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Abstract
Tumor classification is one of the most vital technologies for cancer diagnosis. Due to the high dimensionality, gene
selection (finding a small, closely related gene set to accurately classify tumor) is an important step for improving gene
expression data classification performance. Traditional rough set model as a classical attribute reduction method deals with
discrete data only. As for the gene expression data containing real-value or noisy data, they are usually employed by a
discrete preprocessing, which may result in poor classification accuracy. In this paper, a novel neighborhood rough sets
and entropy measure-based gene selection with Fisher score for tumor classification is proposed, which has the ability of
dealing with real-value data whilst maintaining the original gene classification information. First, the Fisher score method is
employed to eliminate irrelevant genes to significantly reduce computation complexity. Next, some neighborhood entropy-
based uncertainty measures are investigated for handling the uncertainty and noisy of gene expression data. Moreover, some
of their properties are derived and the relationships among these measures are established. Finally, a joint neighborhood
entropy-based gene selection algorithm with the Fisher score is presented to improve the classification performance of gene
expression data. The experimental results under an instance and several public gene expression data sets prove that the
proposed method is very effective for selecting the most relevant genes with high classification accuracy.

Keywords Rough sets · Neighborhood rough sets · Gene selection · Neighborhood entropy · Tumor classification

1 Introduction

Tumor is a chronic disease that is caused mainly by irregu-
larities in genes, and it is important to identify such onco-
genes that cause cancer [10, 17, 35]. Biological data like
gene expressions, protein sequences, RNA-sequences, path-
way analysis, Pan- cancer analysis and structural biomarkers
could aid in cancer diagnosis, classification and prognosis
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[39]. The rapid development of DNAmicroarray technology
helps the researchers to analyze thousands of gene expres-
sion data in an efficient manner. Gene expression profiling
by microarray method has appeared as a capable technique
for classification and certain diagnosis, therapy, and cancer
prognosis [10, 29, 35]. Currently, the number of gene expres-
sion samples remains in the hundreds, compared to tens of
thousands of genes involved [17]. Although gene expres-
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sion data sets are high-dimensional, only a few of these
dimensions are beneficial to tumor classification, and a large
number of irrelevant and redundant genes would deterio-
rate the performance of the classifiers [10]. Gene selection
as an important data preprocessing technique for cancer
classification is one of the most challenging issues in the
field of microarray data analysis [33]. It aims to select the
most representative gene subset with a high resolution by
eliminating redundant and unimportant genes [18]. Its appli-
cation in the study of cancer has proved to be successful in
revealing the pathological mechanism, with the potential of
altering clinical practice through individualized cancer care
and contributing to the battle against cancer [10]. This study
has significant influence on bioinformatics, tumor or cancer
classification, disease diagnosis, and so on [4].

Considering whether the evaluation criterion involves
classification models, feature selection methods can be
divided into three categories [13, 19]: the filter, the
wrapper and the embedded methods. Based on the intrinsic
properties of the dataset, the filter methods have been
directed to discriminate or filter out features by estimating
their relevance scores to state a cut-off schema [27]. Lyu
et al. [24] studied a filter feature selection method based
on the maximal information coefficient for biomedical
data mining. Wang et al. [43] proposed a hybrid feature
selection algorithm which combines minimum redundancy
maximum relevance with imperialist competition algorithm
for cancer classification from microarray gene expression
data. The wrapper methods use a classifier to find the
most discriminant feature subset by minimizing an error
prediction function. However, the wrapper methods not
only exhibit sensitivity to the classifier and unstable
performance, but also tend to consume a lot of runtime
[13]. So, they are not extensively used in microarray tasks,
and few works in the field have employed these methods
[3]. The embedded methods integrate gene selection in
the training process to reduce the total time required for
reclassifying different subsets [6, 26]. Our gene selection
method is based on the filter approach, in which a heuristic
search algorithm is used to find an optimal gene subset with
neighborhood rough sets for the gene expression data.

Rough set theory is a useful tool to deal with vague,
uncertain and incomplete information [4, 26, 47]. However,
traditional rough set based on equivalence relation could
only handle data with categorical attributes, and it could
be useless for continuous numerical data [14, 42, 46].
To overcome this drawback, Hu et al. [16] established a
neighborhood rough set model to process both numerical
and categorical data sets via neighborhood relation. This
model will not break the neighborhood structure and order
structure of data sets in real spaces. Moreover, in order

to evaluate the uncertainty of discrete sample spaces,
information entropy as a significant uncertainty measure
tool can characterize the distinguished information of
feature subsets [40, 44]. Then, based on neighborhood
systems, information entropy and its variants have been
established and adapted for feature selections. For instance,
Chen et al. [5] studied a gene selection method for tumor
classification using neighborhood rough sets and entropy
measures, which has the ability of dealing with real-value
data while maintaining the original gene classification
information. Lin et al. [23] researched multi-label feature
selection based on neighborhood mutual information. Zhao
et al. [48] combined adaptive neighborhood granularity
with multi-level confidence to process cost-sensitive feature
selection. Dong et al. [7] proposed a hybrid genetic
algorithm with granular information for feature selection.
Garcia-Torres et al. [9] utilized feature grouping to
increase the effectiveness of search and proposed a variable
neighborhood search approach. According to the idea of
neighborhood, a gene expression data set is granulated by
neighborhood parameters and some entropy measures based
on neighborhood rough sets are developed in this paper.
Then, based on neighborhood entropy measures, a gene
selection method in the frame of neighborhood rough sets
is presented to address the uncertainty and noisy of gene
expression data.

To avoid the high computational complexity of attribute
reduction algorithms and obtain genes which facilitate clas-
sification and prediction, the Fisher score method is used
to carry out preliminary dimensionality reduction [12]. As
a feature relevance criterion, the Fisher score is a kind
of supervised learning with many advantages, such as few
calculations, high accuracy, and strong operability, which
can reduce computation complexity [20]. Hancer et al. [11]
presented a filter criterion inspired by mutual information,
ReliefF and Fisher score. However, the Fisher score often
selects redundant features, which in turn affects the classi-
fication result [12]. In this paper, the Fisher score method
is combined with entropy measure to reduce initial dimen-
sions of gene expression data, and improve the classification
performance of high-dimensional gene expression data sets.
The appropriate genes are selected to form a candidate gene
subset.

