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a b s t r a c t 

Presently, the mechanism of multi-granularity has been frequently realized by various 

mathematical tools in Granular Computing especially rough set. Nevertheless, as a key 

topic of rough set, attribute reduction has been rarely exploited by the concept of multi- 

granularity. To fill such a gap, Multi-Granularity Attribute Reduction is defined to char- 

acterize reduct which satisfies the intended multi-granularity constraint instead of one 

and only one granularity based constraint. Furthermore, to accelerate the searching pro- 

cess of reduct, Multi-Granularity Attribute Selector is introduced into the framework of 

heuristic algorithm. Its key procedure is twofold including: (1) fuse all the granularities 

based measure-values to construct the multi-granularity constraint; (2) integrate the suit- 

able granularities based measure-values to evaluate the candidate attributes. Based on the 

multi-granularity structure formed by neighborhood rough set, the experimental results 

over 20 UCI data sets demonstrate that compared with single granularity attribute reduc- 

tion, our selector can not only generate reducts which may not contribute to poorer classi- 

fication performances, but also significantly reduce the elapsed time of computing reducts. 

This research suggests the new trend of attribute reduction in multi-granularity environ- 

ment. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Attribute reduction [2,14,21] , a rough set based feature selection, aims to reduce the dimensionality of data by searching

for a qualified reduct, i.e., a subset of conditional attributes. For such purpose, as reported by Yao et al. [43] , a reduct is

generally required to satisfy one intended constraint. Correspondingly, with respect to different constraints, various forms of

attribute reduction have been explored [3,4,9,13,18] . 

With a careful reviewing of previous researches, from the viewpoint of Granular Computing (GrC) [11,26,36] , it is not

difficult to reveal that most of the attribute reduction approaches possess a similar mechanism: to form a suitable con-

straint for the corresponding attribute reduction, information granulation [12,22,37] is frequently conducted beforehand by

using indiscernibility relation [21] , distance function [47] , clustering analysis [10] , etc. It should be emphasized that differ-

ent results of information granulation may contribute to different reducts, because with the varying results of information
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granulation, the constraint related to the reduct may be stricter or looser. An immediate problem is how to distinguish dif-

ferent series of results, including information granulation, constraint and even reduct. Regrading such problem, fortunately,

the concept of granularity [24] can be used to quantitatively characterize these results for revealing the difference. 

Actually, the concept of granularity can be acquired by various approaches. To the best of our knowledge, most of previ-

ous researches related to granularity can be categorized into the following three strategies. 

• Parameter based granularity . The granularity is closely related to the appointed parameter. For such case, to distinguish

different results of information granulation, the immediate granularity is actually determined by the value of parameter,

it follows that the difference between those results of information granulation can be reflected by the difference between

the values of parameters. It should be noticed that smaller value of parameter generally contributes to a finer granularity.

For instance, in neighborhood rough set [6] , smaller value of parameter (radius for calculating neighborhoods of samples)

may generate smaller size of the neighborhoods of samples, it follows that the finer granularity will be obtained. Similar

explanation can also be observed in Gaussian kernel based fuzzy rough set [7] . 
• Sample based granularity . The granularity is closely related to the employed samples. For such case, to distinguish

different results of information granulation, the immediate granularity is actually determined by the structure of samples,

it follows that the difference between those results of information granulation can be reflected by the difference between

the structures of samples. For instance, in K -fold cross-validation, K different sets of training and testing samples can be

regrouped [8] . In view of GrC, K results of information granulation are derived. Immediately, the difference between

these results can be reflected by structures of samples since for those regrouped sets, the contained training and testing

samples are significantly different. 
• Attribute based granularity . The granularity is closely related to the considered attributes. For such case, to distinguish

different results of information granulation, the immediate granularity is actually determined by the distinguishability

of attributes, it follows that the difference between those results of information granulation can be reflected by the

difference between the distinguishabilities of attributes. As suggested by Xu et al. [35] , different attributes with differ-

ent distinguishabilities induce multiple equivalence relations, and then those relations may naturally construct multiple

different granularities. Additionally, it should be noticed that the stronger distinguishability of attributes generally con-

tributes to a finer granularity. For instance, as reported by Liao et al. [16] , in the problem of feature selection, the con-

sidered attributes (conditional attributes, i.e., features) are supposed to have a feature-value granularity. Compared with

those deleted attributes, the remained attributes may have stronger distinguishability since they may provide stronger

relevances or better generalization performances, it follows that the finer granularity will be obtained. 

Following these different forms of granularity, it is well known that most of the existing attribute reduction approaches

are essentially single granularity based ones, which are referred to as single granularity attribute reductions in this paper.

This is mainly because the construction of constraint focuses on one and only one fixed result of information granulation

induced by single parameter, single sample space or single attribute set. Nevertheless, one single granularity attribute re-

duction may involve some limitations as follows. 

1. Single granularity attribute reduction may result in the poor adaptability of the derived reduct to the problem of gran-

ularity diversity. As what has been reported by Yang and Yao [41] , if a reduct is generated over one and only one con-

sidered granularity, it may not be still the qualified reduct over a little finer or coarser granularity which may be caused

by slight variation of data. 

2. Single granularity attribute reduction may increase the time consumption if multiple different granularities [44] are re-

quired. For example, given a set of multiple different granularities, a simple and direct method to design attribute reduc-

tion is: repeat the single granularity attribute reduction in terms of the number of considered granularities. Obviously,

such process is too time-consuming. 

To handle the limitations mentioned above, it is necessary to develop a novel thinking: re-consider attribute reduction in

the case of multi-granularity. From this point of view, Multi-Granularity Attribute Reduction (MGAR) is proposed. Fig. 1 (a)

shows the framework of single granularity attribute reduction while the framework of our proposed MGAR is illustrated in

Fig. 1 (b). 

Obviously, following Fig. 1 , different from single granularity attribute reduction, with respect to multiple different granu-

larities, two or more information granulations are required in MGAR. Moreover, based on these results of information granu-

lation, a specific constraint, called multi-granularity constraint, is established and then attribute reduction can be conducted.

Actually, as the most distinguished characteristic in MGAR, such multi-granularity constraint allows us to select attributes

in a more versatile way. It follows that the derived reduct may offer us higher adaptability to granularity world. 

Alluding to the definition of MGAR, how to realize it in detail becomes an interesting topic which deserves more inves-

tigations. Actually, the consideration of multiple different granularities in MGAR may easily result in greater complexity of

the searching process of reduct. Immediately, an efficient selector for MGAR is proposed to alleviate such weakness, which

is referred to as Multi-Granularity Attribute Selector (MGAS) in the context of this paper. Such selector is expected to speed

up the searching process of multi-granularity reduct. The acceleration mechanism in MGAS is mainly embodied in two open

problems as follows. 

1. How to construct the multi-granularity constraint. To address such problem, a fused measure-value based multi-

granularity constraint is designed. With such strategy, an undesired case can be avoided: the intended multi-granularity
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Fig. 1. The frameworks of single granularity attribute reduction and MGAR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

constraint may be so strict that no attribute can be deleted. Additionally, it can reduce the number of constraints with

respect to multiple different granularities. 

