probabilistic approximation under
dynamic granulation worlds by using local decision-theoretic
rough set approximations.
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3.2. Thresholds computing under dynamic granulation worlds

The DTRS model is a typical probabilistic rough set model in
which Bayesian decision theory is introduced to minimize the deci-
sion costs, and it provides a scientific method to calculate thresh-
old values based on loss functions using more familiar notions of
costs (or risks) [46]. To modify the classical decision-theoretic
rough set, in this subsection, we firstly need to give a method for
updating the required threshold parameters a and b. The
Bayesian decision procedure is still employed for achieving this
task.

In the following, we give an approach to calculate the required
threshold parameters in the new model, which needs to continu-
ally perform a Bayesian decision procedure on the gradually
reduced universe for obtaining a sequence of threshold parameters
under a given dynamic granulation order. The approach of updat-
ing threshold parameters is to select a series of actions for which
the classification risk is as small as possible.

Let G ¼ fhU1; EA1 i; . . . ; hUn; EAn ig be a group of approximation
spaces. Let Uk #U; ðk ¼ 1;2; . . . ;nÞ denote a gradually reduced uni-

verse satisfied with U1 ¼ U;Ukþ1 ¼ Uk � aprðak ;bkÞAk
ðXkÞ, where

aprðak ;bkÞAk
ðXkÞ ¼ fxjPðXkj½x�Ak

ÞP ak; x 2 Xkg (see Definition 1 for
details) and P ¼ fA1;A2; . . . ;Ang is a family of attribute sets with
A1 < A2 < � � � < An;Ak 2 2C , k ¼ 1;2; . . . ;n. Then, we present a brief
description of the updating parameters process with the Bayesian
decision theory for the kth approximation space.

Given the kth approximation space hUk; EAk i 2 G ðk 6 nÞ. On the
universe Uk, the equivalence relation EAk induces a partition Uk=EAk

and the subset Xk #Uk is updated with Xkþ1 ¼ Xk � aprðak ;bkÞAk
ðXkÞ.

PðXkj½x�Ak Þ and PðXc
kj½x�Ak

Þ are the conditional probabilities of an

object in the equivalence class ½x�Ak
within Xk and Xc

k, respectively.
Given the loss function matrix under the kth granular space, the
expected loss Rðaij½x�Ak

Þ associated with taking action ai under the
kth granular space can be expressed as:

Rða1j½x�Ak
Þ ¼ kk11PðXkj½x�Ak

Þ þ kk12PðXc
kj½x�Ak Þ;

Rða2j½x�Ak
Þ ¼ kk21PðXkj½x�Ak

Þ þ kk22PðXc
kj½x�Ak Þ;

Rða3j½x�Ak
Þ ¼ kk31PðXkj½x�Ak

Þ þ kk32PðXc
kj½x�Ak Þ;

where kkij denotes the loss function for taking action ai when state is
xj by the kth granular space, and krij – ksij ðr; s 2 f1;2; . . . ; ng; r – sÞ.
Please cite this article in press as: Y. Sang et al., Decision-theoretic rough sets
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In practical applications, in our opinion, according to various
requirements under the change of granular space, the loss func-
tions regarding the risk or cost of actions are also updated corre-
spondingly. Thus, one assumes that the values of kkijðk 6 nÞ in
each granular space could not be equivalent to each other. In other
words, each granular space should have its independent loss (or
cost) functions itself.

Like the decision-theoretic rough set, briefly, we also assume
that the loss function satisfies the conditions:

(i) kk11 6 kk31 < kk21,

(ii) kk22 6 kk32 < kk12,

(iii) ðkk12 � kk32Þðkk21 � kk31ÞP ðkk31 � kk11Þðkk32 � kk22Þ.

