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In sound information retrieval (SIR) area, environmental sound classification (ESC) emerges as a new
issue, which aims at classifying environments by analysing the complex features extracted from the var-
ious sound data. As one of the most efficient feature extraction methods, convolution neural networks
(CNN) has made its success in speech and music signal processing, and in particular, CNN with pooling
has worked effectively in classifying environmental and urban sound sources. However, pooling causes
information loss. In this paper, dilated CNN, being introduced to ESC problem, achieves better results than
that of CNN with max-pooling and other state-of-the-art approaches. At the same time, we explore the
effect of different dilation rate and the number of layers of dilated convolution to the experimental
results, and find that expanding the number of covered frames or enlarging the dilation rate will make
the accuracy reduce. That may be the sound signal has short-term stability, the size of the overlay frame
seriously affects the feature extraction of the sound signal, and there is an inherent ‘‘gridding” in the dila-
tion model conjunction defect.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Sound signal retrieval (SIR) as a hot issue has been widely dis-
cussed that people in many application areas. For example, in the
classification of marine mammalian sounds, a marine mammal
classification calculation model was proposed [1] to extract and
classify the data out of the online marine animal sound database
such that scientists are able to more accurately detect, identify
and locate different endangered species and high-intensity anthro-
pogenic sources that may cause damage to marine ecosystems; for
identifying the aircrafts, researchers analyze the noises of their
take-off [2]. The interested reader is referred to [3–5]. In the city,
various noise sources such as vehicle, swarms of people, blend in
the urban soundscape, the structure of which is a complex. Separa-
tion or classification of these sources [6] are crucial to the under-
standing of urban sound and the controlling on urban noises.
Based on MBLMS and BSS, an environmental acoustic analysis on
recorded audio mixture was proposed for the separation [7]; and
Predominant classification technique successfully identifies main
noise sources [8].
Environmental sound classification (ESC) refers to the task of
associating a semantic label to an audio stream that identifies
the environment in which it has been produced, with classical clas-
sifiers such as Gaussian mixture models [9], support vector machi-
nes, hidden Markov models for manually extracting features like
melfrequency cepstral coefficients [10]. In the past two years, deep
networks have been introduced to this research area. Surveys on
this subject [6] detailed the most frequently-used methods which
however restricts to the analysis of highly preconditioned acoustic
features [11–14].

Being one of the most renown, CNN emerged in 1980s [15],
developed in 90s [16] and served various object classification or
pattern recognition tasks [17–19] for almost three decades. CNN
has made its way to speech processing [20–22] and music analy-
sis [23,24] which highlighted data locality in sonic problem
solving.

In 2015, Karol J. Piczak and etc. evaluated the potential of CNN
classifying short environmental audio clips [25]. On a par with
other feature learning methods, CNN model have been shown
functional in ESC even with limited data sets. However the accu-
racy was confined by information loss in max-pooling operations
which sacrifice the sample size for the increase of receptive field.
We here use dilated convolution for feature extraction in audio
clips to improves ESC accuracy. Compared to the original convolu-
tions, dilated convolutions do not use max-pooling layers and
achieve the state of art in ESC.
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Fig. 1. Convolution calculation process.

Fig. 2. The Rectified Linear Unit.
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2. Related methods

2.1. Convolutional neural networks

CNN, specializes in processing data of grid structure. For exam-
ple, the time series data (one-dimensional grid with regular sam-
pling on the time axis) and image data (a two-dimensional pixel
grid). Convolution is a class of linear operation. The convolutional
networks are neural networks that use convolutional operations
instead of matrix multiplication operation. For example, it is
defined as:

sði; jÞ ¼ ðX �WÞði; jÞ þ b ¼
Xnin

k¼1

ðXk �WkÞði; jÞ þ b ð1Þ

where nin is the number of input matrices or the dimension of the
last dimension of the tensor. Xk represents the kth input matrix.
Wk represents the kth sub-convolution kernel matrix of the convo-
lution kernel. sði; jÞ is the value of the corresponding position ele-
ment of the output matrix corresponding to the convolution
kernel W. For example, input a two-dimensional matrix of 4 � 4,
and the convolution kernel is a 2 � 2 matrix, the stride size is set
to (1,1), the calculation is presented in Fig. 1.