2. How to evaluate the candidate attributes. To address such problem, the finest and coarsest granularities based evaluations

of attributes are concerned. With such strategy, some redundant evaluations are pruned, it follows that the elapsed time

of evaluating attributes is effectively reduced. 

The main contribution of this work can be summarized as the following aspects: (1) through analyzing attribute re-

duction from the viewpoint of GrC, we offer the revelation that most of the previous attribute reduction approaches

are essentially based on single granularity; (2) to solve the inherent limitations in single granularity attribute reduction,

Multi-granularity Attribute Reduction is proposed; (3) to accelerate the searching process of multi-granularity reduct, Multi-

granularity Attribute Selector is designed; (4) extensive experimental results are analyzed to demonstrate that our selector

is effective in the classification-oriented attribute reduction and efficient in the computational issue of reduct. 

The remainder of this paper is organized as follows. In Section 2 , we briefly review related works of granularity. Pre-

liminary knowledge is presented in Section 3 . Multi-granularity Attribute Reduction (MGAR) and Multi-granularity Attribute

Selector (MGAS) are introduced in Section 4 . In Section 5 , comparative experimental results over UCI data sets are shown,

as well as the corresponding analyses. This paper is ended with conclusions and future perspectives in Section 6. 

2. Preliminary knowledge 

2.1. Granular computing and rough set 

Up to now, by applying the mechanism of information granulation to problem solving, Granular Computing (GrC) has

been developed as an umbrella which covers theories, methodologies and techniques related to the concepts of granule

and granularity [17,38,39] . As basic elements in GrC, the concepts of granule and granularity have been thoroughly investi-

gated [24,31] . In a wide sense, granule and granularity can be described as follows. 

• Granule: a collection of entities drawn together by criteria of indistinguishability, similarity or functionality. 
• Granularity: a discrimination ability of the result of information granulation. 

Generally speaking, the concepts of granule and granularity are broad, and as one of the most advanced approaches to

popularizing GrC, rough set [15] has been frequently employed for interpreting them specifically. In the following, we will

briefly review some basic notions related to rough set and then provide the detailed interpretations of these concepts. 

In the rough set theory, a decision system can be described by a pair such that DS = < U, AT ∪ { d} > : U is a nonempty and

finite set of samples, called the universe; AT is a nonempty and finite set of conditional attributes; d is the decision attribute

(note that in this paper, to simply our discussions, the individual word “attribute” denotes “conditional attribute” since our

attribute reduction related research mainly focuses on the conditional attributes). Furthermore, ∀ x ∈ U , a ( x ) indicates its

value over conditional attribute a ∈ AT and d ( x ) denotes its decision attribute value, i.e., the label. 
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In most of the rough set approaches, the binary relation is well accepted as an effective method to conduct informa-

tion granulation. It is worth noting that the binary relation can be expressed in various ways, it follows that the detailed

explanations of granule and granularity can be different. Some simple examples are given in the following example. 

Example 1. 

• If the binary relation is Pawlak’s indiscernibility relation [21] such that IND A = { (x, y ) ∈ U 

2 : ∀ a ∈ A, a (x ) = a (y ) } , in

which A ⊆AT is a conditional attribute subset, then information granulation is to derive all the equivalence classes which

constitute a partition over U through using IND A . Correspondingly, each single equivalence class can be referred to as

a granule. For one given data, the immediate granularity directly reflects the distinguishability of the considered condi-

tional attribute subset. 
• If the binary relation is neighborhood relation [6] such that N 

δ
A 

= { (x, y ) ∈ U 

2 : � A (x, y ) ≤ δ} , in which � A ( x , y ) is the

distance between samples x , y over A and δ is the radius, then information granulation is to derive all the neighborhoods

of samples through using N 

δ
A 

. Correspondingly, each neighborhood of one sample can be referred to as a granule. For one

given data, the immediate granularity reflects the distinguishability based on both the considered conditional attribute

subset and the appointed radius simultaneously. 

Following Example 1 , in view of rough set theory, various factors, e.g., different considered conditional attribute subsets

and different appointed radii mentioned above may result in the variation of granularity. 

2.2. Single granularity attribute reduction 

As one of the key topics in rough set theory, attribute reduction has been widely concerned [21,33,34] . With respect to

different requirements, various definitions of attribute reduction have been proposed as indicated in Refs. [20,27,28,32,40,41] .

To facilitate the further understanding of attribute reduction, as reported by Yao et al. [43] , a general form of attribute

reduction from the viewpoint of GrC can be presented as follows. 

Definition 1. Given a decision system DS and a granularity G , assuming that ρG -constraint is a constraint based on a

considered measure ρ over G , then any attribute subset in AT , A is referred to as a reduct in terms of G if and only if 

1) A satisfies the ρG -constraint; 

2) ∀ B ⊂ A , B does not satisfy the ρG -constraint. 

Following Definition 1 , it is obvious that with one and only one considered granularity G , the constraint presented above

is a single granularity constraint. Consequently, attribute reduction defined in Definition 1 is actually explored based on one

and only one granularity, which can be referred to as a single granularity attribute reduction. It follows that the generated

reduct can be characterized as a single granularity reduct. 

Moreover, in addition to the given granularity, the considered measure ρ also plays a crucial role in the construction of

constraint. It should be pointed out that different measures possess different properties, and they may lead to various forms

of ρG -constraint as shown in the following Example 2 . 

Example 2. 

• If the considered measure is positively correlated, that is, the measure-value is expected to be as high as possible, e.g.,

the measures of approximation quality [21] and classification accuracy, then the ρG -constraint is usually expressed as

“ρG (A ) ≥ ρG (AT ) ” where ρG (A ) is the measure-value derived by the conditional attribute subset A over the considered

granularity G . 
• If the considered measure is negatively correlated, that is, the measure-value is expected to be as low as possible, e.g.,

the measures of conditional entropy [45] and classification error rate, then the ρG -constraint is usually expressed as

“ρG (A ) ≤ ρG (AT ) ”. 

Following Example 2 , it is easy to know that one qualified reduct is actually required to preserve, increase or decrease

one considered measure-value. It further indicates that most of the attribute reductions are single granularity ones, be-

cause as a comparative index to check whether the reduct satisfies the intended constraint, the measure-value of the whole

attribute set such that ρG (AT ) is derived over one and only one granularity. 

2.3. Heuristic algorithm of single granularity attribute reduction 

Following Def. 1, to find the reduct, heuristic method is frequently employed due to its lower time consumption. Based

on the framework of heuristic algorithm, Yao et al. [43] presented three types of searching strategies, i.e., “addition strategy”,

“deletion strategy” and “addition-deletion strategy”. To simplify our discussions, only addition strategy is discussed in this

paper. Through applying such strategy to realize single granularity attribute reduction, the detailed heuristic algorithm can

be designed as shown in the following Algorithm 1 . 

Note that as one of the key steps in Algorithm 1 , the selection mechanism of candidate attributes (see Step 3. (2)) is

generally determined by the employed measure. For instance, if the employed measure is positively correlated, then the
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Algorithm 1 Computing single granularity reduct. 

Input: DS = < U, AT ∪ { d} > , a granularity G and ρG -constraint. 