It follows that 1 P a P c P b P 0. By decision rules (P1)-(B1),
we can obtain the corresponding positive region, the boundary
region and the negative region under the kth granular space as
follows:

POSða;bÞAk
ðXkÞ ¼ fxjPðXkj½x�Ak

ÞP ak; x 2 Ukg;

BNDða;bÞAk
ðXkÞ ¼ fxjbk < PðXkj½x�Ak

Þ < ak; x 2 Ukg;

NEGða;bÞAk
ðXkÞ ¼ fxjPðXkj½x�Ak

Þ 6 bk; x 2 Ukg;
where

ak ¼ kk12 � kk32
ðkk31 � kk32Þ � ðkk11 � kk12Þ

;

bk ¼
kk32 � kk22

ðkk21 � kk22Þ � ðkk31 � kk32Þ
:

Hence, according to the calculation procedure of threshold
parameters in the approximation space hUk; EAk

i above, given a
dynamic granulation order Pl ðl 6 nÞ, we can obtain a sequence of
the threshold parameters ða; bÞl ¼ fða1; b1Þ; ða2; b2Þ; . . . ; ðal; blÞg,
which means the procedure of dynamically updating the required
threshold parameters with the various costs or risks by every gran-
ular space. The threshold parameters sequence will be used in the
definition of the probabilistic approximations that will be pro-
posed in next subsection. It deserves to point out that when the
loss function in different granular spaces satisfies with the condi-
tion: kk12 ¼ kk21 ¼ 1, kk11 ¼ kk22 ¼ kk31 ¼ kk32 ¼ 0; k 6 l, from the above
equation, we have ðak; bkÞ ¼ ð1; 0Þ, which can be regraded as a spe-
cial case.

3.3. Decision-theoretic rough sets under dynamic granulation

In this subsection, we introduce a new decision-theoretic rough
set under dynamic granulation orders and investigate some of its
important properties.

Firstly, we give the definition of the new decision-theoretic
rough set as follows.

Definition 2. Let S ¼ ðU;At ¼ C [ DÞ be a decision table, X#U and
P ¼ fA1;A2; . . . ;Ang a family of attribute sets with

A1<A2< � � �<An;Al 2 2C ; l ¼ 1;2; . . . ;n. Given a dynamic granulation

order Pl ¼ fA1;A2; . . . ;Alg ðl 6 nÞ, we define Pða;bÞl -lower approxi-

mation Pl
ða;bÞðXÞ and Pða;bÞl -upper approximation Pl

ða;bÞðXÞ of X
under the dynamic granulation order as

Pl
ða;bÞl ðXÞ ¼ fxjPðXkj½x�Ak ÞP ak; x 2 Xk; k ¼ 1;2 . . . ; lg; ð1Þ

Pl
ða;bÞl ðXÞ ¼ [f½x�Ak jPðXkj½x�Ak

Þ > bk; x 2 Xk; k ¼ 1;2 . . . ; lg; ð2Þ
under dynamic granulation, Knowl. Based Syst. (2015), http://dx.doi.org/
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where X1 ¼ X;Xkþ1 ¼ X �Sk
j¼1apr

ðaj ;bjÞ
Aj
ðXjÞ, ða;bÞl ¼ fða1;b1Þ; ða2;b2Þ;

. . . ; ðal;blÞg indicates the dynamic threshold parameter sequence
under the current granulation order Pl, and ½x�Ak represents the
equivalence class including x in the partition Uk=Ak in which

Uk ¼ Uk�1 � aprðak�1 ;bk�1ÞAk�1
ðXk�1Þ is the gradually reduced universe.
607607

608

609

610

611

612
It can be seen from the above definition that the target concept
can be gradually approximated by using dynamic granulations
stretching from coarse to fine on the gradually reduced universe.

In addition, we can find that the computation of its lower/upper
approximation is only based on the information granules deter-
mined by objects within a target concept X, rather than the uni-
verse U. Obviously, we have the property
613

614

615
616

618618

619
Pl
ða;bÞðXÞ#X:

In order to further characterize the structure of probabilistic
approximations in the DG-DTRS, we can use local probabilistic

approximations in a single granulation world to redefine Pða;bÞl -set
approximations of a target concept X, which can be regarded as
an equivalent form of the above definition. That is
620

621

622

623

624
625
Pl
ða;bÞl ðXÞ ¼

[l

k¼1
aprðak ;bkÞAk

ðXkÞ; ð3Þ

Pl
ða;bÞl ðXÞ ¼

[l

k¼1
aprðak ;bkÞAk

ðXkÞ; ð4Þ
627627
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637637
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where X1 ¼ X;Xkþ1 ¼ Xk � aprðak ;bkÞAk
ðXkÞ. The above definition form

can reflect the structure feature of probabilistic approximations in
DG-DTRS.

Fig. 1 visualizes the hierarchical construction of lower approxi-
mation of a target concept in the DG-DTRS model.