The remainder of this paper is organized as follows:
Section 2 reviews some basic concepts. In Section 3, neigh-
borhood entropy based-uncertainty measures of neighbor-
hood rough sets are presented, and a gene selection method
with Fisher score for gene expression data is developed.
Section 4 analyzes the experiments conducted on several
public gene expression data sets. Finally, the conclusions are
summarized in Section 5.
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2 Previous knowledge

In this section, we briefly review some basic concepts about
rough sets, information entropy measures and neighborhood
rough sets. The following notations have been given in [16,
25, 28, 30, 40].

2.1 Rough sets

Given a discrete-value data, which can be formalized as a
decision system DS = (U , C, D). U = {x1, x2, · · · , xn}
is a nonempty finite set named universe, C = {a1, a2, · · · ,
am} is a set of all conditional attributes, and D is the set of
decision attributes. V = ∪a∈{C∪D}Va , where Va is a value
set of attribute a. f : U× {C ∪ D} → V is a map function,
and f (a, x) represents the value of x on attribute a ∈ C∪D.

Given a decision system DS = (U , C, D), for any two
samples x, y ∈ U and attribute subset B ⊆ C, the
equivalence relation is described as

IND(B) = {(x, y)|∀a ∈ B, f (a, x) = f (a, y)}. (1)

For any sample x ∈ U , [x]B = {y| y ∈ U , (x, y) ∈
IND(B)} is an equivalence class of x, and U /IND(B) is a
partition that is compose of the equivalence classes.

The equivalence class defines two classical sets, named
upper and lower approximation sets, as the elementary units.
In a decision system DS = (U , C, D) with B ⊆ C and X ⊆
U , the lower approximation set and the upper approximation
set of X with respect to B can be described as, respectively

B(X) = {x|[x]B ⊆ X, x ∈ U}, (2)

B̄(X) = {x|[x]B ∩ X �= ∅, x ∈ U}. (3)

Thus, for a sample set X related to B ⊆ C, its lower
approximation set is the set of all elements which can be
classified with certainty as equivalence class of X related to
B, and its upper approximation set is a set of all elements
which are possibly classified to equivalence class of X

related to B.

2.2 Information entropymeasures

Given a decision system DS = (U , C, D), for an attribute
subset B ⊆ C, U /B = {X1, X2, · · · , Xn}, then the
information entropy of B is described as

H(B) = −
n∑

i=1

p(Xi) logp(Xi), (4)

where p (Xi) = |Xi ||U | is the probability of Xi ⊆ U /B, and
|Xi | denotes the cardinality of the equivalence class Xi .

Given a decision system DS = (U , C, D), for any two
attribute subsets B1, B2 ⊆ C, U /B1 = {X1, X2, · · · , Xn},
and U /B2 = {Y1, Y2, · · · , Ym}, then the joint entropy ofB1

and B2 is expressed as

H(B1 ∪ B2) = −
n∑

i=1

m∑

j=1

p(Xi ∩ Yj ) logp(Xi ∩ Yj ), (5)

where p
(
Xi ∩ Yj

) = |Xi∩Yj |
|U | .

2.3 Neighborhood rough sets

The continuous data set must be discretized when process-
ing continuous data with the classical rough set, but the
original property of the gene expression data will change
after discretization, and some useful information will be
lost. The neighborhood rough set is a method to solve the
problem that classical rough sets cannot handle continu-
ous numerical data [16, 41]. All data in gene selection
are numerical. Moreover, in the gene expression data sets,
the measured gene expression levels and pharmaceutical
tests are presented by continuous-valued data at different
magnitudes [21]. By utilizing neighborhood rough sets, the
discretization of continuous data can be avoided. Note that
the gene expression data set can be described by a neigh-
borhood decision system, where an object is corresponding
to a sample, a conditional attribute contains a gene, and a
decision attribute corresponds to a subclass of cancer.

Given a real-value gene expression data set, which is
formalized as a neighborhood decision system NS = (U , C,
D, V , f , �, δ). U = {x1, x2, · · · , xn} is a sample set, C =
{a1, a2, · · · , am} is a set of all genes, and D is a decision set.
V = ∪a∈{C∪D}Va , where Va is a value set of gene a. f : U×
{C ∪ D} → V is a map function. � → [0, ∞) is a distance
function, and δ is a neighborhood parameter, where 0 ≤ δ ≤
1. In the following, NS = (U , C, D, V , f , �, δ) is simply
noted as NS = (U , C, D, δ).

For any three samples x, y, z ∈ U on a gene subset B,
the distance function �B(x, y) satisfies the following three
conditions:

(1) �B(x, y) ≥ 0,
(2) �B(x, y) = �B(y, x),
(3) �B(x, y) + �B(y, z) ≥ �B(x, z).

The first item states that the distance function of two
samples is non-negative, and that the equality holds if and
only if the two samples are the same. The second item
indicates that the distance function is irrespective of the
order of the samples, i.e., it satisfies symmetry. The last item
demonstrates that the distance function satisfy triangular
inequality.
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It is well known that Manhattan, Euclidean and
Chebychev distance functions are three classical metrics.
Since the Euclidean distance function effectively reflects the
basic information of the unknown data [5], it is introduced
into this paper, and expressed as

�B(x, y) =
√√√√

|B|∑

k=1

|f (ak, x) − f (ak, y)|2, (6)

Given a neighborhood decision system NS = (U , C, D,
δ) and a distance function � → [0, ∞), for any gene
subset B ⊆ C and neighborhood parameter δ ∈ [0, 1], the
similarity relation resulting by B is described as

NRδ(B) = {(x, y) ∈ U × U |�B(x, y) ≤ δ}. (7)

For any x ∈ U , the neighborhood class of x with respect to
B is described as

nδ
B(x) = {y|x, y ∈ U, �B(x, y) ≤ δ}. (8)

Given a neighborhood decision system NS = (U , C, D,
δ) with B ⊆ C and X ⊆ U , the neighborhood
lower approximation Bδ(X) and the neighborhood upper
approximation B̄δ(X) of X with respect to B are described
as, respectively

Bδ(X) = {xi |nδ
B(xi) ⊆ X, xi ∈ U}, (9)

B̄δ(X) = {xi |nδ
B(xi) ∩ X �= ∅, xi ∈ U}. (10)

Thus, for a set X with respect to any gene subset B ⊆
C, its neighborhood lower approximation set is the set
of all elements which can be with certainty classified
as neighborhood class of X with respect to B, and its
neighborhood upper approximation set of a set X with
respect to B is the set of all elements which are possibly
classified to neighborhood class of X with respect to B.