Output: One single granularity reduct A . 

Step 1. Calculate the measure-value over the raw attribute set AT over the single granularity ρG (AT ) ; 

Step 2. Set A = ∅ ; 
Step 3. Do 

(1) Evaluate each candidate attribute a ∈ AT − A over G by calculating the corresponding measure-value 

ρG (A ∪ { a } ) ; 
(2) Select a qualified attribute b ∈ AT − A with the satisfactory evaluation; 

(3) Set A = A ∪ { b} ; 
(4) Calculate ρG (A ) ; 

Until ρG -constraint is satisfied; 

Step 4. Return A . 
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higher measure-value, the better evaluation, the selected attribute b with the satisfactory evaluation can be regarded as

the one which may increase the corresponding measure-value as much as possible such that ρG (A ∪ { b} ) = max { ρG (A ∪
{ a } ) : ∀ a ∈ AT − A } ; conversely, if the employed measure is negatively correlated, then the lower measure-value, the better

evaluation, the selected attribute b with the satisfactory evaluation can be regarded as the one which may decrease the

corresponding measure-value as much as possible such that ρG (A ∪ { b} ) = min { ρG (A ∪ { a } ) : ∀ a ∈ AT − A } . 
Moreover, the total time complexity of Algorithm 1 is O(| U| 2 × | AT | 2 ) where | U | and | AT | denote the numbers of samples

and conditional attributes, respectively. 

3. MGAR and MGAS 

3.1. MGAR: multi-granularity attribute reduction 

In retrospect, most of attribute reductions are single granularity based cases. However, as what has been pointed out

in Section 1 , single granularity attribute reduction may involve several inherent limitations: (1) it may result in the poor

adaptability of the generated reduct to the problem of granularity diversity; (2) it may increase the time consumption

if multiple different granularities are required. To solve these problems, Multi-Granularity Attribute Reduction (MGAR) is

proposed in the following. 

Definition 2. Given a decision system DS and a set of multiple different granularities such that MG = { G 1 , G 2 , . . . , G n } ,
assuming that ρMG -constraint is a multi-granularity constraint based on a considered measure ρ , then any attribute subset

in AT , A is referred to as a multi-granularity reduct if and only if 

1) A satisfies the ρMG -constraint; 

2) ∀ B ⊂ A , B does not satisfy the ρMG -constraint. 

Obviously, multi-granularity constraint designed in Definition 2 is the most representative portion for distinguishing be-

tween MGAR and single granularity attribute reduction defined in Definition 1 . Therefore, how to construct a suitable multi-

granularity constraint inevitably becomes an open problem in MGAR. In the following Example 3 , some typical forms of

multi-granularity constraint are given. 

Example 3. 

• Given a set of multiple different granularities MG , the constraint defined by measure ρ over one granularity G m 

∈ MG is

denoted by ρG m -constraint, then ρMG -constraint can be formed as a combination of all the constraints such that { ρG 1 -

constraint, ρG 2 -constraint, ..., ρG n -constraint}. For such case, the multi-granularity reduct becomes the minimal subset of

the conditional attributes which satisfies all of these constraints. 
• Given a set of multiple different granularities MG , through evaluating all of the granularities, the granularity with su-

perior performance can be found, which is referred to as the justifiable granularity [23,25] denoted by G just , then ρMG -

constraint can be formed as ρG just -constraint. For such case, the multi-granularity reduct becomes the minimal subset of

the conditional attributes which satisfies the justifiable granularity based constraint. 
• Given a set of multiple different granularities MG , with the considered measure ρ , the measure-value of A over one

granularity G m 

is denoted by ρG m (A ) , then multi-granularity measure-value over conditional attribute subset denoted

by ρMG (A ) can be considered as a fusion of measure-values in { ρG 1 (A ) , ρG 2 (A ) , ���, ρG n (A ) }. Correspondingly, ρMG -

constraint can be defined for preserving, increasing or decreasing such fused measure-value. For such case, the multi-

granularity reduct becomes the minimal subset of the conditional attributes which satisfies such fused measure-value
based constraint. 
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Fig. 2. The general mechanisms of single granularity attribute reduction and MGAR. 
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Through observing these different forms of multi-granularity constraint, it is easily known that MGAR is so different from

single granularity attribute reduction as presented in Definition 1 . To further analyze the difference, the general mechanism

of MGAR will be compared with that of single granularity attribute reduction as illustrated in the following Fig. 2 . 

Compared with the single granularity attribute reduction shown in Fig. 2 (a), MGAR shown in Fig. 2 (b) can be regarded

as a two dimensional structure with the consideration of multi-granularity, the X -axis indicates the candidate attributes

while the Y -axis denotes the multiple different granularities. Following Fig. 2 , it is not difficult to observe the following. 

1) In Fig. 2 (a), only one granularity G is considered and three attributes a 1 , a 3 , a 5 are selected, it follows that the generated

reduct is { a 1 , a 3 , a 5 }. Following Definition 1 , it is mainly because such single granularity reduct satisfies one intended

single granularity constraint over one and only one granularity G . 

2) In Fig. 2 (b), three different granularities G 1 , G 2 , G 3 are considered and four attributes a 1 , a 3 , a 4 , a 5 are selected, it follows

that the generated reduct is { a 1 , a 3 , a 4 , a 5 }. Following Def. 2, it is mainly because such multi-granularity reduct satis-

fies one intended multi-granularity constraint by considering three different granularities G 1 , G 2 , G 3 . For example, if the

multi-granularity constraint is the first case in Example 3 , then such reduct is required to satisfy all three constraints, i.e.,

G 1 based constraint, G 2 based constraint and G 3 based constraint. Obviously, compared with single granularity attribute

reduction, the immediate constraint is stricter. Consequently, to satisfy it, more attributes may be selected. 

From discussions above, MGAR delivers a novel way to explore the attribute reduction in the problem of multi-

granularity. This is mainly because the multi-granularity constraint for defining MGAR has been modified, it follows that

such constraint can adapt successfully to the structure of multiple different granularities. 

Note that if one and only one granularity is required, i.e., n = 1 in Definition 2 , then the multi-granularity constraint

becomes a single granularity one. 

3.2. MGAS: multi-granularity attribute selector 

Following the definition of MGAR, how to realize it becomes a challenging topic. For such purpose, two open problems

should be mainly addressed: (1) how to construct the multi-granularity constraint; (2) how to evaluate the candidate at-

tributes. However, to solve such two problems, it is trivial to observe that computational complexity may be increased due

to the requirement of multiple different granularities. Therefore, to realize MGAR in a more feasible way, a Multi-Granularity

Attribute Selector (MGAS) will be proposed in this section. 

Before we delve into the algorithm of MGAS, the construction of multi-granularity constraint and the evaluation of can-

didate attributes are re-considered as follows. 

3.2.1. The construction of multi-granularity constraint 

With a critical reviewing of the multi-granularity constraints discussed in Example 3 , some of them may involve various

limitations. We will elaborate them in the following. 