In Fig. 1, let P1 ¼ fA1g and P2 ¼ fA1;A2g with A1 < A2 be two

granulation orders. aprða1 ;b1ÞA1
ðX1Þ is the L-lower approximation of

X1 obtained by the equivalence relation EA1 on the universe U1,

where the parameter ða1; b1Þ ¼ ð0:8;0:2Þ; aprða2 ;b2ÞA2
ðX2Þ is the

L-lower approximation of X2 obtained by the equivalence relation
EA2 on the universe U2, where the parameter ða2; b2Þ ¼ ð0:6;0:2Þ.
Hence, P2

ða;bÞ2 ¼ aprða1 ;b1ÞA1
ðX1Þ [ aprða2 ;b2ÞA2

ðX2Þ. The mechanism illus-
trates the hierarchical structure of probabilistic approximations
in the DG-DTRS, which can be used to gradually compute the lower
approximation of a target concept.

From the above definition and Fig. 1, we have the following
theorem.
== αα

−=

=

Fig. 1. Dynamic granular structures of the lower approximation in DG-DTRS.
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Theorem 1 (Lower approximation monotonicity). Let
S ¼ ðU;At ¼ C [ DÞ be a decision table, X#U and
P ¼ fA1;A2; . . . ;Ang a family of attribute sets with

A1 <A2 < � � �< An;Al 2 2C ; l ¼ 1;2 . . . ;n. Given Pl ¼ fA1;A2; . . . ;Alg,
then for any Pl, we have

P1
ða;bÞ1 ðXÞ# P2

ða;bÞ2 ðXÞ# � � � # Pl
ða;bÞl ðXÞ;

where ða;bÞl indicates the sequence of probabilistic threshold parame-
ters under the granulation order Pl.

This theorem shows that the monotonicity property

of Pða;bÞl -lower approximation of a given target concept X under
dynamic granulation orders holds in the DG-DTRS model. It is
illustrated by the following example.

Example 2. Let U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g be a
universe, U=A1;U=A2 two partitions on U, where

U=A1 ¼ ffx1; x2g; fx3; x4g; fx5; x6; x7; x8g; fx9; x10gg;
U=A2 ¼ ffx1g; fx2g; fx3; x4g; fx5; x6g; fx7; x8g; fx9g; fx10gg:
Obviously, A1 < A2 holds. Thus, we can construct two dynamic
granulation orders P1 ¼ fA1g and P2 ¼ fA1;A2g.

Given a target concept X ¼ fx2; x3; x5; x6; x8; x10g, assume
ða; bÞ2 ¼ fð0:7;0:2Þ; ð0:8;0:2Þg. From Definition 2, by computing
the lower and upper approximations of X under these two
granulation orders, one easily obtains that

P1
ða;bÞ1 ðXÞ ¼ fx5; x6; x8g;

P1
ða;bÞ1 ðXÞ ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g;

P2
ða;bÞ2 ðXÞ ¼ fx2; x5; x6; x8; x10g;

P2
ða;bÞ2 ðXÞ ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g:

That is to say, the target concept X can be approximated by using
the two granulation orders P1 and P2 in DG-DTRS. Moreover,
P1
ða;bÞ1 ðXÞ# P2

ða;bÞ2 ðXÞ holds.
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Based on Eqs. (3) and (4), the corresponding probabilistic posi-
tive region, boundary region and negative region of a target con-
cept X are respectively defined by

POSða;bÞlPl
ðXÞ ¼ Pl

ða;bÞl ðXÞ;
BNDða;bÞlPl

ðXÞ ¼ Pl
ða;bÞl ðXÞ � Pl

ða;bÞl ðXÞ;
NEGða;bÞlPl

ðXÞ ¼ U � Pl
ða;bÞl ðXÞ:

In order to describe the recursive relation between two
dynamic granulation orders Pl and Plþ1, the following principle is
given.

Theorem 2. Let S ¼ ðU;At ¼ C [ DÞ be a decision table, X#U, and
P ¼ fA1;A2; . . . ;Ang a family of attribute sets with

A1< A2 < � � �< An;Al 2 2C ; l ¼ 1;2; . . . ;n. Then, for a given
Pl ¼ fA1;A2; . . . ;Alg, we have

POS
Uða;bÞlþ1
Plþ1

ðXÞ ¼ POS
Uða;bÞl
Pl
ðXÞ [ POS

Ulþ1ðalþ1 ;blþ1 Þ
Alþ1

ðXlþ1Þ; ð5Þ

where X1 ¼ X;Ulþ1 ¼ U � POSða;bÞPl
ðXÞ and Xlþ1 ¼ X � POSða;bÞPl

ðXÞ.