For the output after convolution, the ReLU The Rectified Linear
Unit activation function is generally used to change the element
value corresponding to the position less than 0 in the output tensor
to 0. The Relu activation function expression is:

f ðxÞ ¼ maxð0; xÞ ð2Þ
The function image is represented as Fig. 2.

Generally CNN is component layers stacking in a deep architec-
ture: an input layer, a set of convolutional layers that can be com-
bined in various ways, a limited number of fully connected hidden
layers, and an output layer. A typical convolution layer has three
stages: first computes multiple convolutions in parallel to produce
a set of linear activation responses; second, each linear activation
response will pass through a nonlinear activation function, for
example, a rectification linear activation function. it’s called detec-
tor stage; lastly, pooling function adjusts the output of this layer.
(depicted in Fig. 3).

A convolutional kernel (filter) in the convolution layer captures
the local structure (mainly, but not limited to images) that pre-
sents in the two-dimensional input data. Each convolution kernel,
instead of connects to all inputs from the previous layer, restricts
to a small region of the entire input space (for example, a small
3 � 3 pixel block) called receptive field. The weighted convolution
kernel is applied (tiled over) to the entire input space, and gener-
ates a feature map. In this way, a set of weights can be reused
throughout the whole input space, under the assumption that
locally useful features are also useful elsewhere in the input space.
This assumption engenders both reduction in the number of
parameters and robustness of data transformation. A typical con-
volutional layer will consist of many filters (feature maps).

Further dimensionality reduction can be done by merging adja-
cent cells of a feature map through pooling layers. The pooling
function replaces the output of the network in this location by
using the overall statistical features of adjacent outputs at a certain
location. For example, the max pooling function (Zhou and Chel-
lappa, 1988) [26] gives the maximum value in adjacent rectangular
regions. Other commonly used pooling functions include average
value in the adjacent rectangular regions, L2 norm, and weighted
average function based on the center pixel distance. No matter
what kind of pooling function it takes, the pooling can help the
input approximation invariant when the input makes a small shift.
The invariance of this translation is that when we make a small
amount of shift on the input, most of the output after the pooling
function does not change. Pooling can be seen as adding an infi-
nitely strong priori: the function that is learned in this layer must
be invariant to a small amount of translation. When this assump-
tion is established, pooling can greatly increase the statistical effi-
ciency of the network and reduce the storage requirements for
parameters.

2.2. Dilated convolution

As an important means to extract features and reduce the
amount of calculations, pooling plays essential role in CNN. For
example, when FCN receives images [27] for a segmentation task,
it runs the convolution and then pooling reduce the pixel size
hence lower the resolution. However, since pooling the pixels is
to simply truncate pixels and output pixel-wisely and the size of
the pixel block is usually much smaller than the size of the entire
image, pixel block size limits the size of the receptive field and thus
only few local features can be detected,which hinder the network’s
performance. That is why pixel-wise networks (such as SegNet
[28]) upsample the smaller image size after pooling to the original
image size for prediction by deconvolution to relearn the missing
pixels. Therefore, there are two key points in the image segmenta-
tion FCN, convolution-pooling to reduce the image size to dig
abstract features, upsampling to expand the image size.

Although this downsampling is very successful in categorizing
digits or iconic views of objects, information loss during the pro-
cess has negtive effact on classification results, and heavily weak-
ens the transferability of details in data. What’s worse, if the
object’s signal is lost due to downsampling, there is little hope to
reconstruct it during training. On the contrary, if high spatial



Fig. 3. Convolutional neural network.
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resolution are preserved throughout the model and output signals
densely cover the input space, back propagation can learn to nail
down important information about smaller or less salient objects.
So people question if there is an operation other than pooling that
induces larger receptive fields to detect more information.

One answer is the dilated convolution [29]. It increases the
receptive field of the higher layers, compensating for the reduction
of the receptive field caused by the removal of sub-sampling. It is a
rectangular prism of convolutional layers with no pool or subsam-
pling. This module is based on dilated convolutions that supports
exponential expansion of receptive fields without loss of resolution
or coverage. The units in the dilated layers have the same receptive
field as the corresponding units in original model. It also reduces
the number of weights, thereby saves the computational cost.

Dilated Convolution(or Atrous convolution) was originally
developed in algorithme �a trous for wavelet decomposition [29].
It inserts a 0 in the convolution kernel to maintain the resolution
of the network or to obtain a larger receptive field than the tradi-
tional convolution, thus avoid a downsampling (via the pooling or
strided convolution) operation of deep CNNs. Dilated convolution
has a hyper-parameter called dilation rate, which refers to the
number of kernel intervals (eg, dilatation rate of normal convolu-
tion is 1).