• For the first case in Example 3 , the multi-granularity constraint is a combination of all the single granularity constraints

in terms of multiple different granularities. It may be too strict and then it is highly possible that no attribute can

be deleted from the raw attribute set. In other words, the corresponding attribute reduction may be meaningless and

useless. 
• For the second case in Example 3 , the multi-granularity constraint is a constraint based on the justifiable granularity

among all the considered granularities. It actually involves the issue of granularity selection [46,47] , and there exist some

difficulties. For instance, as reported by Yao [42] , to measure the effectiveness of one considered granularity, attribute

reduction can be viewed as a desirable method. In other words, to search a justifiable granularity, it is required to

compute reducts over all the granularities in advance, such process may be repetitive and cost higher elapsed time
especially the number of considered granularities is great. 
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To avoid the problems in expressing the multi-granularity constraint, the third case in Example 3 (use the fused measure-

value to design multi-granularity constraint) is employed in our MGAS since it is superior to the other two cases: (1) com-

pared with the first case in Example 3 , such strategy avoids the undesired case discussed above, and reduces the number

of constraints in terms of multiple different granularities; (2) compared with the second case in Example 3 , such strategy

avoids the tedious work of estimating all the considered granularities. Therefore, by applying the fusion of measure-value

to the construction of multi-granularity constraint, it is expected to accelerate the searching process of a multi-granularity

reduct. 

3.2.2. The evaluation of candidate attributes 

Different from the one and only one evaluation presented in Algorithm 1 , more evaluations are required to select quali-

fied attribute since multiple different granularities have been taken into account. A natural way is to evaluate each candidate

attribute over all of the granularities. However, such strategy may result in several limitations as follows. 

• It may result in higher elapsed time. For instance, if the number of considered granularities is n , then each candidate

attribute will be evaluated by n times repeatedly. Obviously, such process is computationally expensive especially the

number of considered granularities is great. 
• It may result in redundant work. For instance, if there is no significant difference between two considered granular-

ities, then the evaluations based on such two granularities may be indistinguishable, it follows that one of such two

evaluations is unnecessary. Obviously, some of the evaluations are redundant to be pruned. 

To address the problems mentioned above, two granularities which may be entirely different are focused in MGAS, i.e.,

the finest and coarsest granularities. Correspondingly, candidate attributes will be evaluated over such two distinguishable

granularities. By substituting the combined evaluation over the finest and coarsest granularities for the evaluations over all

the granularities, it is expected that the reduct may adapt to multi-granularity structure as well as possible. Moreover, such

strategy may be effective in speeding up the searching process of a multi-granularity reduct. 

3.2.3. The heuristic algorithm of MGAS 

Through the usage of the re-designed multi-granularity constraint and combined evaluation, the framework of heuristic

algorithm is employed to realize MGAS. The detailed algorithm is designed in the following Algorithm 2 . 

Algorithm 2 Multi-Granularity Attribute Selector (MGAS). 

Input: DS = < U, AT ∪ { d} > , set of considered granularities MG = { G 1 , G 2 , . . . , G n } and ρMG -constraint. 

Output: One multi-granularity reduct A . 

Step 1. Calculate the measure-values of the raw attribute set AT over all the considered granularities ρG 1 (AT ) , 

ρG 2 (AT ) , · · · , ρG n (AT ) ; 

Step 2. Calculate the fused measure-value ρMG (AT ) based on the measure-values derived in Step 1; 

//Such fusion can be realized by using ‘‘arithmetic mean’’, ‘‘harmonic mean’’, etc. 
Step 3. Set A = ∅ ; 
Step 4. Do 

(1) Evaluate each candidate attribute a ∈ AT − A over the finest and coarsest granularities G f and G c 

by calculating the corresponding measure-value ρG f & c (A ∪ { a } ) = ρG f (A ∪ { a } ) + ρG c (A ∪ { a } ) ; 
(2) Select a qualified attribute b ∈ AT − A with the satisfactory evaluation; 

(3) Set A = A ∪ { b} ; 
(4) Calculate ρMG (A ) ; 

Until ρMG -constraint is satisfied; 

Step 5. Return A . 

Following Algorithm 2 , two key steps should be paid much attention as follows. 

• The first key step is the calculation of the fused measure-value (see Step 2). Such fusion can be realized by various oper-

ations. For example, if the arithmetic mean is employed, then the fusion is obtained by 1 
n �

n 
m =1 

ρG m (A ) ; if the harmonic

mean is employed, then the fusion is derived by 1 
n �

n 
m =1 

( 1 
ρG m (A ) 

) −1 . In summary, no matter which operation we adopt,

the major purpose of such step is to reduce the complexity of constructing the multi-granularity constraint. 
• The other key step is the organization of the selection mechanism (see Step 4). To evaluate candidate attributes and then

select a qualified one in each iteration, the finest and coarsest granularities are concerned instead of all the granularities.

Moreover, different from Algorithm 1 , the immediate selection mechanism of candidate attributes is realized by compar-

ing the sum of measure-values over such two granularities. Similarly, if the employed measure is positively correlated,

the maximal sum indicates the satisfactory evaluation, it follows that attribute which leads to such maximal value will

be selected; conversely, the minimum sum indicates the satisfactory evaluation, it follows that attribute which leads to

such minimum value will be selected. In summary, no matter which evaluation we adopt, the major purpose of such
step is to reduce the number of the evaluations of candidate attributes. 
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Table 1 

Characteristics of the experimental data sets. 

ID Data sets Samples Attributes Decision classes 

1 Breast tissue 106 10 6 

2 Cardiotocography 2126 23 10 

3 Congressional voting 435 16 2 

4 Crowdsourced mapping 10,845 28 6 

5 Dermatology 366 33 6 

6 Diabetic retinopathy debrecen 1151 20 2 

7 Fertility 100 10 2 

8 Gesture phase segmentation 9900 19 5 

9 Libras movement 360 91 15 

10 MAGIC gamma telescope 19,020 11 2 

11 Page blocks classification 5473 10 5 

12 Parkinson multiple sound recording 1040 26 2 

13 QSAR biodegradation 1055 41 2 

14 Statlog (Landsat Satellite) 6435 36 6 

15 Statlog (Image Segmentation) 2310 19 7 

16 Vertebral column 310 6 2 

17 Wall-Following robot vavigation 5456 24 2 

18 Waveform database generator 5000 20 3 

19 Wine quality 4898 12 7 

20 Wireless indoor localization 2000 7 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, for Steps 1 and 2 in Algorithm 2 , the time complexity is O(| U| 2 × | AT | × n ) because n different granularities

has been considered; for Step 4, the time complexity is O(| U| 2 × | AT | 2 ) . And then the total time complexity is O(| U| 2 ×
| AT | × n + | U| 2 × | AT | 2 ) . Note that if | AT | > n , then the time complexity of Algorithm 2 is O(| U| 2 × | AT | 2 ) . Immediately, the

time complexity of Algorithm 2 is the same to that of Algorithm 1 . Such result suggests that in view of time complexity,

although more different granularities have been taken into account, our proposed algorithm may not increase the elapsed

time of finding reduct. 

4. Experiments 

4.1. Data sets 

To demonstrate the effectiveness of the proposed MGAS ( Algorithm 2 ), 20 real-world data sets from UCI Machine Learn-

ing Repository have been employed in the context of this paper. Table 1 summarizes some detailed statistics of those data

sets used in our experiments. Note that all of the data sets are used for classification task with numerical attribute values,

and they have been normalized by column. 