3 Gene selection using neighborhood
entropy-based uncertainty measures
for gene expression data

3.1 Neighborhood entropy-based uncertainty
measures

The information entropy is not suitable for measuring the
neighborhood class in the numeric data sets. To solve
this issue, the concept of neighborhood is combined with
information theory measures. Based on the neighborhood
relation, neighborhood entropy-based uncertainty measures
are investigated for continuous numerical gene expression
data.

Given a neighborhood decision system NS = (U , C, D,
δ) with B ⊆ C, and nδ

B(xi) is a neighborhood class of
xi ∈ U , then Hu et al. [15] described the neighborhood
entropy of xi as follows

H
xi

δ (B) = − log

∣∣nδ
B(xi)

∣∣
|U | . (11)

Given a neighborhood decision system NS = (U , C, D,
δ) with B ⊆ C, then Hu et al. [15] and Chen et al. [5]
computed the average neighborhood entropy of the sample
set as follows

Hδ(B) = − 1

|U |
|U |∑

i=1

log

∣∣nδ
B(xi)

∣∣
|U | . (12)

Proporty 1 Given a neighborhood decision system NS =
(U , C, D, δ) and nδ

C(xi) ⊆ U for ∀xi ∈ U , then it follows

that 1
|U | ≤

∣∣nδ
C(xi )

∣∣
|U | ≤ 1. Thus, 0 ≤ Hδ(C) ≤ log |U | .

Proof Since nδ
C(xi) ⊆ U for ∀xi ∈ U , then it follows that

1
|U | ≤

∣∣nδ
C(xi )

∣∣
|U | ≤ 1, and one has 0 ≤ Hδ(C) ≤ log |U |.

Proposition 1 Given a neighborhood decision system NS=
(U , C, D, δ) with B ⊆ C, and two different neighborhood
parameters δ and δ′. For ∀xi ∈ U , and any gene subset
B ⊆ C, if δ ≤ δ′, then nδ

B(xi) ⊆ nδ′
B(xi) and Hδ(B)

≥ Hδ′(B).

Proof Let δ ≤ δ′, then one has that �B(x, y) ≤ δ ≤
δ′. For ∀xi ∈ U , it follows from (8) that nδ

B(xi) =
{y|xi, y ∈ U, �B(xi, y) ≤ δ} and nδ′

B(xi) = {y|xi, y ∈
U, �B(xi, y) ≤ δ′}. It can be easily obtained that nδ

B(xi) ⊆
nδ′

B(xi) and
∣∣nδ

B(xi)
∣∣ ≤

∣∣∣nδ′
B(xi)

∣∣∣. Hence, by (12), Hδ(B) ≥
Hδ′(B) holds.

Proposition 2 Given a neighborhood decision system NS
= (U , C, D, δ), for ∀xi ∈ U , if B1 ⊆ B2 ⊆ C, then
nδ

B1
(xi) ⊇ nδ

B2
(xi) and Hδ(B2) ≥ Hδ(B1).

Proof Let B1 ⊆ B2 ⊆ C, and similar to the proof of
Proposition 1 in [5], one has thatnδ

B1
(xi) ⊇ nδ

B2
(xi). Since

nδ
B1

(xi) ⊇ nδ
B2

(xi), then
∣∣∣nδ

B1
(xi)

∣∣∣ ≥
∣∣∣nδ

B2
(xi)

∣∣∣. Hence, by
(12), Hδ(B2) ≥ Hδ(B1).

Proposition 3 Given a neighborhood decision system NS=
(U , C, D, δ) with B ⊆ C, if δ = 0, Hδ(B) = H(B).
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Proof For B ⊆ C, if δ = 0, then nδ
B(x) can be viewed as

an equivalent class [x]B in rough sets, i.e., nδ
B(x) = [x]B .

For ∀xi ∈ U ,
∣∣nδ

B(xi )
∣∣

|U | is the probability distribution of all the
possible combinations of genes. Thus, it follows from (12)
that

− 1

|U |
|U |∑

i=1

log

∣∣nδ
B(xi)

∣∣
|U | =−|[xi]B |

|U |
∑

i

log
|[xi]B |
|U | =H(B),

i.e., Hδ(B) = H(B).

Definition 1 Given a neighborhood decision system NS
= (U , C, D, δ) with B ⊆ C, nδ

B(xi) is a neighborhood
class of xi ∈ U generated by NRδ(B), and [xi]D is an
equivalence class of xi ∈ U generated by IND(D), then a
joint neighborhood entropy of B and D is defined as

Hδ(D, B) = − 1

|U |
|U |∑

i=1

log

(∣∣nδ
B(xi) ∩ [xi]D

∣∣2

|U | |[xi]D|

)
. (13)

Proposition 4 Given a neighborhood decision system NS
= (U , C, D, δ) with B1 ⊆ B2 ⊆ C, then Hδ(D, B1) ≤
Hδ(D, B2), where Hδ(D, B1) = Hδ(D, B2) holds if and
only if nδ

B1
(xi) = nδ

B2
(xi) for ∀xi ∈ U .

Proof Let B1 ⊆ B2 ⊆ C, according to Proposition 2,
it follows that nδ

B1
(xi) ⊇ nδ

B2
(xi). Then, U ⊇ nδ

B1
(xi)∩

[xi]D ⊇ nδ
B2

(xi) ∩ [xi]D ⊇ {xi}. It is easily obtained that

|U | ≥
∣∣∣nδ

B1
(xi) ∩ [xi]D

∣∣∣ ≥
∣∣∣nδ

B2
(xi) ∩ [xi]D

∣∣∣ ≥ |{xi}|.