Let F: Z 2 ? R be a discrete function. Let Xr = [�r, r]2
T

Z 2 and
let k: Xr ? R be a discrete filter of size (2r + 1)2. The discrete con-
volution operator � can be defined as

ðF � kÞðpÞ ¼
X

sþt¼p

FðsÞkðtÞ ð3Þ

We now generalize this operator. Let l be a dilation factor and let �l
be defined as

ðF �l kÞðpÞ ¼
X

sþlt¼p

FðsÞkðtÞ ð4Þ

We will refer to �l as a dilated convolution with dilation rate l,
or an l-dilated convolution. The familiar discrete convolution � is
simply the l-dilated convolution.

The dilated convolution operator can apply the same filter to
different ranges using different dilation factors, allowing us to skip
the input value of a certain step in the calculation and apply the fil-
ter over an area larger than its length. This is equivalent to con-
volving with a larger filter obtained by dilating it with zeros
from the original filter, but with significantly higher efficiency. A
simple example is depicted in Fig. 4.

The number of parameters associated with each layer is the
same. The number of parameters increases regularly with the
growth of the receptive field. The system dilation supports expan-
sion of the receptive fields without loss of resolution or coverage.

Dilation enlarges the receptive field or at any rate insures recep-
tive field as in deep network like FCN, without loss of information
in pooling or striding, such that the feature map includes adequate
information since the size of each convolution output will guaran-
tee to be no smaller than average convolutional structure. Dilated
convolution, such as signal processing [29], object detection [30],
audio generation WaveNet [31] and machine translation ByteNet
[32], can be friendly applied to images that need global informa-
tion or speech texts that require a long sequence information
dependency.

2.3. Softmax distributions

Softmax Regression model is used in multiple classification
tasks. It has the advantage of modelling conditional distributions,
even when the data is implicitly continuous (such as the case for
image pixel intensities or audio sample values) for a categorical
distribution is flexible to simulate arbitrary distributions so that
no assumptions about distributions are necessary. Literally, the
output of multiple neurons is mapped to the (0,1) interval by the
Softmax function. The sum of these output values is 1. The output
node with the highest probability (that is, the value corresponding
to the maximum) is picked as our prediction target in final selec-
tion. Suppose we have an array, Vi represents the i-th element in
V, then the element of the Softmax value is

Si ¼ eVi

P
je

Vj
ð5Þ

That is the ratio of the index to the sum of all the elements.
In order to train the model, we employ cross-entropy as the loss

function when solving multi-classification problems. Defined as

Li ¼ �log
ef yiP

je j
ð6Þ

the value in the log is the Softmax value of the correct classification
of this set of data. The larger the proportion, the smaller the Loss of
this sample. This definition meets our requirements.
3. Model design for audio scene classification

In this subsection, we design a novel network architecture. The
main idea is to replace the combination of pooling operation and
traditional convolution with dilated convolution. As we all know,



Fig. 4. Dilated convolution. (a): This is a regular 3 � 3 convolution. 1-dilated convolution yields F1 (the dilation rate is one). The receptive field for each position of F1 is 3 � 3.
(b): Based on F1, perform a 2-dilated convolution (the dilation rate is 2), pay attention to its point-multiply position, not adjacent 3 � 3, get F2. The receptive field for each
position of F2 is 7 � 7. (c): Based on F2, perform a 3-dilated convolution and get F3 (the dilation rate is three). The receptive field for each position of F3 is 11 � 11.
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CNN causes to lost information due to pooling operation. Dilated
convolution with dilation rate 2 can achieve the similar function
to pooling with stride 2. Compared to pooling operation, after pro-
cessed using dilated convolution, the data have the same size of
feature map as before but the range of receptive fields increases.
The detailed introduction is shown in the Fig. 5 and Fig. 6. Assume
that the initial 5 feature size is 10 � 10. After pooling, the resulting
feature map is greatly reduced to 5 � 5. And then during a convo-
lution operation with a stride size of 1 and padding is same,
although the obtained feature map remains unchanged (5 � 5),
the size of the receptive field becomes 6 � 6. Therefore, through
this traditional operation, the entire initial feature is reduced seri-
ously, the receptive field is not big, and the information loss is seri-
ous. However, as shown in Fig. 4, if the original feature map
directly passes through a dilated convolution with an dilation rate
is 2, the receptive field will be 7 � 7 and the resulting feature map
Fig. 5. Model architecture with pool
will be 10 � 10. That is, the size of the original features will not be
reduced and the receptive fields will not be reduced. Therefore,
after the dilated convolution is added to the multi-layer convolu-
tional network, the number of parameters of the model does not
change, the information will not have too much loss, and the
receptive field will also become larger with the different dilation
rate. So the dilated convolution can cover a wider range of
information.
4. Experiment and analysis