4.2. Experimental setup and configuration 

All the experiments have been carried out on a personal computer with Windows 10, Intel Core 2 Duo T5800 CPU

(2.60 GHz) and 16.00 GB memory. The programming language is Matlab R2014a. 

In the following experiments, neighborhood rough set [6] is used to realize MGAS because neighborhood rough set can

naturally form a multi-granularity structure if multiple different radii are considered. Correspondingly, the set of considered

granularities MG in Algorithm 2 can be intuitively replaced by a set of radii R . Note that we appoint a set of ascending

ordered radii including 10 different radii such that R = { δ1 = 0 . 03 , δ2 = 0 . 06 , . . . , δ10 = 0 . 3 } . It should be noticed that: (1)

to obtain the fused measure-value, the harmonic mean is employed, because it is not only a simple and quick way to

realize the fusion, but also can mitigate the impact of greater measure-values and aggravate the impact of smaller ones;

(2) to evaluate the candidate attributes, considering that a greater radius derives a finer granularity while a smaller radius

derives a coarser granularity [47] , the smallest and greatest radii δ1 and δ10 are employed to reflect the finest and coarsest

granularities G f and G c as shown in Algorithm 2 . 

The 10-fold cross-validation is used in our experiments to test the performances of different reducts. In other words,

the set of raw data is randomly partitioned into 10 equal sized groups, the 9 groups compose the training samples for

computing reducts and the rest of the 1 group is regarded as the testing samples to test the classification performance

of the derived reduct. It should be noticed that with such 10 appointed radii, 10 different reducts will be obtained by

Algorithm 1 while only 1 reduct will be obtained by MGAS. Therefore, after 10-fold cross-validation, 100 reducts will be

derived by Algorithm 1 while 10 reducts will be obtained by MGAS. The averages of such two types of results are mainly

compared. 

Moreover, four widely used measures in neighborhood rough set are employed. The detailed formulas of these measures

are presented in the following. 
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• Neighborhood Decision Error Rate (NDER) [6] : evaluates the classification performance of conditional attribute subset

with respect to Neighborhood Classifier (NEC) [6] . Given a radius δm 

∈ R , the corresponding measure-value of NDER is:

NDER 

δm (A ) = 

|{ x ∈ U : Pre δm 

A 
(x ) � = d(x ) }| 

| U| , (1)

where Pre δm 
A 

(x ) denotes the predicted label of sample x related to A in terms of δm 

by NEC, and | · | is the cardinality of

a set. 

The lower the NDER 

δm (A ) , the better the performance of conditional attribute subset A . From this point of view, the

constraint is set to be “NDER 

δm (A ) ≤ NDER 

δm (AT ) ” in Algorithm 1 for deriving Neighborhood Decision Error Rate Reduct

(NDERR). 

Correspondingly, if the measure of NDER is introduced into Algorithm 2 , then the fused measure-value is: 

NDER 

R (A ) = 

1 

| R | 
( ∑ 

δm ∈ R 

1 

NDER 

δm (A ) 

)
−1 . (2)

Similarly, the constraint is set to be “NDER 

R (A ) ≤ NDER 

R (AT ) ” in Algorithm 2 for deriving Multi-Granularity Neighbor-

hood Decision Error Rate Reduct (MG-NDERR). 
• Conditional Discrimination Index (CDI) [29] : represents the ability of conditional attribute subset to distinguish samples

with different decision attribute values. Given a radius δm 

∈ R , the corresponding measure-value of CDI is: 

CDI δm (A ) = log 
| N 

δm 

A 
| 

| N 

δm 

A 
∩ IND { d} | 

, (3)

where IND { d} = { (x, y ) ∈ U 

2 : d(x ) = d(y ) } is an equivalence relation over d . 

The lower the CDI δm (A ) , the better the performance of conditional attribute subset A . From this point of view, the con-

straint is set to be “CDI δm (A ) ≤ CDI δm (AT ) ” in Algorithm 1 for deriving Conditional Discrimination Index Reduct (CDIR). 

Correspondingly, if the measure of CDI is introduced into Algorithm 2 , then the fused measure-value is: 

CDI R (A ) = 

1 

| R | 
( ∑ 

δm ∈ R 

1 

CDI δm (A ) 

)
−1 . (4)

Similarly, the constraint is set to be “CDI R (A ) ≤ CDI R (AT ) ” in Algorithm 2 for deriving Multi-Granularity Conditional

Discrimination Index Reduct (MG-CDIR). 
• Conditional Entropy (CE) [45] : measures the discriminating ability of conditional attribute subset for different decision

classes. Given a radius δm 

∈ R , the corresponding measure-value of CE is: 

CE 

δm (A ) = − 1 

| U| 
∑ 

x ∈ U 
| N 

δm 

A 
(x ) ∩ [ x ] d | log 

| N 

δm 

A 
(x ) ∩ [ x ] d | 

| N 

δm 

A 
(x ) | , (5)

where N 

δm 
A 

(x ) = { y ∈ U : � A (x, y ) ≤ δm 

} is the neighborhood of sample x related to A in terms of δm 

and [ x ] d = { y ∈ U :

d(y ) = d(x ) } denotes the decision class with the same label including x . 

The lower the CE δm (A ) , the better the performance of conditional attribute subset A . From this point of view, the con-

straint is set to be “CE δm (A ) ≤ CE δm (AT ) ” in Algorithm 1 for deriving Conditional Entropy Reduct (CER). 

Correspondingly, if the measure CE is introduced into Algorithm 2 , then the fused measure-value is: 

CE 

R (A ) = 

1 

| R | 
( ∑ 

δm ∈ R 

1 

CE 

δm (A ) 

)
−1 . (6)

Similarly, the constraint is set to be “CE R (A ) ≤ CE R (AT ) ” in Algorithm 2 for deriving Multi-Granularity Conditional En-

tropy Reduct (MG-CER). 
• Approximation Quality (AQ) [21] : reflects the approximation ability of granule space induced by conditional attribute

subset to characterize the decision attribute. Given a radius δm 

∈ R , the corresponding measure-value of AQ is: 

AQ 

δm (A ) = 

|{ x ∈ U : N 

δm 

A 
(x ) ⊆ [ x ] d }| 

| U| . (7)

The higher the AQ 

δm (A ) , the better the performance of conditional attribute subset A . From this point of view, the con-

straint is set to be “AQ 

δm (A ) ≥ AQ 

δm (AT ) ” in Algorithm 1 for deriving Approximation Quality Reduct (AQR). 

Correspondingly, if the measure of AQ is introduced into Algorithm 2 , then the fused measure-value is 

AQ 

R (A ) = 

1 

| R | 
( ∑ 

δm ∈ R 

1 

AQ 

δm (A ) 

)
−1 . (8)

Similarly, the constraint is set to be “AQ 

R (A ) ≥ AQ 

R (AT ) ” in Algorithm 2 for deriving Multi-Granularity Approximation
Quality Reduct (MG-AQR). 
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Table 2 

Comparisons among lengths of the derived reducts (greater values are in bold). 