Here, POS
Uða;bÞl
Pl
ðXÞ indicates the positive region of X on the uni-

verse U under the dynamic granulation Pl, POS
Ulþ1ðalþ1 ;blþ1 Þ
Alþ1

ðXlþ1Þ
denotes the positive region of Xlþ1 on the universe Ulþ1 with
respect to the equivalence relation Alþ1.

This theorem can be used to dynamically compute the positive
region of a target concept (or decision) in the decision-theoretic
rough set, which can largely save computational time. The recur-
sive relation can be understood by the following example.
under dynamic granulation, Knowl. Based Syst. (2015), http://dx.doi.org/
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Example 3. Continued by Example 2. We can obtain

POS
Uða;bÞ1
P1

ðXÞ ¼ fx5; x6; x8g. Let U1 ¼ U and X1 ¼ X. Then, the uni-
verse is updated as

U2 ¼ U � POS
Uða;bÞ1
P1

ðXÞ ¼ fx1; x2; x3; x4; x7; x9; x10g;
and the target concept X is updated as

X2 ¼ X � POS
Uða;bÞ1
P1

ðXÞ ¼ fx2; x3; x10g:
Through computing, one has that

POS
U2ða2 ;b2 Þ
A2

ðX2Þ ¼ fx2; x10g;
and

POS
Uða;bÞ2
P2

ðXÞ ¼ fx2; x5; x6; x8; x10g ¼ POS
Uða;bÞ1
P1

ðXÞ [ POS
U2ða2 ;b2 Þ
A2

ðX2Þ:
That is to say, the positive regions of the target concept X under the
dynamic granulation orders satisfy the above recursive principle.
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3.4. Computing approximation of a target concept under dynamic
granulation orders

In this part, we construct a computing lower approximation
algorithm under a dynamic granulation order in DG-DTRS.
Furthermore, we extend the proposed set-approximation approach
to a decision partition.

The detailed algorithm for computing a lower approximation of
a target concept in DG-DTRS is formally described as follows.

Algorithm 1. Computing the lower approximation of a target
concept under a dynamic granulation order (DGLAC).

Input: A decision table S ¼ ðU;AT ¼ C [ DÞ, a target concept
set X#U, and a family of attribute sets P ¼ fA1;A2; . . . ;Ang
with A1 < A2 < � � � < AnðAl 2 2C ; l 6 nÞ. Given a dynamic
granulation order Pl ¼ fA1;A2; . . . ;Alg, and the loss function

kkijðk ¼ l;2; . . . ; lÞ with respect to Pl.

Output: The Pða;bÞll -lower approximation L of X.

1: k 1;X1  X;U1  U, L / and P1 ¼ fA1g
2: while k 6 l and Xk – / do

3: Compute ðak; bkÞ with respect to kkij
{compute threshold parameters for each granulation}

4: for all x 2 XAk
do

5: compute ½x�Ak
of x

{compute equivalence class of x on universe Uk}
6: if PðXkj½x�Ak

ÞP ak then
7: L L [ x
8: i iþ 1
9: end if
10: end for

11: Xkþ1 ¼ Xk � POSðak ;bkÞ
Ak

ðXkÞ;Ukþ1 ¼ Uk � POSðak ;bkÞ
Ak

ðXkÞ
12: k ¼ kþ 1
13: Pk  fA1;A2; . . . ;Akg
14: end while
15: return L

The algorithm shows the process of computing a lower
approximation under a given dynamic granulation order. In fact,
under dynamic granulation worlds, a target concept or decision
can be gradually approximated by a dynamic granulation order
from coarse to fine. This means that a suitable dynamic granula-
tion order can be chosen for a target concept approximation
according to the practical requirements, instead of strictly
Please cite this article in press as: Y. Sang et al., Decision-theoretic rough sets
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satisfying the stopping criterion in algorithm. Here, we consider

gða;bÞðP;XÞ ¼
jPOSða;bÞ

P
j

jXj as the precision of the positive region of X#U

with respect to the granulation order P, which describes the abil-
ity of granulation orders for dynamically approximating the tar-
get concept (or decision). Therefore, in the above algorithm, we
also can set a threshold parameter to control the stop of the
algorithm.