Dilated convolution effectively allows the network to operate at
a coarser scale than normal convolutions. This is similar to pooling
and strided convolution, but here the output has the same size as
the input.
ing and convolution operations.



Fig. 6. Model architecture with dilated convolution.
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4.1. Datasets

In order to examine our conclusion, we used the UrbanSound8K
data set. It is widely used to verify the quality of the solution to the
problem of environmental sound classification [33–36]. The data
set is comprised of 8732 short (less than 4 s) excerpts of various
Fig. 7. Waveplot and Log-scaled Mel-sp
urban sound sources extracted from field recording crawled from
the Free-sound online archive. Based on data provided by the City
of New York City’s 311 service (more than 37,000 complaints from
2010 to date), these sources were selected from the Urban Sound
Taxonomy [37], based on the high frequency with which they
appear in noise complaints. Since these are real field-recordings,
ectrogram of each audio segment.



Fig. 8. The sound is divided by using a window function and log-scaled ratio of the
mel-spectrograms being extracted.

Table 1
Different convolution network structure comparison.

Model structure

Group1 Test1 Cov1 + Cov2 + Cov3 + DilaCov1
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it is possible (and generally) that there are other sources in the
slice besides the labeled source.

All slices have been manually annotated with the source ID, and
subjectively judged whether the source is in the foreground or
background [38]. Each slice prearranged into one of 10 possible
sound folds: air conditioner, car horn, children playing, dog bark,
drilling, engine idling, gun shot, jackhammer, siren, street music.
By looking at the plots shown in Fig. 7, we can see apparent differ-
ence between sound clips of different classes.
Test2 Cov1 + Cov2 + Cov3 + Max-pooling + Cov4

Group2 Test3 Cov1 + Cov2 + DilaCov1 + DilaCov2
Test4 Cov1 + Cov2 + Max-pooling + Cov3 + Cov4

Group3 Test5 Cov1 + DilaCov1 + DilaCov2 + DilaCov3
Test6 Cov1 + Max-pooling + Cov2 + Cov3 + Cov4
4.2. Experiment set up

We calculate the log-scaled mel-spectrograms and its corre-
sponding deltas from the sound clip. First, all the urban sound
Fig. 9. The overall model structure of th
are divided into frames, and the different length of the sound is
divided into audio clips of the same size by using a window func-
tion (the default sampling rate is 22,050 Hz and normalized), with
a log-scaled ratio of the mel-spectrograms being extracted. This
process can be described in Fig. 8.

In this experiment we have chosen a window size of 1024, hop
length of 512 and 64 n-mels, using the librosa implementation.
Since the learning on whole clips was limited by the number of
examples available for training, the spectrograms were split into
50% overlapping segments of 41 frames. So for fixed-size input,
we split each sound clip into segments of 64 � 41 (64 rows and
41 columns). Also the labels (10 folds) were convert into one hot
vector using one-hot-encode method. We use a method to extract
the features and labels and save them in corresponding variables.
The segments were provided together with their deltas (computed
with default librosa settings) as a two-channel and will be input to
different models. In all model designs, we use ReLUs activation
function. Next, the output is flattened out for the Global Average
Pooling layer input. Lastly, the Softmax layer is defined to output
probabilities of the class labels. Because this experiment only com-
pares the effects of different models, we only use the 50% drop-out
layers to improve accuracy before the Softmax layer. This way big
groups of neurons become helpful not only in the context of other
neurons. Architecture averaging introduced by dropout tries to
ensure that each hidden unit learns feature representations that
are generally favorable in producing the correct classification
answer.

The final system that was evaluated in detail can be described
through the following process depicted in Fig. 9.