ID MG-NDERR NDERR MG-CDIR CDIR MG-CER CER MG-AQR AQR 

1 2.0 1.7 2.0 1.9 2.2 2 2.6 2.6 

2 5.6 4.8 6.2 4.9 7.4 6.3 14.6 15.9 

3 1.0 1.0 1.0 1.0 2.0 1.7 4.6 5.2 

4 18.6 19.4 4.2 2.9 19.4 15.8 25.0 23.9 

5 10.8 8.4 6.6 6.2 7.2 6.9 16.8 13.7 

6 2.0 1.8 3.0 2.2 2.6 1.9 6.2 10.3 

7 1.0 1.0 6.6 5.8 7.0 6.9 7.0 6.4 

8 4.4 3.3 4.0 3.3 5.0 3.7 4.0 7.5 

9 10.6 7.3 9.2 7.9 10.2 8.3 79.6 80.3 

10 3.2 3.1 2.0 2.1 5.0 3.9 9.0 8.9 

11 2.0 2.5 3.2 2.23 4.0 3.0 6.0 6.6 

12 7.2 4.5 2.0 1.4 5.8 4.4 18.0 8.8 

13 7.0 4.8 2.2 1.7 6.4 4.7 31.2 19.8 

14 4.2 5.4 7.8 3.6 8.6 6.8 25.4 26.3 

15 4.8 4.6 4.0 3.1 5.4 4.6 18.0 10.4 

16 4.6 2.4 2.6 2.0 3.0 2.2 5.2 4.1 

17 23.6 16.4 23.8 12.8 24.0 21.2 19.5 19.7 

18 12.5 11.6 8.2 7.7 12.1 10.6 11.6 14.0 

19 1.0 1.0 3.4 2.2 6.0 4.3 10.0 9.7 

20 3.4 3.9 4.2 3.9 7.0 5.2 6.0 5.8 

Table 3 

Comparisons among elapsed time of obtaining the reducts (lower values are underlined). 

ID MG-NDERR NDERR MG-CDIR CDIR MG-CER CER MG-AQR AQR 

1 0.0437 0.1237 0.0360 0.1130 0.0834 0.2523 0.1017 0.3274 

2 203.7074 674.3429 226.6137 680.9788 262.5895 903.9458 481.4911 1846.2440 

3 0.3343 1.1238 0.3554 1.2504 0.7299 2.3158 1.6039 6.4719 

4 2401.4142 10028.5679 402.9895 1142.4111 1469.3281 5288.2749 3147.6339 12237.7919 

5 4.6687 17.6740 2.6125 11.6872 3.9290 17.3678 9.6175 36.2576 

6 9.1443 36.0467 16.8256 43.8223 14.3409 42.4605 39.3834 227.2622 

7 0.0200 0.0621 0.1073 0.2670 0.1399 0.4241 0.1262 0.4053 

8 388.6939 1140.6194 199.0829 633.0064 263.7292 782.8295 330.6200 1898.5733 

9 39.5482 132.6300 28.7590 119.1528 41.0761 160.3771 251.3016 1145.8268 

10 669.1836 2074.4523 330.4471 1133.0415 772.7762 2114.0008 1395.6269 4469.4901 

11 296.6381 1187.3030 508.0678 962.7241 636.3635 1386.3777 1019.4279 3475.1671 

12 40.5201 107.6017 13.3698 34.9316 32.0365 112.2134 75.9286 187.6932 

13 57.4567 210.4849 19.5454 66.8204 51.9015 187.5545 148.6019 527.4090 

14 291.9864 1525.1897 290.1098 612.0272 1200.879 339.5559 1392.4134 5693.7849 

15 204.3822 752.9989 165.3931 474.5692 225.8572 745.1726 606.2785 1445.5704 

16 0.3948 0.5980 0.2557 0.5209 0.3267 0.7043 0.4943 1.1146 

17 1829.8070 5608.2429 1843.2395 5198.7613 2790.7101 9992.1131 2440.9476 9582.7002 

18 926.4208 3444.7131 722.7882 2742.1751 1357.0116 4873.4644 1230.2517 5415.1827 

19 107.9122 238.8074 38.8363 86.5996 61.79256 155.1373 175.4844 580.4078 

20 45.7066 136.5912 51.4159 146.0533 64.1834 167.8975 65.3743 184.6895 

 

 

 

 

 

 

 

 

With these measures, 4 groups of multi-granularity reducts and single granularity reducts will be compared, i.e., MG-

NDERR vs. NDERR, MG-CDIR vs. CDIR, MG-CER vs. CER and MG-AQR vs. AQR. Moreover, 3 types of comparisons will be

made, mainly including: (1) the lengths of the reducts; (2) the elapsed time of obtaining the reducts; (3) the classification

accuracies derived by reducts over the testing samples. 

4.3. Comparisons among lengths of the derived reducts 

In this section, the lengths of the derived reducts will be compared. The following Table 2 shows us the corresponding

result. 

Following Table 2 , it is not difficult to observe that in most cases, the lengths of multi-granularity reducts derived from

MGAS are greater than single granularity reducts derived from Algorithm 1 . From this point of view, it may be concluded

that to satisfy the multi-granularity constraint, MGAS intends to select more attributes. It is mainly because the multi-

granularity constraint constructed in MGAS may be stricter so that more attributes are required to satisfy it. 

4.4. Comparisons among elapsed time of obtaining the reducts 

In this section, the elapsed time of obtaining reducts will be compared. The following Table 3 shows us the corresponding

result. 
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Table 4 

Comparison among SVM classification accuracies (greater values are in bold). 

ID MG-NDERR NDERR MG-CDIR CDIR MG-CER CER MG-AQR AQR 

1 0.5563 0.5033 0.5481 0.5560 0.5576 0.5475 0.4896 0.5063 

2 0.7441 0.7255 0.7606 0.7226 0.7545 0.7563 0.7474 0.7549 

3 0.9425 0.9425 0.9425 0.9425 0.9448 0.9430 0.9425 0.9395 

4 0.8883 0.8877 0.8256 0.8128 0.8867 0.8787 0.8957 0.8928 

5 0.9645 0.9473 0.9509 0.8515 0.9563 0.9443 0.9371 0.9387 

6 0.6073 0.6073 0.6160 0.6127 0.6151 0.6082 0.6168 0.6073 

7 0.8800 0.8800 0.8800 0.8800 0.8800 0.8690 0.8800 0.8800 

8 0.4932 0.4915 0.5044 0.5019 0.5001 0.4982 0.4938 0.5089 

9 0.4694 0.4333 0.4611 0.4525 0.4528 0.4639 0.4556 0.4650 

10 0.8134 0.8125 0.7603 0.7617 0.8338 0.8190 0.8187 0.8247 

11 0.9361 0.9267 0.9351 0.9206 0.9331 0.9222 0.9377 0.9376 

12 0.6449 0.6344 0.6167 0.6076 0.6531 0.6439 0.6258 0.6194 

13 0.7744 0.7734 0.7659 0.7291 0.7972 0.7938 0.8038 0.7963 

14 0.8395 0.8281 0.8347 0.818 0.8476 0.8436 0.8488 0.8477 

15 0.9039 0.8986 0.8792 0.8394 0.8797 0.8905 0.8827 0.8787 

16 0.7581 0.7271 0.7419 0.7213 0.7355 0.7361 0.7226 0.7094 

17 0.7693 0.7700 0.7647 0.7503 0.7647 0.7629 0.7614 0.7576 

18 0.8560 0.8464 0.8112 0.8138 0.8500 0.8397 0.8336 0.8528 

19 0.4488 0.4486 0.5020 0.5053 0.5206 0.5174 0.5188 0.5285 

20 0.9795 0.9792 0.9795 0.9732 0.9780 0.9735 0.9765 0.9748 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With 10 appointed radii, Algorithm 1 is repeated 10 times to obtain 10 single granularity reducts. However, MGAS is

performed only 1 time for deriving 1 multi-granularity reduct. Consequently, as illustrated in Table 3 , the elapsed time of

deriving reducts by MGAS are significantly lower than that by Algorithm 1 . 