So, one has that |U |
|[xi ]D | ≥

∣∣∣nδ
B1

(xi )∩[xi ]D
∣∣∣
2

|U ||[xi ]D | ≥
∣∣∣nδ

B2
(xi )∩[xi ]D

∣∣∣
2

|U ||[xi ]D | ≥ 1
|U ||[xi ]D | and log

( |U |
|[xi ]D |

)
≥

log

( |nδ
Bi

(xi )∩[xi ]D |2
|U ||[xi ]D |

)
≥ log

(∣∣∣nδ
B2

(xi )∩[xi ]D
∣∣∣
2

|U ||[xi ]D |

)
≥

log
(

1
|U ||[xi ]D |

)
. Then, it is clear that −

m∑
i=1

log
( |U |

|[xi ]D |
)

≤

−1 ≤ −
m∑

i=1
log

(∣∣∣nδ
B2

(xi )∩[xi ]D
∣∣∣
2

|U ||[xi ]D |

)
≤ −

m∑
i=1

log
(

1
|U ||[xi ]D |

)
.

It can be concluded from Definition 1 that Hδ(D, B1) ≤
Hδ(D, B2). When nδ

B1
(xi) = nδ

B2
(xi), then

∣∣∣nδ
B1

(xi )∩[xi ]D
∣∣∣
2

|U ||[xi ]D | =
∣∣∣nδ

B2
(xi )∩[xi ]D

∣∣∣
2

|U ||[xi ]D | holds. Hence, Hδ(D, B1) ≤ Hδ(D, B2).

Proposition 5 Given a neighborhood decision system NS=
(U , C, D, δ) with B ⊆ C, then Hδ(D, B) ≥ Hδ(B).

Proof It follows immediately from Definition 1 and the
average neighborhood entropy in [5, 15] that

Hδ(D, B) − Hδ (B)

= − 1

|U |
|U |∑

i=1

log

(∣∣nδ
B(xi) ∩ [xi]D

∣∣2

|U | |[xi]D|

)

− 1

|U |
|U |∑

i=1

log

∣∣nδ
B(xi)

∣∣
|U |

= − 1

|U |
|U |∑

i=1

log

(∣∣nδ
B(xi) ∩ [xi]D

∣∣2

|U | |[xi]D| · |U |∣∣nδ
B(xi)

∣∣

)

= − 1

|U |
|U |∑

i=1

log

(∣∣nδ
B(xi) ∩ [xi]D

∣∣2

|[xi]D| ∣∣nδ
B(xi)

∣∣

)

= − 1

|U |
|U |∑

i=1

log

(∣∣nδ
B(xi) ∩ [xi]D

∣∣
|[xi]D| ·

∣∣nδ
B(xi) ∩ [xi]D

∣∣
∣∣nδ

B(xi)
∣∣

)
.

Since there exists nδ
B(xi) ∩ [xi]D ⊆ nδ

B(xi) and
nδ

B(xi) ∩ [xi]D ⊆ [xi]D , it is easily obtained that∣∣nδ
B(xi) ∩ [xi]D

∣∣ ≤ ∣∣nδ
B(xi)

∣∣ and
∣∣nδ

B(xi) ∩ [xi]D
∣∣ ≤

|[xi]D|. Then,
∣∣nδ

B(xi )∩[xi ]D
∣∣

|[xi ]D | ≤ 1 and
∣∣nδ

B(xi )∩[xi ]D
∣∣

∣∣nδ
B(xi )

∣∣ ≤ 1.

Therefore, Hδ(D, B) − Hδ(B) ≥ 0, i.e., Hδ(D, B) ≥
Hδ(B).

Definition 2 Given a neighborhood decision system NS =
(U , C, D, δ) with B ⊆ C and ∀a ∈ B, if Hδ(D, B) ≤
Hδ(D, B − {a}), then a is redundant in B with respect to
D, otherwise, the a is indispensable in B with respect to D.
B is dependent if any gene in B is indispensable in B with
respect to D. B is called a reduction of C with respect to D

if it satisfies the following two conditions:

(1) Hδ(D, B) = Hδ(D, C),
(2) Hδ(D, B − {a})<Hδ(D, B), where ∀a ∈ B.

Obviously, a reduction of C with respect to D is
the minimal gene subset to retain the joint neighborhood
entropy of C and D.

Definition 3 Given a neighborhood decision system NS =
(U , C, D, δ) with B ⊆ C and ∀a ∈ C − B, then the signi-
ficance measure of a in B with respect to D is defined as

Sig(a, B, D) = Hδ(D, B ∪ {a}) − Hδ(D, B). (14)

When B = ∅, Sig(a, B, D) = Hδ(D, {a}). From Definition
3, the significance of gene a is the increment of the
distinguishing information after adding a into B. The larger
value of Sig(a, B, D) is, the more importance of gene a for
B with respect to D is.



L. Sun et al.

3.2 Gene selection algorithmwith Fisher score
for gene expression data

In this subsection, Fisher score method as a key pretreat-
ment method can significantly reduce the dimension of the
gene, and it is briefly described as follows.

Given a neighborhood decision system NG = (U , C, D,
δ) about gene expression data. Its corresponding matrix is
X ∈ Rm×n, where m denotes the number of genes, and n

denotes the number of samples. Then, the Fisher score is
computed by

f (Z) = tr(Ab)

tr(Aw)
, (15)

where tr() denotes the trace of a matrix, Ab is the between-
class scatter matrix, and Aw is the within-class scatter
matrix.

To address the time-consuming issue of traditional
combination optimization methods, a heuristic strategy
is usually employed to calculate a score for each gene
independently by using some criteria. Then, the Fisher score
of the j -th gene is calculated by

f (i) =
∑C

i=1 ni(μ
j
i − μj )2

∑C
i=1 ni(σ

j
i )2

, (16)

where ni denotes the sample number of the i-th class,
μ

j
i and σ

j
i are the mean and standard deviation of the

samples from the i-th class corresponding to the j -th gene,
respectively, and μj denotes the mean of the samples
corresponding to the j -th gene.