Our model is still in the form of convolution. For example, Cov1
represents the first conventional convolution structure, while Dila-
Cov1(2) represents the dilation rate of the first dilated convolution
is (2, 2). Convolution neural network training involves many deci-
sions both the architecture (the format of the input data, the num-
ber and size of layers, the filter dimension) and learning
hyperparameters (learning rate, momentum, and batch size). In
e experiment for the short sounds.



Fig. 10. Comparison of classification accuracy on the different convolution network structure. (the Cov1 means the first ordinary convolution, the DilaCov1 means the first
dilated convolution).

Fig. 11. The classification accuracy of the two models in group 3 on each folds.
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this experiment, we use mini-batch stochastic gradient descent
(SGD), with even the shuffled sequential batches (batch size is
32). Each layer of Nesterov momentum is 0.9 [39], the learning rate
is 0.001. The training process was stopped after 500 epochs.
Table 2
Dilated convolution with different dilation rate.

Model structure

Group1 Test1 Cov1 + Cov2 + Cov3 + DilaCov1(2)
Test2 Cov1 + Cov2 + Cov3 + DilaCov1(3)

Group2 Test3 Cov1 + Cov2 + DilaCov1(2) + DilaCov2(2)
Test4 Cov1 + Cov2 + DilaCov1(3) + DilaCov2(3)

Group3 Test5 Cov1 + DilaCov1(2) + DilaCov2(2) + DilaCov3(2)
Test6 Cov1 + DilaCov1(3) + DilaCov2(3) + DilaCov3(3)
4.3. Experiment analysis

We designed three sets of experiments to examine our
structure:

(1) Experiment 1: Different convolution network structure
The main purpose of this experiment is to compare conven-

tional convolution structure equipped with pooling layer to dilated
convolution. It contains three groups, each of which consists of two
tests, test 1 with dilated convolution and test2 with combination of
Max-pooling and convolution. All convolution kernels have a size
of 3 � 3, stride is (1, 1), the Max-pooling size is 2 � 2, stride size
is (2, 2). The dilation rate of all dilated convolutions is set to (2,
2). The model structures are listed in Table 1 and classification
accuracy of the three groups are shown in Fig. 10.

In each group, we find that the model structure with dilated
convolution is more accurate than the traditional convolution with
max-pooling layer for urban sound, that is, 77% versus 75%. The
classification accuracy of the two models in group3 on each fold
folds can be seen in the Fig. 11. In fact, for feature extraction in
ESC, dilated convolutions outperform the traditional convolution
operation plus max-pooling operation, since urban sound is a com-
plex collection of time-varying, short-term stationary signals car-
rying a large amount of effective information. When traditional
convolution with max-pooling operation is exerted, the number
of effective frames captured will be greatly reduced due to a heavy
deterioration of the receptive field for original features caused by
the pooling. In addition, it is difficult to sufficiently extracted
sound signal features by adding window processing, because this
process will include certain repetition. On the contrary, when
dilated convolution is used, the size of the receptive field remains



Fig. 12. Comparison of classification accuracy on the dilated convolution with different dilation rate.
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unchanged or even increases, so that the operation can cover more
frames, thereby fully extracting the sound features of the entire
audio clip, and effectively improving the experimental effect.

(2) Experiment 2: Dilated convolution with different dilation
rate

To explore the effect of changes in the dilation rate on the
experimental results, based on the design of the dilated convolu-
tion structure in the experiment one, we designed three groups of
comparative tests (in Table 2). The convolution structure used in
all tests was dilated convolution. The size of the dilated convolu-
tion kernel is still 3 � 3 and the stride size is (1, 1). In each group,
the two network structures are exactly the same (including the
layers of traditional CNN and dilated CNN). However, in the two
models designed in each group, the dilation rates of dilated con-
volutions are different. For example, DilaCov1(2) represents the
dilation rate of the first dilated convolution is (2, 2), while Dila-
Cov2(3) represents the dilation rate of the second dilated convo-
lution is (3, 3). The classification accuracy can be seen in the
Fig. 12.

From the comparative results of Experiment 2, we can find that
the dilation rate of dilated convolution increases, the classification
Table 3
Dilated convolution with different number of layers.