It should be noticed that although the number of using MGAS is only 10% of that of using Algorithm 1 , the elapsed

time of deriving multi-granularity reducts are still higher than 10% of that of deriving single granularity reducts. Take the

result on data set “Breast Tissue (ID: 1)” as an example, deriving one MG-NDERR costs 0.0437 s while deriving ten NDERRs

costs 0.1237 s, and 0.0437 is significantly greater than 0.01237 (0.1237 × 10%). The reason for such result may be attributed

to two aspects: (1) as we can observe in Table 2 , more attributes are selected by MGAS, it follows that the elapsed time

of searching process is increased; (2) as shown in MGAS, each candidate attribute is evaluated over two granularities (the

finest and coarsest granularities) instead of one and only one granularity in Algorithm 1 , such process also costs more time

consumption. 

4.5. Comparisons among classification accuracies of the derived reducts 

In this section, the classification performances of reducts will be compared. Note that SVM (LIBSVM [1] ), CART and

NEC [6] are employed to evaluate such performances. 

4.5.1. Classification accuracies based on SVM 

The comparisons among classification accuracies based on SVM and corresponding analysis will be presented. Table 4

shows the detailed result of SVM classification accuracies. 

By Table 4 , it is easily observed that in most cases, the SVM classification accuracies over testing data derived by multi-

granularity reducts are higher. 

Moreover, to further analyze the results of classification accuracies from the viewpoint of statistics, One-way Analysis

of Variance [5] is used to test whether the average classification accuracies are all the same. If the average classification

accuracies are similar, then the returned p -value is higher than or equal to the 5% significance level (0.05); conversely, the

returned p -value is lower than 0.05. The statistical comparisons are shown in Table 5 . 

Following Table 5 , we can observe two main cases: (1) for p -values ≥ 0.05, the SVM classification accuracies derived by

multi-granularity reducts from MGAS are similar to those from Algorithm 1 ; (2) for p -values ≤ 0.05, the SVM classification

accuracies derived by multi-granularity reducts from MGAS are significantly different from those from Algorithm 1 , and in

most cases, the SVM classification accuracies derived by multi-granularity reducts are significantly higher. 

In view of such observation, it is easily concluded that the multi-granularity reducts generated by MGAS may offer the

similar or even better SVM based classification performances. 

4.5.2. Classification accuracies based on CART 

In the following, the results of average classification accuracies based on CART are shown in Table 6 . 

By Table 6 , it is easily observed that in most cases, the classification accuracies derived by multi-granularity reducts are

higher. 

Similarly, One-way Analysis of Variance [5] is used to analyze the results of such classification accuracies from the view-

point of statistics. The detailed statistical analysis is shown in the following Table 7 . 
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Table 5 

Statistical analysis among SVM classification accuracies. In 

addition, •/ ◦ indicates whether the results by MGAS is sig- 

nificantly superior/inferior to those by compared methods 

(the significance level is 0.05). 

ID 

MG-NDERR MG-CDIR MG-CER MG-AQR 

&NDERR &CDIR &CER &AQR 

1 0.0090 • 0.2723 0.2359 0.0274 

2 0.0004 • 0.0001 • 0.4674 0.0136 •
3 1.0000 1.0000 0.0008 • 0.2244 

4 0.6357 0.0695 0.0223 • 0.0190 •
5 0.0000 • 0.0001 • 0.1131 0.6697 

6 0.9948 0.2537 0.0054 • 0.0043 •
7 1.0000 1.0000 0.0510 1.0000 

8 0.8322 0.4405 0.6627 0.2010 

9 0.0002 • 0.1051 0.1141 0.0025 ◦
10 0.7506 0.6142 0.0006 • 0.0000 ◦
11 0.0647 0.0025 • 0.0053 • 0.8276 

12 0.0396 • 0.0379 • 0.0141 • 0.2501 

13 0.9083 0.0003 • 0.4323 0.0704 

14 0.1159 0.0063 • 0.2193 0.5547 

15 0.0617 0.0001 • 0.0067 ◦ 0.0558 

16 0.0105 • 0.1261 0.9428 0.0111 •
17 0.2131 0.0115 • 0.0361 • 0.1052 

18 0.0235 • 0.5499 0.0181 • 0.0001 •
19 0.0372 • 0.1413 0.2175 0.0078 

20 0.6680 0.0579 0.0758 0.0672 

Table 6 

Comparisons among CART classification accuracies (greater values are in bold). 

ID MG-NDERR NDERR MG-CDIR CDIR MG-CER CER MG-AQR AQR 

1 0.5948 0.5619 0.6043 0.5894 0.6043 0.5892 0.5567 0.5473 

2 0.7756 0.7465 0.7747 0.7210 0.7916 0.7773 0.7926 0.7992 

3 0.9563 0.9563 0.9563 0.9561 0.9563 0.9533 0.9540 0.9522 

4 0.8762 0.8781 0.7997 0.7696 0.8843 0.8777 0.8769 0.8772 

5 0.9426 0.9358 0.9398 0.8687 0.9509 0.9421 0.9208 0.9273 

6 0.6012 0.6137 0.5769 0.6001 0.6464 0.6167 0.6724 0.6177 

7 0.8800 0.8800 0.7800 0.8150 0.7900 0.7940 0.8000 0.8090 

8 0.8464 0.8020 0.7823 0.8129 0.7945 0.8130 0.7795 0.8061 

9 0.5639 0.5411 0.5528 0.5649 0.5778 0.5636 0.5694 0.5558 

10 0.7759 0.7752 0.6965 0.7066 0.8101 0.7856 0.8195 0.8187 

11 0.9463 0.9388 0.9596 0.9302 0.9594 0.9341 0.9657 0.9643 

12 0.6325 0.6262 0.5753 0.5748 0.6341 0.6210 0.6374 0.6249 

13 0.8019 0.7651 0.7536 0.7244 0.8095 0.7955 0.8000 0.8023 

14 0.8457 0.8289 0.8466 0.8091 0.8511 0.8459 0.8527 0.8513 

15 0.9390 0.9465 0.9506 0.8965 0.9654 0.9506 0.9584 0.9573 

16 0.8065 0.7332 0.7677 0.6968 0.7839 0.7335 0.7774 0.7490 

17 0.9923 0.9812 0.9923 0.9629 0.9923 0.9892 0.9846 0.9834 

18 0.7568 0.7504 0.7468 0.7376 0.7588 0.7506 0.7384 0.7447 

19 0.4439 0.4467 0.5331 0.5077 0.5490 0.5389 0.5666 0.5697 

20 0.9735 0.9723 0.9735 0.9645 0.9700 0.9650 0.9710 0.9682 

 

 

 

 

 

 

 

 

 

Following Table 7 , it is not difficult to observe that in most cases, MGAS offers us the reducts with the similar or even

higher classification accuracies based on CART. 