Compute Fisher score of

each gene and get a score

array

Sort the score array using

radix sorting method

Select top-l gene to form

the gene subset

Calculate the attribute

importance using joint

neighborhood entropy

Find gene reduction set

red

Output a gene reduction

set red

Input gene expression data

set and initialize reduction

subset red

Set a neighborhood

decision system for gene

expression data sets

Change the neighborhood

parameter values

Analyze the number and

the classification accuracy

of the selected genes

Fig. 1 Flow char of gene selection with the Fisher score

To facilitate the understanding of the gene selection
algorithm with Fisher score for gene expression data, the
process of gene selection with the Fisher score for gene
expression data is shown in Fig. 1.

To support efficient gene selection, a gene selection
algorithm with the Fisher score based on joint neighborhood
entropy (GSFSJNE) is constructed and described as
Algorithm 1.

3.3 Complexity analysis

For the GSFSJNE algorithm, the time complexity of
feature selection from a neighborhood decision system is
polynomial. When giving m genes and n samples, the time
complexity of step 2 through step 4 is O(m). At step
5, the time complexity of the sorting method by using
the radix sorting algorithm in [31] is O(m), which is a
linear complexity. Thus, the time complexity of step 2
through step 7 is O(m). Joint neighborhood entropy-based
gene selection algorithm is given from step 8 to step 19,
where the neighborhood classes induced by the conditional
attributes and the joint neighborhood entropies need to be
frequently calculated in neighborhood decision systems.
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The above computational process largely affects time
complexity of selecting genes. Suppose that the number of
selected genes at step 7 is l, then, based on the type of
bucket employed [22], the time complexity of achieving
neighborhood classes is O(ln), and the complexity of
calculating joint neighborhood entropy is O(l). Since O(l)

<O(ln), the computational complexity of calculation of
joint neighborhood entropy is O(ln), and then there are
two loops in step 8 through step 19, so the worst time
complexity of GSFSJNE is O(l3n). Suppose that the
number of selected genes at step 19 is lR , for the calculation
of the neighborhood classes, we only consider the candidate
genes without involving the entire gene set. Then, the time
complexity of achieving neighborhood classes is O(lRn).
The times of the outer loop are lR , and the times of the inner
loop are l − lR . Then, the time complexity from step 8 to
step 19 is O(nl2Rl−nl3R). It is well known that lR � l in
most cases, and the time complexity is close to O(ln). Then,
the total time complexity of GSFSJNE is O(m+ ln). Thus,
the time complexity of GSFSJNE is O(m) approximately.
Therefore, in our proposed algorithm, the time complexity is
effectively decreased through dimensionality reduction with
the Fisher score method. Furthermore, its space complexity
is O(mn).

3.4 An illustrative example

In order to demonstrate the performance of GSFSJNE
algorithm, a neighborhood decision system NS = (U , C, D,
δ) is as an example [42], where U = {x1, x2, x3, x4} , C =
{a, b, c} , D = {d} , and δ = 0.3, as shown in Table 1.

For Table 1, an example of gene selection using
proposed algorithm without Fisher score is given. Then, the
neighborhood class of each gene in Table 1 is calculated
using the Euclidean distance function.

For a gene subset {a}, one has that �{a}(x1, x2) = 0.09,
�{a}(x1, x3) = 0.19, �{a}(x1, x4) = 0.49, �{a}(x2, x3) =
0.1, �{a}(x2, x4) = 0.4, and �{a}(x3, x4) = 0.3.

Then the neighborhood classes of ∀xi ∈ U can be
computed as follows:

nδ{a}(x1) = {x1, x2, x3}, nδ{a}(x2) = {x1, x2, x3},
nδ{a}(x3) = {x1, x2, x3, x4}, and nδ{a}(x4) = {x3, x4}.

Table 1 A gene expression data set

U a b c d

x1 0.12 0.41 0.61 Y

x2 0.21 0.15 0.14 Y

x3 0.31 0.11 0.26 N

x4 0.61 0.13 0.23 N

According to the decision D = {d} in Table 1, a partition
can be obtained, i.e., U /{d} = {D1, D2} = {{x1, x2},
{x3, x4}}. Then, the joint neighborhood entropy of D with
respect to {a} can be calculated by

Hδ(D, {a}) = − 1

|U |
|U |∑

i=1

log

(∣∣nδ
a(xi) ∩ [xi]D

∣∣2

|U | |[xi]D|

)

= −1

4

(
log

(
22

4 × 2

)
+ log

(
22

4 × 2

)

+ log

(
22

4 × 2

)
+ log

(
22

4 × 2

))

= 0.301.

Similarly, the other joint neighborhood entropies can be
calculated respectively as follows:

Hδ(D, {b}) = 0.301, Hδ(D, {c}) = 0.602, Hδ(D, {a, b})
= 0.903, Hδ(D, {a, c}) = 0.903, Hδ(D, {b, c}) = 0.753,

and Hδ(D, {a, b, c}) = 0.903.

The significance measures are calculated as follows:

Sig(a,∅, D)=Hδ(D, {a})=0.301, Sig(b, ∅, D)=Hδ(D,

{b}) = 0.301, and Sig(c,∅, D) = Hδ(D, {c}) = 0.602.

From the above calculated results, it can be observed that
Sig(c, ∅, D) > Sig(a, ∅, D) = Sig(b, ∅, D). Since the
gene c has the maximum with significance measure. Then,
the gene c should be added to the candidate, i.e., red =
{c}. By computing, we have that Sig(C, red, D) = Hδ(D,
C) − Hδ(D, {c}) = 0.903−0.602 = 0.301 �= 0, so the
searching need to be continued. It is easily computed that
Hδ(D, {a, c}) > Hδ(D, {b, c}) . Hence, the gene a is added
to the candidate reduction set, i.e., red = {a, c}, because the
joint neighborhood entropy of D with respect to {a, c} is
greater.

In the next step, the candidate reduction set red
is checked if it satisfies the termination criterion. By
computing, we know that Hδ(D, red) = Hδ(D, C),
i.e., Sig(C, red, D) = 0, which satisfies the termination
criterion. Thus, a selected gene subset {a, c} is achieved.