Model structure

Group1 Test1 Cov1 + Cov2 + Cov3 + DilaCov1
Test2 Cov1 + Cov2 + Cov3++DilaCov1 + DilaCov2

Group2 Test3 Cov1 + Cov2 + DilaCov1 + DilaCov2
Test4 Cov1 + Cov2 + DilaCov1 + DilaCov2 + DilaCov3

Group3 Test5 Cov1 + DilaCov1 + DilaCov2 + DilaCov3
Test6 Cov1 + DilaCov1 + DilaCov2 + DilaCov3 + DilaCov4

Fig. 13. Comparison of classification accuracy on
accuracy will decline rather than ascension. It is generally main-
tained at about 75%. It can be clearly seen from the experimental
results that the dilated convolution can increase the receptive field,
more effective frames can capture andmore abundant sound signal
features can be extracted. However, because the sound signal has
time-varying features, its features change closely with time, it is
difficult to effectively capture the precise features of sound signals
over time. Therefore, when adopting dilated convolution, the type
of ‘‘gridding” structure, enlarging dilation rate will make the whole
network structure too sparse, not only a large amount of loss of
information between adjacent frames, and will lead to the overall
frame range too big. It is not good at extracting audio signal fea-
tures change over time, resulting the classification effect worse.

(3) Experiment 3: Dilated convolution with different number of
layers

In this experiment, we designed other third group comparative
tests (Table 3) to explore the effect of the increase of the dilated
convolutional layer on the accuracy of the urban sound classifica-
tion. Also based on the model design of experiment 1, the internal
structure design on each convolution in Experiment 3 is exactly the
same (including convolution kernel size, stride size, and dilation
rate). The only difference is the number of dilated convolution in
each group.

By increasing the layers of dilated convolution, the effect of it on
classification accuracy is observed. The result can be seen in the
Fig. 13.

It can be clearly seen that along with the increase of the number
of dilated convolution layers, the accuracy of the testing results
decreased, from about 77% to less than 75%, same result as in
Experiment 2. Too many layers lead to loose network structure
and severe local information loss. In particular, in ESC, they destroy
the precision of extracting the temporal features of the sound
signal.
the dilated convolution with different layers.



Table 4
Accuracy comparison with other methods.

Method Accuracy

Dilated convolution (ours) 78%
Convolutional layers with max-pooling [25] 74%
Unsupervised feature learning [38] 73.6%
Long segments/majority voting [40] 71.8%
Baseline system [37] 68%
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4.4. Compared with other methods

Based on our data set, we compared our model with some other
start-of-art methods for the environmental sound classification.
For example, the work of Salamon and Bello [38] compared a base-
line system to the unsupervised feature learning. The average clas-
sification accuracy of baseline obtained was 68% and that of the
unsupervised feature learning is 73.6%. Karol J. Piczak et al. [25]
also used a deep network consisting of 2 convolutional layers with
max-pooling and 2 fully connected layers are trained on a low-
level representation of audio data with deltas. And finally the
model achieved an accuracy of around 74%. The result can be seen
in Table 4. Through the results, we can find that our model is
higher in classification accuracy than other advanced methods.

5. Conclusion and future work

We have tackled ESC problem with dilated CNN. Using this
structure substitutes the traditional convolution operation with
max-pooling results in higher accuracy of classification. At the
same time, we explore the effect of different dilation rate and the
number of layers of dilated convolution to the experimental
results, because sound signal has short-term stability (immediate
degeneration), carrying a lot of information and very complicated.
Therefore, the frame is too large to obtain the features that the
sound signal changes with time, and the frame is too small to
extract the overall features of the sound signal in detailed. So,
dilated CNN, being introduced to ESC problem, achieves better
results than that of CNN with max-pooling, but expanding the
number of covered frames or enlarging the dilation rate will make
the accuracy reduce. We believe there is an inherent ‘‘gridding”
defect in our dilation model: as the two pixels in the convolution
kernel are padded with zeros, the receptive field of the kernel cov-
ers only the area with checkerboard patterns - samples only loca-
tions with non-zero values and loses some neighborhood
information. The problem becomes worse as dilation rate
increases, or when the dilated convolution is built on high layers
that corresponds to bigger receptive field. Indeed, the convolu-
tional kernel is too sparse to cover any local information because
the non-zero values are too far apart. Because of the information
that contributes to a fixed pixel always comes from its pre-
defined gridding pattern, thus losing a huge portion of information.
And excessive receptive field makes the frame is too large to obtain
the characteristics that the sound signal changes with time. On the
other hand, building too many dilated convolution layers causes
the overall structure insufficiency for the training data since local
information are seriously neglected. Our future work is to improve
this model by carefully inspecting all parameters of dilated CNN
and structural combination of in-depth inquiry.
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