4.5.3. Classification accuracies based on NEC 

Different from the results of classification accuracies based on SVM and CART, with 10 appointed radii, 10 classification

accuracies based on NEC can be derived by 1 reduct. From this point of view, to compared the results of NEC based classifi-

cation accuracies clearly, Box Plot [19] , a statistical chart illustrating dispersion of data sets, is employed. The corresponding

results based on the Box Plots are shown in the following Fig. 3 . 

With a thorough investigation of Fig. 3 , it is not difficult to observe that compared with single granularity reducts, the

derived classification accuracies by multi-granularity reducts may not be lower. Take the result of data set “Breast Tissue

(ID: 1)” as an example, the median values of derived classification accuracies by multi-granularity reducts (the central mark

highlighted by red line in each Box Plot) are similar or even higher than those by single granularity reducts. 

Moreover, to compare such results from a statistical point of view, Wilcoxon Rank Sum Test [30] is employed to test

whether the distributions of the classification accuracies are consistent. With respect to Wilcoxon Rank Sum Test, the re-
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Fig. 3. Comparisons among NEC classification accuracies. 
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Table 7 

Statistical analysis among CART classification accuracies. In 

addition, •/ ◦ indicates whether the results by MGAS is sig- 

nificantly superior/inferior to those by compared methods 

(the significance level is 0.05). 

ID 

MG-NDERR MG-CDIR MG-CER MG-AQR 

&NDERR &CDIR &CER &AQR 

1 0.1208 0.1916 0.0453 • 0.5199 

2 0.0047 • 0.0006 • 0.0003 • 0.0430 ◦
3 1.0000 0.3306 0.1636 0.3539 

4 0.0644 0.0078 • 0.0120 • 0.5860 

5 0.1063 0.0001 • 0.2341 0.0494 ◦
6 0.0541 0.0000 ◦ 0.0000 • 0.0000 •
7 1.0000 0.0000 ◦ 0.3611 0.1539 

8 0.0346 • 0.0554 0.1622 0.0623 

9 0.0079 • 0.0500 ◦ 0.1306 0.0372 •
10 0.8962 0.0681 0.0006 • 0.7232 

11 0.3375 0.0022 • 0.0024 • 0.0357 •
12 0.5562 0.9151 0.0669 0.0228 

13 0.0219 • 0.0030 • 0.1023 0.3915 

14 0.0300 • 0.0002 • 0.2373 0.4908 

15 0.1155 0.0000 • 0.0087 • 0.4071 

16 0.0000 • 0.0047 • 0.0003 • 0.0739 

17 0.0112 • 0.0000 • 0.0330 • 0.7079 

18 0.0014 • 0.0005 • 0.0003 • 0.0113 ◦
19 0.0832 0.0014 • 0.1732 0.2826 

20 0.0015 • 0.0499 • 0.1507 0.0343 •

Table 8 

Statistical analysis among NEC classification accuracies. In 

addition, •/ ◦ indicates whether the results by MGAS is sig- 

nificantly superior/inferior to those by compared methods 

(the significance level is 0.05). 

ID 

MG-NDERR MG-CDIR MG-CER MG-AQR 

&NDERR &CDIR &CER &AQR 

1 0.3254 0.8495 0.5449 0.2894 

2 0.6776 0.2413 0.9698 0.7913 

3 1.0000 0.3681 0.0364 0.0095 •
4 0.9698 0.7054 0.9698 1.0000 

5 0.0022 • 0.1618 0.7334 0.0539 

6 0.5708 0.4494 0.4274 0.6232 

7 1.0000 0.7595 0.6438 0.2627 

8 0.8501 0.5966 0.9097 0.7912 

9 0.5708 0.6776 0.5966 0.8501 

10 0.8044 0.2281 0.7570 0.7738 

11 0.5966 0.4961 0.6500 0.8501 

12 0.6776 0.0452 • 0.3447 0.7913 

13 0.6776 0.2121 0.7619 0.5205 

14 0.9698 0.8501 0.9698 0.9097 

15 0.9698 0.8501 0.6232 0.7501 

16 0.5450 0.9698 0.8204 0.2712 

17 0.4727 0.2730 0.9698 0.8501 

18 0.6228 0.1508 0.4495 0.3847 

19 0.2146 0.9539 0.7762 0.4928 

20 0.7911 0.5705 0.7333 0.4725 

 

 

 

 

 

 

 

 

turned p -value which is smaller than the default 5% significance level (0.05) indicates the rejection of the null hypothesis,

i.e., the distributions of the classification accuracies are significantly different; conversely, the p -value higher than 0.05 indi-

cates that there is not enough evidence to reject the null hypothesis and then we can conclude that the distributions of the

classification accuracies are similar. The detailed statistical results are presented in the following Table 8 . 

Following Table 8 , it is not difficult to observe that in most cases, the returned p -values are higher than 0.05, it may

imply that NEC based classification accuracies derived by multi-granularity reducts are similar to those by single granularity

reducts. Such observation is also consistent with the representation of Fig. 3 . Take the result of the data set “Libras Move-

ment (ID: 9)” as an example, in Fig. 3 , the Box Plots formed by NEC classification accuracies related to multi-granularity

reducts are similar to those derived from single granularity reducts, and the corresponding p -values shown in Table 8 are

0.5708, 0.6776, 0.5966 and 0.8501 all of which are higher than 0.05. 
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To sum up, following all of the experimental results, it is not difficult to conclude that if the problem of multi-granularity

is explored in attribute reduction, MGAS can not only generate reducts which may not contribute to a poorer classification

performance, but also significantly reduce the elapsed time of computing reducts. 

5. Conclusions and future perspectives 

Different from previous researches, attribute reduction is explored with the consideration of multi-granularity in this

paper. In view of such novel thinking, Multi-Granularity Attribute Reduction (MGAR) is defined, and then to realize MGAR

feasibly, an efficient selector referred to as Multi-Granularity Attribute Selector (MGAS) is designed. Based on the neigh-

borhood rough set which can naturally form multi-granularity structure by different radii, the experimental results over 20

UCI data sets demonstrate that our MGAS can offer the reducts which may not lead to poor classification performances and

reduce the elapsed time of searching reducts simultaneously. The following topics deserve our further investigations. 

(1) We have only employed neighborhood rough set to realize our MGAS, some other rough set models such as fuzzy

rough set will be further applied to our framework. 

(2) Since the harmonic mean is one of the expressions of average index to derive the fused measure in MGAS, some other

operations will be further explored to realize the fusion. 

(3) Incremental calculation will be applied to our MGAS to further accelerate the searching process of multi-granularity

reduct. 
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