4 Experimental results and analysis

In this section, the performances of our gene selection
algorithm given in Section 3.2 are demonstrated. The gene
expression data sets shown in Table 2 are described in detail
as follows:

(1) Colon cancer [36] is the development of cancer from
the Colon or rectum.Most Colon cancers are due to old
age and lifestyle factors, with only a small number of
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Table 2 Description of five gene expression data sets

No. Data set Genes Samples Classies

1 Colon 2000 62 2 (40/22)

2 SRBCT 2308 63 4 (23/8/12/20)

3 DLBCL 5469 77 2 (58/19)

4 Brain Tumor1 5920 90 5 (60/10/10/4/6)

5 Leukemia 7129 72 2 (47/25)

cases due to underlying genetic disorders. The Colon
gene expression data set contains 2000 genes and 62
samples, including 40 patient samples and 22 healthy
samples.

(2) Small-round-blue-cell tumor (SRBCT) [37] is any
one of a group of malignant neoplasms that have
a characteristic appearance under the microscope,
i.e. consisting of small round cells that stain blue
on routine H&E stained sections. These tumors
are seen more often in children than in adults.
They typically represent undifferentiated cells, which
contain 2308 genes and 63 samples with four subtypes,
including 23 Ewing Sarcoma, 8 Burkitt Lymphoma, 12
Neuroblastoma and 20 Rhabd omyosarcoma.

(3) Diffuse large B-cell lymphoma (DLBCL) [37] is a
cancer of B cells, a type of white blood cell responsible
for producing antibodies. It is the most common type
of non-Hodgkin lymphoma among adults, with an
annual incidence of 7–8 cases per 100000 people per
year in the USA and the UK. It contains 5469 genes
and 77 samples, including 58 patient samples and 19
healthy samples.

(4) Brain tumor [37] occurs when abnormal cells form
within the brain. All types of brain tumors may
produce symptoms that vary depending on the part of
the brain involved. The Brain Tumor1 gene expression
data set contains 5920 genes and 90 samples with
five subtypes, including 60 Medulloblastoma, 10
Malignant glioma, 10 AT/RT, 4 Normal cerebellum
and 6 PNET.

(5) Leukemia [37] is a group of cancers that usually
begin in the bone marrow and result in high numbers
of abnormal white blood cells. These white blood
cells are not fully developed and are called blasts
or leukemia cells. Diagnosis is typically made by
blood tests or bone marrow biopsy. The Leukemia
gene expression data set contains 7129 genes and 72
samples, including 47 patient samples and 25 healthy
samples.

The experiments were performed on a personal computer
running Windows 7 with an Intel(R) Core(TM) i5-3470
CPU operating at 3.20 GHz, and 4 GB memory. All

the simulation experiments were implemented in Matlab
R2014a, and the three classifiers (KNN, C4.5 and LibSVM)
were selected to verify the classification accuracy in WEKA
software, whose parameter k in KNN was set to 5, and the
linear kernel functions were selected in LibSVM.

In the first part of our experiments, the Fisher score
method is used to achieve preliminary dimensionality
reduction. For each gene expression data set, the Fisher
score value of each gene is calculated and sorted, and then l

genes are selected to constitute a candidate gene subset. The
classification accuracy with different numbers of genes was
verified in WEKA. Figure 2 illustrates the changing trend
of the classification accuracy versus the number of genes on
five gene expression data sets.

It can be observed from Fig. 2 that the classification
accuracies of each gene expression data set with different
values of l are very similar in most situations. Furthermore,
it is well known that the cardinality and the classification
accuracy of the candidate gene subset are two important
indices for evaluating the performance of gene selection
algorithms. Then, the appropriate values of l need to be
selected from Fig. 2. Hence, the l value is set to 200.

In what follows, the second part of our experiments
concerns the effect of different neighborhood parameter
values. The value of the neighborhood parameters decides
the granularity of data manipulation, which affects both the
cardinality of the dataset and the classification accuracy of
selected gene subset. Then, reduction rate is introduced to
evaluate the gene redundancy gene selection algorithms. In
this paper, a new reduction rate for gene expression data sets
in neighborhood decision systems is defined as

Rateδ = max(|Rδ|) − |Rδ|
max(|Rδ|) , (17)

where |Rδ| represents the number of selected genes
generated by a given δ.
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Fig. 3 The reduction rate and the classification accuracy of Colon data
sets with different neighborhood parameter values

The reduction rate represents the degree of redundancy.
A higher reduction rate indicates that the algorithm has
stronger reduction ability for gene expression data sets. That
is, the higher reduction rate is, the lower redundancy is.

The reduction rate and classification accuracy of a
gene subset for different neighborhood parameter values is
discussed to obtain a suitable neighborhood parameter value
and a better genes subset. The classification accuracy of the
gene expression datasets given in Table 2 was obtained by
using the GSFSJNE algorithm with different neighborhood
parameters. The results are shown in Figs. 3, 4, 5, 6 and 7,
where the horizontal coordinate denotes the neighborhood
parameter values, the neighborhood parameter δ ∈ [0.05,1]
at intervals of 0.05, and the left and right vertical coordinates
describe the reduction rate and the classification accuracy,
respectively.

Figures 3–7 show that the classification accuracy of
the selected gene subsets with GSFSJNE algorithm is
increasing, and the reduction rate is decreasing with
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Fig. 4 The reduction rate and the classification accuracy of SRBCT
data sets with different neighborhood parameter values
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Fig. 5 The reduction rate and the classification accuracy of DLBCL
data sets with different neighborhood parameter values
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Fig. 6 The reduction rate and the classification accuracy of
Brain Tumor1 data sets with different neighborhood parameter values
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Table 3 The selected gene
subsets of five gene expression
data sets with the GSFSJNE
algorithm