The algorithm is easily illustrated by the following example.

Example 4. Let U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g be a uni-
verse, U=A1; U=A2 two partitions on U, where U=A1 ¼
ffx1; x2g; fx3; x4g; fx5; x6; x7; x8g; fx9; x10gg and U=A2 ¼ ffx1g; fx2g;
fx3; x4g; fx5; x6g; fx7; x8g; fx9g; fx10gg.

Obviously, A1 < A2 holds. Thus, we can construct two granula-
tion orders P1 ¼ fA1g and P2 ¼ fA1;A2g.

Given a target concept X ¼ fx1; x3; x5; x6; x7; x9g. For simplicity,
we suppose ða; bÞ2 ¼ fð0:7;0:2Þ; ð0:8;0:2Þg by a dynamic granula-
tion order P2. The family of threshold parameters can be computed
from the various loss functions.

According to Algorithm 1, we compute the lower approxima-
tion of X by the granulation orders.

1. Let U1 ¼ U; X1 ¼ X; P1 ¼ fA1g. For each x 2 X1, by computing
PðXj½x�A1 Þ of x; ða1; b1Þ ¼ ð0:7;0:2Þ, we can easily obtain

P1
ð0:7;0:2ÞðXÞ ¼ fx5; x6; x7g.

2. Updating the universe U2 ¼ U1 � A1
ð0:7;0:2ÞðXÞ ¼ fx1; x2; x3;

x4; x8; x9; x10g, X2 ¼ X1 � P1
ð0:7;0:2ÞðXÞ ¼ fx1; x3; x9g, P2 ¼ fA1;A2g

and ða2; b2Þ ¼ ð0:8;0:2Þ. For each x 2 X2, by computing ½x�A2
of

x in universe U2, we have
½x1�A2 ¼ fx1g; ½x3�A2 ¼ fx3; x4g; ½x9�A2
¼ fx9g:

Then, by computing PðX2j½x�A2 Þ of x, we can easily obtain

P2
ða;bÞ2 ðXÞ ¼ fx5; x6; x7g [ fx1; x9g ¼ fx1; x5; x6; x7; x9g:

Similar to the decision-theoretic rough set model, we can
extend the concept of probabilistic approximations and regions
of a single decision to a partition U=D. For simplicity, we assume
that the same loss functions are used for all decisions. The detailed
definition is as follows.

Definition 3. Let S ¼ ðU;At ¼ C [ DÞ be a decision table,
P ¼ fA1;A2; . . . ;Ang a family of attribute sets with

A1 < A2 < � � �< An;Al 2 2C ; l ¼ 1;2; . . . ; n, and U=D ¼ fD1;D2;

. . . ;Dmg a decision partition on U. Then, the ða; bÞ-Lower approx-
imation and the ða; bÞ-upper approximation of D related to Pl are
defined as

Pl
ða;bÞl ðDÞ ¼ fPl

ða;bÞl ðD1Þ; Pl
ða;bÞl ðD2Þ; . . . ; Pl

ða;bÞl ðDmÞg;

Pl
ða;bÞl ðDÞ ¼ fPl

ða;bÞl ðD1Þ; Pl
ða;bÞl ðD2Þ; . . . ; Pl

ða;bÞl ðDmÞg:
Correspondingly, the positive region, the boundary region and

the negative region of the target decision D in the DG-DTRS model
can be respectively represented as follows:

POSða;bÞlPl
ðDÞ ¼

[m

i¼1
POSða;bÞlPl

ðDiÞ ¼
[m

i¼1
Pl
ða;bÞl ðDiÞ;

BNDða;bÞlPl
ðDÞ ¼

[m

i¼1
BNDða;bÞlPl

ðDiÞ;

NEGða;bÞlPl
ðAÞ ¼ U � POSða;bÞlPl

ðDÞ [ BNDða;bÞlPl
ðDÞ:
under dynamic granulation, Knowl. Based Syst. (2015), http://dx.doi.org/
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In what follows, we can extend the monotonicity of a single tar-
get concept to a decision partition U=D ¼ fD1;D2; . . . ;Dmg of the
universe, which is shown in the following theorem.