Data sets Selected gene subsets

Colon {765, 590, 384, 266, 1541}
SRBCT {1606, 758, 246, 1954, 165, 823, 1066, 1980, 1327}
DLBCL {3127, 584, 2639, 1570, 4588, 4094, 2949, 3304}
Brain Tumor1 {467, 2295, 4151, 5175, 5413, 1879, 2095, 3401, 5713, 820, 5633}
Leukemia {461, 1962, 5552, 2131}

the neighborhood parameters changing from 0.05 to 1
in the majority of cases. It indicates that the granule
is thinner, and the roughness of granule is smaller as
the neighborhood parameter is smaller, and the reduction
rate increases as the granule roughness decreases. Then,
the optimal neighborhood parameters can be selected for
each gene expression data sets. Figure 3 illustrates the
classification accuracy of the Colon data set for different
neighborhood parameters. The reduction rate decreases as
the neighborhood parameters increase, and the classification
accuracy of the selected genes first reaches a maximal
value when the neighborhood parameter is 0.15. Thus, the
neighborhood parameter δ of the Colon data set can be set
to 0.15. Similarly, for SRBCT and Brain Tumor1 data sets
with different neighborhood parameters in Figs. 4 and 6,
the neighborhood parameter δ can be set to 0.35. Figure 5
shows the classification accuracy of the DLBCL data set
with different neighborhood parameters. The reduction rate
decreases as the neighborhood parameters increase, and the
classification accuracy of the selected genes first reaches a
maximum when the neighborhood parameter is 0.3. Thus,
the neighborhood parameter δ of the DLBCL data set can
be set to 0.3. Likewise, from Fig. 7, the neighborhood
parameter δ of the Leukemia data set can be set to 0.1.

In the third part of our experiments, by using the GSFSJNE
algorithm and the above set neighborhood parameters, the
results of gene selection on the five gene expression data
sets was obtained, which are shown in Table 3.

The fourth part of our experiments is to test the
performance of our proposed algorithm in terms of the
classification accuracy for the selected genes. In the

Table 4 Classification accuracy for the selected Colon genes (δ =
0.15)

Methods Genes KNN C4.5 SVM Average

ODP 2000 77.64 81.95 81.14 80.24

MEGS 5 77.00 82.24 84.86 81.37

EGGS 5 54.00 59.40 64.26 59.22

JNEGS 5 55.45 64.12 60.55 60.04

GSFSJNE 5 84.10 81.57 84.26 83.31

current experiments, the classification performance of
GSFSJNE is compared with those of the other four related
gene selection methods on the five gene expression data
sets. The methods used in the comparison include: (1)
the original data processing method (ODP), (1) mutual
entropy-based gene selection algorithm (MEGS) [45], (2)
entropy gain-based gene selection algorithm (EGGS) [5],
and (3) joint neighborhood entropy-based gene selection
algorithm (JNEGS). The KNN, C4.5 and SVM classifiers
are employed in WEKA. The objective of these further
experiments is to show the classification performance of the
proposed approach to gene selection. Tables 4, 5, 6, 7 and
8 show the experimental results of five different methods,
in which the minimal cardinality (in terms of gene subset
length) of each algorithm is given, and the bold numbers
indicate the optimal values, namely the highest accuracy.

From Tables 4–8, the classification accuracies of the
five gene expression data sets by five methods are verified
respectively in the KNN, C4.5 and SVM classifiers. The
classification effectiveness of the classifiers is affected by
the data sets. For example, the SVM classifier exhibits
good classification performance for the original data set,
and the classification accuracies of the GSFSJNE algorithm
in the KNN classifier are higher. In addition, for the
uniform treatment of all the algorithms, the average
classification accuracies of the three classifiers are given.
By comparing the average classification accuracy, it can
be observed that the GSFSJNE algorithm significantly
improves the classification accuracy in most cases. On the
five different data sets, the cardinalities of gene subset with
MEGS algorithm are minimal, however, the classification

Table 5 Classification accuracy for the selected SRBCT genes (δ =
0.35)

Methods Genes KNN C4.5 SVM Average

ODP 2308 80.79 77.98 98.40 85.72

MEGS 4 53.69 42.33 53.88 49.97

EGGS 8 50.29 42.36 53.48 48.71

JNEGS 8 50.29 42.36 53.48 48.71

GSFSJNE 9 97.43 87.83 94.50 93.25
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Table 6 Classification accuracy for the selected DLBCL genes
(δ =0.3)

Methods Genes KNN C4.5 SVM Average

ODP 5469 89.59 80.89 96.54 89.01

MEGS 2 76.52 77.77 77.73 77.34

EGGS 20 75.21 83.09 86.23 81.51

JNEGS 7 75.68 71.89 66.32 71.30

GSFSJNE 8 95.59 90.98 94.04 93.54

accuracies of SRBCT, DLBCL and Brain Tumor1 data sets
are lower than that of the original data set, which indicates
that the useful information will lost after discretizing, and
the part of the effective genes will be deleted. The GSFSJNE
algorithm not only overcomes this defect, but also selects
genes that are related to the decision and more conducive
to classification performance. A comparison of the results
of the average classification accuracy of the GSFSJNE
algorithm with the EGGS algorithm illustrates that the
GSFSJNE algorithm has higher average classification
accuracy for the five gene expression data sets, which
indicates that the proposed GSFSJNE algorithm can select
genes that contribute the most to the classification. Thus,
the GSFSJNE algorithm is more suitable for processing the
large-scale gene expression data sets.

In order to further verify the classification performance
of our proposed method, the objective of the last part of
our experiments is to evaluate the ten methods in terms
of the number and the classification accuracy of selected
genes. Our GSFSJNE algorithm is compared with the nine
related recent dimensionality reduction methods, which
include: (1) ODP, (1) the Fisher score algorithm [12], (2)
the Lasso [49], (3) the neighborhood rough sets (NRS)
[8], (4) the gene selection algorithm based on the fisher
linear discriminant and the neighborhood rough set (FLD-
NRS) [34], (5) the gene selection algorithm based on the
locally linear embedding and neighborhood rough set (LLE-
NRS) [32], (6) the RelieF [38] combined with the NRS [8]
(RelieF+NRS), (7) the fuzzy backward feature elimination

Table 7 Classification accuracy for the selected Brain Tumor1 genes
(δ =0.35)

Methods Genes KNN C4.5 SVM Average

ODP 5920 78.33 75.11 86.00 79.81

MEGS 2 68.33 68.89 69.11 68.78

EGGS 8 66.67 59.44 66.56 64.22

JNEGS 9 71.11 65.11 63.22 66.48

GSFSJNE 11 88.33 82.22 81.22 83.92

Table 8 Classification accuracy for the selected Leukemia genes
(δ =0.1)

Methods Genes KNN C4.5 SVM Average

ODP 7129 84.16 81.43 97.27 87.62

MEGS 3 92.77 93.39 92.04 92.73

EGGS 3 58.71 64.70 53.59 59.00

JNEGS 3 58.71 64.70 53.59 59.00

GSFSJNE 4 91.98 77.64 88.89 86.17

(FBFE) [2], and (8) the binary differential evolution
(BDE) [1]. Lib-SVM classifier in WEKA tool is used
to simulation experiment. The number and classification
accuracies of selected genes are shown in Tables 9 and 10,
respectively.

According to the results of the number of selected genes
and classification accuracy in Tables 9 and 10, the differ-
ence among ten methods can be clearly found. For Colon
data, though FLD-NRS acquires higher classification accu-
racy 88%, the number of genes of GSFSJNE is less than that
of FLD-NRS, LLE-NRS and RelieF+NRS. For Leukemia
dataset, FBFE has higher classification accuracy than GSF-
SJNE but failure in number of selected genes. For Lung
data set with FBFE method, the number selected genes is
as high as 80, but for some methods such as NRS, FLD-
NRS, BDE, and GSFSJNE, the number selected genes is
less than 10. As for the classification accuracy, it can be
observed that the GSFSJNE algorithm obtains higher clas-
sification accuracy than NRS. The classification accuracy
produced by our method is 99.8% for Lung data, and the
result is higher than that of other algorithms. The NRS
algorithm selects less number of genes, where the number
is only 5 at most for Leukemia data and the number of
rest of the data is lower. However, some genes with clas-
sification information also are deleted, which leads to low
classification accuracy of the NRS The three extended NRS
methods (FLD-NRS, LLE-NRS and RelieF+NRS) over-
come this drawback to increase the number of selected
genes and improve the classification accuracy Compared
with these methods, the GSFSJNE algorithm holds higher
classification accuracy for Leukemia, Lung and Prostate
data sets Compared with FBFE and BDE, the GSFSJNE
algorithm has slightly improved classification accuracy for
Colon and Lung datasets Therefore, our proposed approach
obviously reduces the dimension of gene expression data
sets, outperforms the other relatedmethods of gene selection,
and can provide an efficient dimensionality reduction tech-
nique for high-dimensional large-scale data sets.

During the above experiments, the rough ordering of
these nine methods with respect to time complexity is as
follows: O(GSFSJNE) = O(Fisher score) < O(FBFE) <
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Table 9 The number of selected genes with ten related recent dimensionality reduction methods

Method ODP Fisher score Lasso NRS FLD-NRS LLE-NRS RelieF+NRS FBFE BDE GSFSJNE

Colon 2000 200 5 4 6 16 9 35 3 5

Leukemia 7129 200 23 5 6 22 17 30 7 4

Lung [37] 12533 200 8 3 3 16 23 80 3 6

Prostate [37] 12600 200 63 4 4 19 16 50 3 4

O(BDE) < O(FLD-NRS) < O(RelieF+NRS) < O(NRS)
< O(LLE-NRS)< O(Lasso), whereO(A) denotes the time
complexity of A algorithm. The time complexity of Lasso
algorithm isO(nm3) [49]. For high-dimensional gene expres-
sion data, the Lasso algorithm has the highest time comple-
xity. For the NRS algorithm and its extension forms, the
time complexity of is O(m2n+m2nlogn) for the LLE-NRS
algorithm [32], and O(m2nlogn) for NRS algorithm [8].
Therefore, the time complexity of LLE-NRS is higher than
that of NRS. Moreover, Relief+NRS has a time complexity
of O(mn+mnlogn) [8, 38], and FLD-NRS has the time
complexity of O(mnlogn) [34]. The time complexities of
three extended NRS methods (FLD-NRS, LLE-NRS and
RelieF+NRS) are lower than that of NRS. Since population
initialization is main process of the BDE algorithm, the
time complexity of BDE is close toO(nm) [1]. For FBFE,
the time is mainly spent on evaluating the relevance of
the features using entropy, and its time complexity is not
more than O(nm) [2]. The time complexity of GSFSJNE
and Fisher score [12] are approximately equal to O(m)

and lower than that of other seven algorithms. Through
the above analyses of time complexity, Lasso algorithm
costs significantly more time. Since in most cases n � m,
the time complexity and the number of selected genes of
Lasso are much larger than those of GSFSJNE, though
Lasso has better classification accuracy. It is immediately
apparent from these results that our proposed algorithm
can effectively reduce dimension of gene expression data,
increase the classification accuracy, and speed up the
classification process with less time complexity.

5 Conclusion

Identifying tumor-related genes is helpful for earlier tumor
diagnosis and drug design. Gene selection is one of the
important steps in tumor classification. In this paper,
a gene selection method using neighborhood entropy-
based uncertainty measures is proposed to improve the
classification accuracy of gene expression data. The Fisher
score method first preliminarily reduces the dimension
of gene expression data sets, which eliminates irrelevant
genes, and significantly decreases the complexity of
subsequent computations. Then, the neighborhood entropy-
based uncertainty measures are investigated to measure
the uncertainties of real-value gene expression data sets
and exclude the redundancy genes. Furthermore, the
properties and the relationships among these measures
are derived. Thus, a heuristic algorithm is constructed to
improve computational efficiency of selecting genes in
neighborhood decision systems. The experimental results
show that our proposed algorithm can obtain a small,
effective gene subset with higher classification accuracy.
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Table 10 The classification accuracy of selected genes with ten related recent dimensionality reduction methods

Method ODP Fisher score Lasso NRS FLD-NRS LLE-NRS RelieF+NRS FBFE BDE GSFSJNE

Colon 0.645 0.838 0.887 0.611 0.88 0.84 0.564 0.833 0.75 0.843

Leukemia 0.653 0.934 0.986 0.645 0.828 0.868 0.563 0.912 0.824 0.889

Lung 0.916 0.975 0.995 0.641 0.889 0.907 0.919 0.852 0.98 0.998

Prostate 0.566 0.86 0.961 0.647 0.8 0.711 0.642 0.832 0.941 0.85

Avearage 0.695 0.902 0.957 0.636 0.849 0.832 0.672 0.857 0.874 0.892
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