Theorem 3 (Decision monotonicity). Let S ¼ ðU;At ¼ C [ DÞ be a
decision table, P ¼ fA1;A2; . . . ;Ang a family of attribute sets with

A1 < A2 < � � �< An;Al 2 2C , and U=D ¼ fD1;D2; . . . ;Dmg a decision
partition on U. Given Pl ¼ fA1;A2; . . . ;Alg, then for any Pl,
l ¼ 1;2; . . . ;n, we have

POSða;bÞ1P1
ðDÞ# POSða;bÞ2P2

ðDÞ# � � � # POSða;bÞlPl
ðDÞ:

In the following, we want to illustrate that the positive region of
a target decision can also be recursively computed on the gradually
reduced universe by the below theorem.
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Theorem 4. Let S ¼ ðU;At ¼ C [ DÞ be a decision table,
P ¼ fA1;A2; . . . ;Ang a family of attribute sets with

A1 < A2 < � � �< An;Al 2 2C ; l ¼ 1;2; . . . ;n, and U=D ¼ fD1;D2; . . .

;Dmg a decision partition on U. Then, given Pl ¼ fA1;A2; . . . ;Alg, we
have

POS
Uða;bÞlþ1
Plþ1

ðDÞ ¼ POS
Uða;bÞl
Pl
ðDÞ [ POS

Ulþ1ðalþ1 ;blþ1 Þ
Alþ1

ðDÞ;

where U1 ¼ U and Ulþ1 ¼ U � POS
Uða;bÞ
Pl
ðDÞ.

The recursive computation principle is explained by the follow-
ing example.

Example 5. Let S ¼ ðU;C [ DÞ be a decision table, where
U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g be a universe, C ¼ fa1; a2g;
U=D ¼ ffx1; x3; x5; x6; x7; x9g; fx2; x4; x8; x10gg, U=a1 ¼ ffx1; x2g; fx3;
x4g; fx5; x6; x7; x8g; fx9; x10gg, and U=C ¼ ffx1g; fx2g; fx3; x4g; fx5;
x6g; fx7; x8g; fx9g; fx10gg.

Obviously, fa1g<C holds. Thus, we can construct two granula-
tion orders P1 ¼ fa1g and P2 ¼ ffa1g;Cg.

Suppose ða; bÞ2 ¼ fð0:7;0:2Þ; ð0:8;0:2Þg. From Algorithm 1, one
has the lower approximation of D. Then it follows

POS
Uða;bÞ1
P1

ðDÞ ¼ P1
ða;bÞ1 ðD1Þ [ P1

ða;bÞ1 ðD2Þ ¼ fx5; x6; x7g:
Let U1 ¼ U, and update the universe

U2 ¼ U1 � POS
Uða;bÞ1
P1

ðDÞ ¼ fx1; x2; x3; x4; x8; x9; x10g:
Through computing, we have

POSU2ða2 ;b2Þ
C ðDÞ ¼ fx1; x2; x8; x9; x10gandPOSUða;bÞ2P2

ðDÞ
¼ fx1; x2; x5; x6; x7; x9; x10g:

Hence, POS
Uða;bÞ2
P2

ðDÞ ¼ POS
Uða;bÞ1
P1

ðDÞ [ POSU2ða2 ;b2Þ
C ðDÞ.

That is to say, the target decision D can be recursively approxi-
mated by using dynamic granulation orders P1 and P2 on the grad-
ually reduced universe.

4. Conclusions and future studies

As an important model within rough set theory, the decision-
theoretic rough sets have been largely enriched. However, the
non-monotonicity of its positive region may lead to an overlapping
problem for attribute reduction. To solve this problem, in this
paper we have proposed a new decision-theoretic rough set model
based on the local rough set and the dynamic granulation principle,
called a decision-theoretic rough set under dynamic granulation
(DG-DTRS) which satisfies the monotonicity of the positive region
of a target concept (or decision). To achieve the risk minimization
Please cite this article in press as: Y. Sang et al., Decision-theoretic rough sets
10.1016/j.knosys.2015.08.001
under each granulation, based on the Bayesian decision procedure,
we have also given an approach to update the required parameters
a and b in the proposed model for each granulation. This dynamic
decision-theoretic rough set model can ensure the monotonicity of
positive region and the local risk minimization as information
granulation becomes finer besides providing sound semantic inter-
pretation. Hence, the modified version with several better proper-
ties can be regarded as an important improvement of the original
decision-theoretic rough set model.
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